Skip to main content

Flow-Assisted Synthesis of Heterocycles at High Temperatures

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 56))

Abstract

Performing selective and high-yielding transformations on complex organic molecules at temperatures in the range of 200–450°C may at first seem counterintuitive or even impossible. However, using continuous flow systems, conditions of this sort are indeed accessible and viable for useful chemistry. This review highlights recent endeavors in heterocycle synthesis and modification enabled by high-temperature (>200°C) flow chemistry, with emphasis placed on showcasing the variety and synthetic utility of different high-temperature enabled transformations. The reviewed content naturally falls into three categories: pericyclic transformations, condensation reactions, and modification/functionalization of heterocycles. Different shortcomings and considerations necessary when planning high-temperature flow reactions have also been highlighted where applicable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Depending on the functionalization: 180°C for methyl silicone oils and 230°C for phenyl methyl silicone oils.

  2. 2.

    Sulfinert is a Siltek-treated stainless steel coil (i.e., chemical vapor deposition multilayer silica coating) that has the advantages of Teflon coatings or glass/fused silica coils without the temperature limitations and gas permeability concerns of Teflon and with much greater flexibility and temperature stability than glass or fused silica coils. For more information, see www.Restek.com.

  3. 3.

    The ionic constant (K w ) of scH2O is highly pressure dependent and can be greater than that of subcritical water at high pressures, i.e., both [H3O+] and [OH] can be higher in scH2O at high pressures.

  4. 4.

    The critical point of water is 374°C, 218 bar. At 400°C, 150 bar, the water is present as superheated steam but not yet as a supercritical fluid.

  5. 5.

    When keeping the temperature constant at 400°C, K w is at a minimum when P = 250 bar.

References

  1. Rudnick LR, Bartz WJ (2013) Comparison of synthetic, mineral oil, and bio-based lubricant fluids. In: Rudnick LR (ed) Synthetics, mineral oils, and bio-based lubricants, 2nd edn. CRC Press, Boca Raton, pp 347–366

    Chapter  Google Scholar 

  2. Atkins P, De Paula J (2010) Atkin’s physical chemistry, 9th edn. Oxford University Press, Oxford

    Google Scholar 

  3. Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists – strategies, instruments, and protocols. Wiley-VCH, Weinheim

    Google Scholar 

  4. Leadbeater NE (ed) (2010) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton

    Google Scholar 

  5. Larhed M, Olofsson K (eds) (2006) Microwave methods in organic synthesis. Springer, Heidelberg

    Google Scholar 

  6. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233–238

    Article  CAS  Google Scholar 

  7. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis – a review. Tetrahedron 57:9225–9283

    Article  Google Scholar 

  8. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  9. de la Hoz A, Diaz-Ortiz A, Prieto P (2016) Microwave-assisted green organic synthesis. In: Stefanidis G, Stankiewicz A (eds) Alternative energy sources for green chemistry. Royal Society of Chemistry, Cambridge, pp 1–33

    Google Scholar 

  10. Damm M, Glasnov TN, Kappe CO (2010) Translating high-temperature microwave chemistry to scalable continuous flow processes. Org Process Res Dev 14:215–224

    Article  CAS  Google Scholar 

  11. Glasnov TN, Kappe CO (2011) The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem Eur J 17:11956–11968

    Article  CAS  PubMed  Google Scholar 

  12. Razzaq T, Kappe CO (2010) Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J 5:1274–1289

    PubMed  CAS  Google Scholar 

  13. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology – a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728

    Article  CAS  Google Scholar 

  14. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The hitchhiker’s guide to flow chemistry. Chem Rev 117:11796–11893

    Article  CAS  PubMed  Google Scholar 

  15. Porta R, Benaglia M, Puglisi A (2016) Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev 20:2–25

    Article  CAS  Google Scholar 

  16. Malet-Sanz L, Susanne F (2012) Continuous flow synthesis. A pharma perspective. J Med Chem 55:4062–4098

    Article  CAS  PubMed  Google Scholar 

  17. Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45:4892–4928

    Article  CAS  PubMed  Google Scholar 

  18. Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46:1250–1271

    Article  CAS  PubMed  Google Scholar 

  19. Newman SG, Jensen KF (2013) The role of flow in green chemistry and engineering. Green Chem 15:1456–1472

    Article  CAS  Google Scholar 

  20. Vaccaro L (ed) (2017) Sustainable flow chemistry: methods and applications. Wiley-VCH, Weinheim

    Google Scholar 

  21. Lummiss JAM, Morse PD, Beingessner RL, Jamison TF (2017) Towards more efficient, greener syntheses through flow chemistry. Chem Rec 17:667–680

    Article  CAS  PubMed  Google Scholar 

  22. Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318

    Article  CAS  Google Scholar 

  23. Jessop PG, Leitner W (eds) (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim

    Google Scholar 

  24. van Eldik R, Klärner F-G (eds) (2002) High pressure chemistry: synthetic, mechanistic, and supercritical applications. Wiley-VCH, Weinheim

    Google Scholar 

  25. Adeyemi A, Bergman J, Brånalt J, Sävmarker J, Larhed M (2017) Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org Process Res Dev 21:947–955

    Article  CAS  Google Scholar 

  26. May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H (2012) Rapid development and scale-up of a 1H-4-substituted imidazole intermediate enabled by chemistry in continuous plug flow reactors. Org Process Res Dev 16:982–1002

    Article  CAS  Google Scholar 

  27. Houk KN, Gonzalez J, Li Y (1995) Pericyclic reaction transition states: passions and punctilios, 1935–1995. Acc Chem Res 28:81–90

    Article  CAS  Google Scholar 

  28. Fleming I (2015) Pericyclic reactions, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  29. Spangler CW (1976) Thermal [1,j] sigmatropic rearrangements. Chem Rev 76:187–217

    Article  CAS  Google Scholar 

  30. Borukhova S, Noël T, Metten B, de Vos E, Hessel V (2013) Solvent- and catalyst-free Huisgen cycloaddition to rufinamide in flow with a greener, less expensive dipolarophile. ChemSusChem 6:2220–2225

    Article  CAS  PubMed  Google Scholar 

  31. Gutmann B, Roduit J-P, Roberge D, Kappe CO (2010) Synthesis of 5-substituted 1H-tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high-temperature microreactor approach. Angew Chem Int Ed 49:7101–7105

    Article  CAS  Google Scholar 

  32. Gutmann B, Obermayer D, Roduit J-P, Roberge DM, Kappe CO (2012) Safe generation and synthetic utilization of hydrazoic acid in a continuous flow reactor. J Flow Chem 2:8–19

    Article  CAS  Google Scholar 

  33. Gutmann B, Glasnov TN, Razzaq T, Goessler W, Roberge DM, Kappe CO (2011) Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor. Beilstein J Org Chem 7:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Varas AC, Noël T, Wang Q, Hessel V (2012) Copper(I)-catalyzed azide–alkyne cycloadditions in microflow: catalyst activity, high-T operation, and an integrated continuous copper scavenging unit. ChemSusChem 5:1703–1707

    Article  CAS  PubMed  Google Scholar 

  35. Palde PB, Jamison TF (2011) Safe and efficient tetrazole synthesis in a continuous-flow microreactor. Angew Chem Int Ed 50:3525–3528

    Article  CAS  Google Scholar 

  36. Lengyel L, Nagy TZ, Sipos G, Jones R, Dormán G, Ürge L, Darvas F (2012) Highly efficient thermal cyclization reactions of alkylidene esters in continuous flow to give aromatic/heteroaromatic derivatives. Tetrahedron Lett 53:738–743

    Article  CAS  Google Scholar 

  37. Lengyel LC, Sipos G, Sipőcz T, Vágó T, Dormán G, Gerencsér J, Makara G, Darvas F (2015) Synthesis of condensed heterocycles by the Gould–Jacobs reaction in a novel three-mode pyrolysis reactor. Org Process Res Dev 19:399–409

    Article  CAS  Google Scholar 

  38. Tsoung J, Bogdan AR, Kantor S, Wang Y, Charaschanya M, Djuric SW (2017) Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J Org Chem 82:1073–1084

    Article  CAS  PubMed  Google Scholar 

  39. Cantillo D, Sheibani H, Kappe CO (2012) Flash flow pyrolysis: mimicking flash vacuum pyrolysis in a high-temperature/high-pressure liquid-phase microreactor environment. J Org Chem 77:2463–2473

    Article  CAS  PubMed  Google Scholar 

  40. Bogaert-Alvarez RJ, Demena P, Kodersha G, Polomski RE, Soundararajan N, Wang SSY (2001) Continuous processing to control a potentially hazardous process: conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethylchromenes (2,2-dimethyl-2H-1-benzopyrans). Org Process Res Dev 5:636–645

    Article  CAS  Google Scholar 

  41. Martin RE, Morawitz F, Kuratli C, Alker AM, Alanine AI (2012) Synthesis of annulated pyridines by intramolecular inverse-electron-demand hetero-Diels–Alder reaction under superheated continuous flow conditions. Eur J Org Chem 2012:47–52

    Article  CAS  Google Scholar 

  42. Lehmann J, Alzieu T, Martin RE, Britton R (2013) The Kondrat’eva reaction in flow: direct access to annulated pyridines. Org Lett 15:3550–3553

    Article  CAS  PubMed  Google Scholar 

  43. Tsoung J, Wang Y, Djuric SW (2017) Expedient Diels–Alder cycloadditions with ortho-quinodimethanes in a high temperature/pressure flow reactor. React Chem Eng 2:458–461

    Article  CAS  Google Scholar 

  44. Jouanno L-A, Chevalier A, Sekkat N, Perzo N, Castel H, Romieu A, Lange N, Sabot C, Renard P-Y (2014) Kondrat’eva ligation: Diels–Alder-based irreversible reaction for bioconjugation. J Org Chem 79:10353–10366

    Article  CAS  PubMed  Google Scholar 

  45. Alvarez-Builla J, Vaquero JJ, Barluenga J (eds) (2011) Modern heterocyclic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  46. Joule JA, Mills K (2010) Heterocyclic chemistry, 5th edn. Wiley-Blackwell, New York

    Google Scholar 

  47. Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12:5182–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Obermayer D, Glasnov TN, Kappe CO (2011) Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides. J Org Chem 76:6657–6669

    Article  CAS  PubMed  Google Scholar 

  49. Darvas F, Dorman G, Lengyel L, Kovacs I, Jones R, Urge L (2009) High pressure, high temperature reactions in continuous flow; merging discovery and process chemistry. Chim Oggi Chem Today 27:40–43

    CAS  Google Scholar 

  50. Nagao I, Ishizaka T, Kawanami H (2016) Rapid production of benzazole derivatives by a high-pressure and high-temperature water microflow chemical process. Green Chem 18:3494–3498

    Article  CAS  Google Scholar 

  51. Grant D, Dahl R, Cosford NDP (2008) Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73:7219–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seki T, Kokubo Y, Ichikawa S, Suzuki T, Kayaki Y, Ikariya T (2009) Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N′-dimethylethylenediamine in supercritical CO2: the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem Commun:349–351

    Google Scholar 

  53. Streng ES, Lee DS, George MW, Poliakoff M (2017) Continuous N-alkylation reactions of amino alcohols using γ-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2. Beilstein J Org Chem 13:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones. J Flow Chem 1:28–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin J, Guidi S, Abada Z, Amara Z, Selva M, George MW, Poliakoff M (2017) Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chem 19:2439–2447

    Article  CAS  Google Scholar 

  56. Yan C, Fraga-Dubreuil J, Garcia-Verdugo E, Hamley PA, Poliakoff M, Pearson I, Coote AS (2008) The continuous synthesis of ε-caprolactam from 6-aminocapronitrile in high-temperature water. Green Chem 10:98–103

    Article  CAS  Google Scholar 

  57. Bunnett JF, Zahler RE (1951) Aromatic nucleophilic substitution reactions. Chem Rev 49:273–412

    Article  CAS  Google Scholar 

  58. Terrier F (2013) Modern nucleophilic aromatic substitution. Wiley-VCH, Weinheim

    Book  Google Scholar 

  59. Razzaq T, Glasnov TN, Kappe CO (2009) Continuous-flow microreactor chemistry under high-temperature/pressure conditions. Eur J Org Chem 2009:1321–1325

    Article  CAS  Google Scholar 

  60. Hamper BC, Tesfu E (2007) Direct uncatalyzed amination of 2-chloropyridine using a flow reactor. Synlett 2007:2257–2261

    Article  CAS  Google Scholar 

  61. Petersen TP, Larsen AF, Ritzén A, Ulven T (2013) Continuous flow nucleophilic aromatic substitution with dimethylamine generated in situ by decomposition of DMF. J Org Chem 78:4190–4195

    Article  CAS  PubMed  Google Scholar 

  62. Charaschanya M, Bogdan AR, Wang Y, Djuric SW (2016) Nucleophilic aromatic substitution of heterocycles using a high-temperature and high-pressure flow reactor. Tetrahedron Lett 57:1035–1039

    Article  CAS  Google Scholar 

  63. Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW (2016) High-temperature Boc deprotection in flow and its application in multistep reaction sequences. Org Lett 18:1732–1735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sullivan, R.J., Newman, S.G. (2018). Flow-Assisted Synthesis of Heterocycles at High Temperatures. In: Sharma, U., Van der Eycken, E. (eds) Flow Chemistry for the Synthesis of Heterocycles. Topics in Heterocyclic Chemistry, vol 56. Springer, Cham. https://doi.org/10.1007/7081_2018_18

Download citation

Publish with us

Policies and ethics