Advertisement

Spiroketal Phthalane C-Glycosides: Synthesis of Papulacandins and SGLT2 Inhibitors

  • Yoshihiko YamamotoEmail author
Chapter
  • 202 Downloads
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 57)

Abstract

Spiroketals are important structural motifs found in diverse natural products, many of which display unique biological activity. Among them, spiroketal phthalane C-glycosides, in which a phthalane ring and sugar unit form a spiroketal framework, have garnered enormous attention from wide research areas because such a fascinating spirocycle motif is found in antibiotic natural products, i.e., papulacandins and their relatives. Moreover, recent reports from pharmaceutical researchers have revealed that spiroketal phthalane C-glycosides are potent drug candidates for type 2 diabetes. Accordingly, the efficient and selective construction of the spiroketal phthalane C-glycoside motif is an important research objective in synthetic organic chemistry. In this chapter, recent advances in the synthesis of spiroketal phthalane C-glycosides will be discussed.

Keywords

Antibiotics C-arylglycosides Papulacandins SGLT2 inhibitors Spiroketals 

References

  1. 1.
    Aho JE, Pihko PM, Rissa TK (2005). Chem Rev 105:4406–4440CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sperry J, Wilson ZE, Rathwell DCK, Brimble MA (2010). Nat Prod Rep 27:1117–1137CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Atkinson DJ, Brimble MA (2015). Nat Prod Rep 32:811–840CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rihs G, Traxler P (1981). Helv Chim Acta 64:1533–1539CrossRefGoogle Scholar
  5. 5.
    Traxler P, Fritz H, Fuhrer H, Richter WJ (1980). J Antibiot 33:967–978CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1145–1146Google Scholar
  7. 7.
    Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1147–1148Google Scholar
  8. 8.
    Barrett AGM, Peña M, Willardsen JA (1996). J Org Chem 61:1082–1100CrossRefGoogle Scholar
  9. 9.
    Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Somsák L, Bokor É, Czifrák K, Juhász L, Tóth M (2011) Carbohydrate derivatives and glycomimetic compounds in established and investigational therapies of type 2 diabetes mellitus. In: Zimering MB (ed) Topics in the prevention, treatment and complications of type 2 diabetes. InTech, Rijeka, pp 103–126Google Scholar
  12. 12.
    Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Liu Z-P (2016). Curr Med Chem 23:832–849CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Process Res Dev 22:467–488CrossRefGoogle Scholar
  15. 15.
    Traxler P, Gruner J, Auden JAL (1977). J Antibiot 30:289–296CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Traxler P, Fritz H, Richter WJ (1977). Helv Chim Acta 60:578–584CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pérez P, García-Acha I, Durán A (1983). J Gen Microbiol 129:245–250PubMedPubMedCentralGoogle Scholar
  18. 18.
    Baguley BC, Römmele G, Gruner J, Wehrli W (1979). Eur J Biochem 97:345–351CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pérez P, Varona R, Garcia-Acha I, Durán A (1981). FEBS Lett 129:249–252CrossRefGoogle Scholar
  20. 20.
    Varona R, Pérez P, Durán A (1983). FEMS Microbiol Lett 20:243–247Google Scholar
  21. 21.
    Römmele G, Traxler P, Wefrli W (1983). J Antibiot 36:1539–1542CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Traxler P, Tosch W, Zak O (1987). J Antibiot 40:1146–1164CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    VanMiddlesworth F, Omstead MN, Schmatz D, Bartizal K, Fromtling R, Bills G, Nollstadt K, Honeycutt S, Zweerink M, Garrity G, Wilson K (1991). J Antibiot 44:45–51CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    VanMiddlesworth F, Dufresne C, Smith J, Wilson KE (1991). Tetrahedron 47:7563–7568CrossRefGoogle Scholar
  25. 25.
    Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schmartz R, Hammond M, Balkovec J, VanMiddlesworth F (1992). Antimicrob Agents Chemother 36:1648–1657CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:247–250CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chiba H, Kaneto R, Agematu H, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:356–358CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aoki M, Andoh T, Ueki T, Masuyoshi S, Sugawara K, Oki T (1993). J Antibiot 46:952–960CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Okada H, Nagashima M, Suzuki H, Nakajima S, Kojiri K, Suda H (1996). J Antibiot 49:103–106CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen RH, Tennant S, Frost D, O’Beirne MJ, Karwowski JP, Humphrey PE, Malmberg L-H, Choi W, Brandt KD, West P, Kadam SK, Clement JJ, McAlpine JB (1996). J Antibiot 49:596–598CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohyama T, Iwadate-Kurihara Y, Hosoya T, Ishikawa T, Miyakoshi S, Hamano K, Inukai M (2002). J Antibiot 55:758–763CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL, Wilson KE, Turner MJ (1990). Proc Natl Acad Sci U S A 87:5950–5954CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jaramillo C, Knapp S (1994). Synthesis:1–20Google Scholar
  34. 34.
    Bililign T, Griffith BR, Thorson JS (2005). Nat Prod Rep 22:742–760CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wellington KW, Benner SA (2006). Nuclos Nucleot Nucleic Acids 25:1309–1333CrossRefGoogle Scholar
  36. 36.
    Kitamura K, Ando Y, Matsumoto T, Suzuki K (2018). Chem Rev 118:1495–1598CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bokor É, Kun S, Goyard D, Tóth M, Praly J-P, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764CrossRefGoogle Scholar
  38. 38.
    Yang Y, Yu B (2017). Chem Rev 117:12281–12356CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liao H, Ma J, Yao H, Liu X-W (2018). Org Biomol Chem 16:1791–1806CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schmidt RR, Frick W (1988). Tetrahedron 44:7163–7169CrossRefGoogle Scholar
  41. 41.
    Rosenblum SB, Bihovsky R (1990). J Am Chem Soc 112:2746–2748CrossRefGoogle Scholar
  42. 42.
    Czernecki S, Perlat M-C (1991). J Org Chem 56:6289–6292CrossRefGoogle Scholar
  43. 43.
    Hamdouchi C, Sanchez-Martinez C (2001). Synthesis:833–840Google Scholar
  44. 44.
    Hamdouchi C, Jaramillo C, Lopez-Prados J, Rubio A (2002). Tetrahedron Lett 43:3875–3878CrossRefGoogle Scholar
  45. 45.
    Parker KA, Georges AT (2000). Org Lett 2:497–499CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Friesen RW, Sturino CF (1990). J Org Chem 55:5808–5810CrossRefGoogle Scholar
  47. 47.
    Dubois E, Beau J-M (1990). Tetrahedron Lett 31:5165–5168CrossRefGoogle Scholar
  48. 48.
    Dubois E, Beau J-M (1992). Carbohydr Res 223:157–167CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu G, Wurst JM, Tan DS (2009). Org Lett 11:3670–3673CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wurst JM, Liu G, Tan DS (2011). J Am Chem Soc 133:7916–7925CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Butkevich AN, Corbu A, Meerpoel L, Stanfield I, Angibaud P, Bonnet P, Cossy J (2012). Org Lett 14:4998–5001CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Parkan K, Pohl R, Kotora M (2014). Chem A Eur J 20:4414–4419CrossRefGoogle Scholar
  53. 53.
    van der Kaaden M, Breukink E, Pieters RJ (2012). Beilstein J Org Chem 8:732–737CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Danishefsky S, Phillips G, Ciufolini M (1987). Carbohydr Res 171:317–327CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Balachari D, O’Doherty GA (2000). Org Lett 2:863–866CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Balachari D, O’Doherty GA (2000). Org Lett 2:4033–4036CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ahmed MM, O’Doherty GA (2005). Tetrahedron Lett 46:4151–4155CrossRefGoogle Scholar
  58. 58.
    Mainkar PS, Johny K, Rao TP, Chandrasekhar S (2012). J Org Chem 77:2519–2525CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    DeFronzo RA, Norton L, Abdul-Ghani M (2017). Nat Rev Nephrol 13:11–26CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J (2005). Diabetes Metab Res Rev 21:31–38CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu S-Y, Ahn K-H, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Suzuki M, Honda K, Fukazawa M, Ozawa K, Hagita H, Kawai T, Takeda M, Yata T, Kawai M, Fukuzawa T, Kobayashi T, Sato T, Kawabe Y, Ikeda S (2012). J Pharmacol Exp Ther 341:692–701CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, Beyer U, Beck A, Ciorciaro C, Meyer M, Kadowaki T (2015). Diabetes Obes Exp Metab 17:984–993CrossRefGoogle Scholar
  64. 64.
    Poole RM, Prossler JE (2014). Drugs 74:939–944CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Xu B, Lv B, Feng Y, Xu G, Du J, Welihinda A, Sheng Z, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:5632–5635CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lv B, Xu B, Feng Y, Peng K, Xu G, Du J, Zhang L, Zhang W, Zhang T, Zhu L, Ding H, Sheng Z, Welihinda A, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:6877–6881CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lv B, Feng Y, Dong J, Xu M, Xu B, Zhang W, Sheng Z, Welihinda A, Seed B, Chen Y (2010). ChemMedChem 5:827–831CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu S-Y, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yamane M, Kawashima K, Yamaguchi K, Nagao S, Sato M, Suzuki M, Honda K, Hagita H, Kuhlmann O, Polirier A, Fowler S, Funk C, Simon S, Aso Y, Ikeda S, Ishigai M (2015). Xenobiotica 45:230–238CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Kimura M, Maeda K, Honma A, Shimizu H (2017). Tetrahedron 73:655–660CrossRefGoogle Scholar
  71. 71.
    Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827CrossRefGoogle Scholar
  72. 72.
    Liu Y-H, Fu T-M, Ou C-Y, Fan W-L, Peng G-P (2013). Chin Chem Lett 24:131–133CrossRefGoogle Scholar
  73. 73.
    Liu Y, Fu T, Chen Z, Ou C (2015). Monatsh Chem 146:1715–1721CrossRefGoogle Scholar
  74. 74.
    McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606CrossRefGoogle Scholar
  75. 75.
    Yamamoto Y, Hashimoto T, Hattori K, Kikuchi M, Nishiyama H (2006). Org Lett 8:3565–3568CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399CrossRefGoogle Scholar
  77. 77.
    Subrahmanyam AV, Palanichamy K, Kaliappan KP (2010). Chem Eur J 16:8545–8556CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Awasaguchi K, Miyazawa M, Uoya I, Inoue K, Nakamura K, Yokoyama H, Kakuda H, Hirai Y (2010). Synlett:2392–2396Google Scholar
  79. 79.
    Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014). Chem Rev 114:2432–2506CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015). J Med Chem 58:8315–8359CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016). Chem Rev 116:422–518CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yerien DE, Bonesi S, Postigo A (2016). Org Biomol Chem 14:8398–8427CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sadurní A, Gilmour R (2018). Eur J Org Chem 2018:3684–3687Google Scholar
  84. 84.
    Bucher C, Gilmour R (2010). Angew Chem Int Ed 49:8724–8728CrossRefGoogle Scholar
  85. 85.
    Sadurní A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R (2018). Chem Eur J 24:2832–2836CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG  2019

Authors and Affiliations

  1. 1.Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityNagoyaJapan

Personalised recommendations