Carbohydrate-spiro-heterocycles pp 215-260 | Cite as
Spiroketal Phthalane C-Glycosides: Synthesis of Papulacandins and SGLT2 Inhibitors
- 202 Downloads
Abstract
Spiroketals are important structural motifs found in diverse natural products, many of which display unique biological activity. Among them, spiroketal phthalane C-glycosides, in which a phthalane ring and sugar unit form a spiroketal framework, have garnered enormous attention from wide research areas because such a fascinating spirocycle motif is found in antibiotic natural products, i.e., papulacandins and their relatives. Moreover, recent reports from pharmaceutical researchers have revealed that spiroketal phthalane C-glycosides are potent drug candidates for type 2 diabetes. Accordingly, the efficient and selective construction of the spiroketal phthalane C-glycoside motif is an important research objective in synthetic organic chemistry. In this chapter, recent advances in the synthesis of spiroketal phthalane C-glycosides will be discussed.
Keywords
Antibiotics C-arylglycosides Papulacandins SGLT2 inhibitors SpiroketalsReferences
- 1.Aho JE, Pihko PM, Rissa TK (2005). Chem Rev 105:4406–4440CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Sperry J, Wilson ZE, Rathwell DCK, Brimble MA (2010). Nat Prod Rep 27:1117–1137CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Atkinson DJ, Brimble MA (2015). Nat Prod Rep 32:811–840CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Rihs G, Traxler P (1981). Helv Chim Acta 64:1533–1539CrossRefGoogle Scholar
- 5.Traxler P, Fritz H, Fuhrer H, Richter WJ (1980). J Antibiot 33:967–978CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1145–1146Google Scholar
- 7.Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1147–1148Google Scholar
- 8.Barrett AGM, Peña M, Willardsen JA (1996). J Org Chem 61:1082–1100CrossRefGoogle Scholar
- 9.Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Somsák L, Bokor É, Czifrák K, Juhász L, Tóth M (2011) Carbohydrate derivatives and glycomimetic compounds in established and investigational therapies of type 2 diabetes mellitus. In: Zimering MB (ed) Topics in the prevention, treatment and complications of type 2 diabetes. InTech, Rijeka, pp 103–126Google Scholar
- 12.Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87CrossRefGoogle Scholar
- 13.Zhang Y, Liu Z-P (2016). Curr Med Chem 23:832–849CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Process Res Dev 22:467–488CrossRefGoogle Scholar
- 15.Traxler P, Gruner J, Auden JAL (1977). J Antibiot 30:289–296CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Traxler P, Fritz H, Richter WJ (1977). Helv Chim Acta 60:578–584CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Pérez P, García-Acha I, Durán A (1983). J Gen Microbiol 129:245–250PubMedPubMedCentralGoogle Scholar
- 18.Baguley BC, Römmele G, Gruner J, Wehrli W (1979). Eur J Biochem 97:345–351CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Pérez P, Varona R, Garcia-Acha I, Durán A (1981). FEBS Lett 129:249–252CrossRefGoogle Scholar
- 20.Varona R, Pérez P, Durán A (1983). FEMS Microbiol Lett 20:243–247Google Scholar
- 21.Römmele G, Traxler P, Wefrli W (1983). J Antibiot 36:1539–1542CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Traxler P, Tosch W, Zak O (1987). J Antibiot 40:1146–1164CrossRefPubMedPubMedCentralGoogle Scholar
- 23.VanMiddlesworth F, Omstead MN, Schmatz D, Bartizal K, Fromtling R, Bills G, Nollstadt K, Honeycutt S, Zweerink M, Garrity G, Wilson K (1991). J Antibiot 44:45–51CrossRefPubMedPubMedCentralGoogle Scholar
- 24.VanMiddlesworth F, Dufresne C, Smith J, Wilson KE (1991). Tetrahedron 47:7563–7568CrossRefGoogle Scholar
- 25.Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schmartz R, Hammond M, Balkovec J, VanMiddlesworth F (1992). Antimicrob Agents Chemother 36:1648–1657CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:247–250CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Chiba H, Kaneto R, Agematu H, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:356–358CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Aoki M, Andoh T, Ueki T, Masuyoshi S, Sugawara K, Oki T (1993). J Antibiot 46:952–960CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Okada H, Nagashima M, Suzuki H, Nakajima S, Kojiri K, Suda H (1996). J Antibiot 49:103–106CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Chen RH, Tennant S, Frost D, O’Beirne MJ, Karwowski JP, Humphrey PE, Malmberg L-H, Choi W, Brandt KD, West P, Kadam SK, Clement JJ, McAlpine JB (1996). J Antibiot 49:596–598CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Ohyama T, Iwadate-Kurihara Y, Hosoya T, Ishikawa T, Miyakoshi S, Hamano K, Inukai M (2002). J Antibiot 55:758–763CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL, Wilson KE, Turner MJ (1990). Proc Natl Acad Sci U S A 87:5950–5954CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Jaramillo C, Knapp S (1994). Synthesis:1–20Google Scholar
- 34.Bililign T, Griffith BR, Thorson JS (2005). Nat Prod Rep 22:742–760CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Wellington KW, Benner SA (2006). Nuclos Nucleot Nucleic Acids 25:1309–1333CrossRefGoogle Scholar
- 36.Kitamura K, Ando Y, Matsumoto T, Suzuki K (2018). Chem Rev 118:1495–1598CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Bokor É, Kun S, Goyard D, Tóth M, Praly J-P, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764CrossRefGoogle Scholar
- 38.Yang Y, Yu B (2017). Chem Rev 117:12281–12356CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Liao H, Ma J, Yao H, Liu X-W (2018). Org Biomol Chem 16:1791–1806CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Schmidt RR, Frick W (1988). Tetrahedron 44:7163–7169CrossRefGoogle Scholar
- 41.Rosenblum SB, Bihovsky R (1990). J Am Chem Soc 112:2746–2748CrossRefGoogle Scholar
- 42.Czernecki S, Perlat M-C (1991). J Org Chem 56:6289–6292CrossRefGoogle Scholar
- 43.Hamdouchi C, Sanchez-Martinez C (2001). Synthesis:833–840Google Scholar
- 44.Hamdouchi C, Jaramillo C, Lopez-Prados J, Rubio A (2002). Tetrahedron Lett 43:3875–3878CrossRefGoogle Scholar
- 45.Parker KA, Georges AT (2000). Org Lett 2:497–499CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Friesen RW, Sturino CF (1990). J Org Chem 55:5808–5810CrossRefGoogle Scholar
- 47.Dubois E, Beau J-M (1990). Tetrahedron Lett 31:5165–5168CrossRefGoogle Scholar
- 48.Dubois E, Beau J-M (1992). Carbohydr Res 223:157–167CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Liu G, Wurst JM, Tan DS (2009). Org Lett 11:3670–3673CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Wurst JM, Liu G, Tan DS (2011). J Am Chem Soc 133:7916–7925CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Butkevich AN, Corbu A, Meerpoel L, Stanfield I, Angibaud P, Bonnet P, Cossy J (2012). Org Lett 14:4998–5001CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Parkan K, Pohl R, Kotora M (2014). Chem A Eur J 20:4414–4419CrossRefGoogle Scholar
- 53.van der Kaaden M, Breukink E, Pieters RJ (2012). Beilstein J Org Chem 8:732–737CrossRefPubMedPubMedCentralGoogle Scholar
- 54.Danishefsky S, Phillips G, Ciufolini M (1987). Carbohydr Res 171:317–327CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Balachari D, O’Doherty GA (2000). Org Lett 2:863–866CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Balachari D, O’Doherty GA (2000). Org Lett 2:4033–4036CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Ahmed MM, O’Doherty GA (2005). Tetrahedron Lett 46:4151–4155CrossRefGoogle Scholar
- 58.Mainkar PS, Johny K, Rao TP, Chandrasekhar S (2012). J Org Chem 77:2519–2525CrossRefPubMedPubMedCentralGoogle Scholar
- 59.DeFronzo RA, Norton L, Abdul-Ghani M (2017). Nat Rev Nephrol 13:11–26CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J (2005). Diabetes Metab Res Rev 21:31–38CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu S-Y, Ahn K-H, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Suzuki M, Honda K, Fukazawa M, Ozawa K, Hagita H, Kawai T, Takeda M, Yata T, Kawai M, Fukuzawa T, Kobayashi T, Sato T, Kawabe Y, Ikeda S (2012). J Pharmacol Exp Ther 341:692–701CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, Beyer U, Beck A, Ciorciaro C, Meyer M, Kadowaki T (2015). Diabetes Obes Exp Metab 17:984–993CrossRefGoogle Scholar
- 64.Poole RM, Prossler JE (2014). Drugs 74:939–944CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Xu B, Lv B, Feng Y, Xu G, Du J, Welihinda A, Sheng Z, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:5632–5635CrossRefPubMedPubMedCentralGoogle Scholar
- 66.Lv B, Xu B, Feng Y, Peng K, Xu G, Du J, Zhang L, Zhang W, Zhang T, Zhu L, Ding H, Sheng Z, Welihinda A, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:6877–6881CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Lv B, Feng Y, Dong J, Xu M, Xu B, Zhang W, Sheng Z, Welihinda A, Seed B, Chen Y (2010). ChemMedChem 5:827–831CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu S-Y, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153CrossRefPubMedPubMedCentralGoogle Scholar
- 69.Yamane M, Kawashima K, Yamaguchi K, Nagao S, Sato M, Suzuki M, Honda K, Hagita H, Kuhlmann O, Polirier A, Fowler S, Funk C, Simon S, Aso Y, Ikeda S, Ishigai M (2015). Xenobiotica 45:230–238CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Kimura M, Maeda K, Honma A, Shimizu H (2017). Tetrahedron 73:655–660CrossRefGoogle Scholar
- 71.Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827CrossRefGoogle Scholar
- 72.Liu Y-H, Fu T-M, Ou C-Y, Fan W-L, Peng G-P (2013). Chin Chem Lett 24:131–133CrossRefGoogle Scholar
- 73.Liu Y, Fu T, Chen Z, Ou C (2015). Monatsh Chem 146:1715–1721CrossRefGoogle Scholar
- 74.McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606CrossRefGoogle Scholar
- 75.Yamamoto Y, Hashimoto T, Hattori K, Kikuchi M, Nishiyama H (2006). Org Lett 8:3565–3568CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399CrossRefGoogle Scholar
- 77.Subrahmanyam AV, Palanichamy K, Kaliappan KP (2010). Chem Eur J 16:8545–8556CrossRefPubMedPubMedCentralGoogle Scholar
- 78.Awasaguchi K, Miyazawa M, Uoya I, Inoue K, Nakamura K, Yokoyama H, Kakuda H, Hirai Y (2010). Synlett:2392–2396Google Scholar
- 79.Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014). Chem Rev 114:2432–2506CrossRefPubMedPubMedCentralGoogle Scholar
- 80.Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015). J Med Chem 58:8315–8359CrossRefPubMedPubMedCentralGoogle Scholar
- 81.Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016). Chem Rev 116:422–518CrossRefPubMedPubMedCentralGoogle Scholar
- 82.Yerien DE, Bonesi S, Postigo A (2016). Org Biomol Chem 14:8398–8427CrossRefPubMedPubMedCentralGoogle Scholar
- 83.Sadurní A, Gilmour R (2018). Eur J Org Chem 2018:3684–3687Google Scholar
- 84.Bucher C, Gilmour R (2010). Angew Chem Int Ed 49:8724–8728CrossRefGoogle Scholar
- 85.Sadurní A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R (2018). Chem Eur J 24:2832–2836CrossRefPubMedPubMedCentralGoogle Scholar