Synthesis of Nitrogen-Containing Heterocycles via Imidoyl or Iminyl Radical Intermediates

  • Jian Lei
  • Dengke Li
  • Qiang Zhu
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 54)


Synthesis of nitrogen-containing heterocycles with isocyanides, isothiocyanates, nitriles, imines, oxime derivatives, and other related compounds has been deeply investigated in organic synthesis. This chapter mainly focuses on summarizing radical cyclization reactions of these C-N unsaturated precursors to afford N-heterocycles in the past decade as well as some earlier feature examples. In most cases, imidoyl or iminyl radicals are involved in cyclizing onto unsaturated systems or heteroatoms to generate N-heterocycles, such as phenanthridines, (iso)quinolines, pyridines, indoles, and pyrroles. A few examples via other types of radical intermediates starting from isothiocyanates, isocyanates, and analogous structures are also included.


Cyclization reactions Homolytic substitution Imidoyl radicals Iminyl radicals Nitrogen heterocycles Radical reactions 


  1. 1.
    Minozzi M, Nanni D, Spagnolo P (2007) Curr Org Chem 11:1366–1384Google Scholar
  2. 2.
    Danen WC, West CT (1973) J Am Chem Soc 95:6872–6874Google Scholar
  3. 3.
    Nanni D, Pareschi P, Tundo A (1996) Tetrahedron Lett 37:9337–9340Google Scholar
  4. 4.
    Stork G, Sher PM (1983) J Am Chem Soc 105:6765–6766Google Scholar
  5. 5.
    Maimone TJ, Shi J, Ashida S, Baran PS (2009) J Am Chem Soc 131:17066–17067PubMedPubMedCentralGoogle Scholar
  6. 6.
    Basavanag UMV, Dos Santos A, El Kaim L, Gamez-Montano R, Grimaud L (2013) Angew Chem Int Ed 52:7194–7197Google Scholar
  7. 7.
    Xia Z, Zhu Q (2013) Org Lett 15:4110–4113PubMedGoogle Scholar
  8. 8.
    Cochran EL, Adrian FJ, Bowers VA (1962) J Chem Phys 36:1938–1942Google Scholar
  9. 9.
    Wood DE, Lloyd RV, Pratt DW (1970) J Am Chem Soc 92:4115–4117Google Scholar
  10. 10.
    Griller D, Mendenhall GD, Van Hoof W, Ingold KU (1974) J Am Chem Soc 96:6068–6070Google Scholar
  11. 11.
    Chiba S (2012) Synlett 23:21–44Google Scholar
  12. 12.
    Hu B, Di Magno SG (2015) Org Biomol Chem 13:3844–3855PubMedPubMedCentralGoogle Scholar
  13. 13.
    Boivin J, Fouquet E, Zard SZ (1991) J Am Chem Soc 113:1055–1057Google Scholar
  14. 14.
    Walton JC (2016) Molecules 21:63PubMedGoogle Scholar
  15. 15.
    Walton JC (2016) Molecules 21:660Google Scholar
  16. 16.
    Jackman MM, Cai Y, Castle SL (2017) Synthesis 49:1785–1795Google Scholar
  17. 17.
    Dömling A, Ugi I (2000) Angew Chem Int Ed 39:3168–3210Google Scholar
  18. 18.
    Zhu J (2003) Eur J Org Chem, 1133–1144Google Scholar
  19. 19.
    Dömling A (2006) Chem Rev 106:17–89PubMedGoogle Scholar
  20. 20.
    Lygin AV, de Meijere A (2010) Angew Chem Int Ed 49:9094–9124Google Scholar
  21. 21.
    Ryu I, Sonoda N, Curran DP (1996) Chem Rev 96:177–194PubMedGoogle Scholar
  22. 22.
    Vlaar T, Maes BW, Ruijter E, Orru RVA (2013) Angew Chem Int Ed 52:7084–7097Google Scholar
  23. 23.
    Lang S (2013) Chem Soc Rev 42:4867–4880PubMedGoogle Scholar
  24. 24.
    Qiu G, Ding Q, Wu J (2013) Chem Soc Rev 42:5257–5269PubMedGoogle Scholar
  25. 25.
    Curran DP, Liu H (1992) J Am Chem Soc 114:5863–5864Google Scholar
  26. 26.
    Curran DP, Liu H, Josien H, Ko S-B (1996) Tetrahedron 52:11385–11404Google Scholar
  27. 27.
    Josien H, Ko S-B, Bom D, Curran DP (1998) Chem Eur J 4:67–83Google Scholar
  28. 28.
    Tokuyama H, Fukuyama T (2002) Chem Rec 2:37–45PubMedGoogle Scholar
  29. 29.
    Kobayashi S, Ueda T, Fukuyama T (2000) Synlett 883–886Google Scholar
  30. 30.
    Sumi S, Matsumoto K, Tokuyama H, Fukuyama T (2003) Org Lett 5:1891–1893PubMedGoogle Scholar
  31. 31.
    Yamakawa T, Ideue E, Shimokawa J, Fukuyama T (2010) Angew Chem Int Ed 49:9262–9265Google Scholar
  32. 32.
    Zhang B, Studer A (2015) Chem Soc Rev 44:3505–3521PubMedGoogle Scholar
  33. 33.
    Song B, Xu B (2017) Chem Soc Rev 46:1103–1123PubMedGoogle Scholar
  34. 34.
    Lei J, Huang J, Zhu Q (2016) Org Biomol Chem 14:2593–2602PubMedGoogle Scholar
  35. 35.
    Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M (2004) J Nat Prod 67:1119–1124PubMedGoogle Scholar
  36. 36.
    Ishikawa T (2001) Med Res Rev 21:61–72PubMedGoogle Scholar
  37. 37.
    Nanni D, Pareschi P, Rizzoli C, Sgarabotto P, Tundo A (1995) Tetrahedron 51:9045–9062Google Scholar
  38. 38.
    Lenoir I, Smith ML (2000) J Chem Soc Perkin Trans 1:641–643Google Scholar
  39. 39.
    Tobisu M, Koh K, Furukawa T, Chatani N (2012) Angew Chem Int Ed 51:11363–11366Google Scholar
  40. 40.
    Xia Z, Huang J, He Y, Zhao J, Lei J, Zhu Q (2014) Org Lett 16:2546–2549PubMedGoogle Scholar
  41. 41.
    Charpentier J, Früh N, Togni A (2015) Chem Rev 115:650–682PubMedGoogle Scholar
  42. 42.
    Zhang B, Studer A (2014) Org Lett 16:1216–1219PubMedGoogle Scholar
  43. 43.
    Mitamura T, Iwata K, Ogawa A (2009) Org Lett 11:3422–3424PubMedGoogle Scholar
  44. 44.
    Jiang H, Cheng Y, Wang R, Zhang Y, Yu S (2014) Chem Commun 50:6164–6167Google Scholar
  45. 45.
    Tong K, Zheng T, Zhang Y, Yu S (2015) Adv Synth Catal 357:3681–3686Google Scholar
  46. 46.
    Leifert D, Studer A (2016) Angew Chem Int Ed 55:11660–11663Google Scholar
  47. 47.
    Sun X, Wang W, Li Y, Ma J, Yu S (2016) Org Lett 18:4638–4641PubMedGoogle Scholar
  48. 48.
    Studer A (2004) Chem Soc Rev 33:267–273PubMedGoogle Scholar
  49. 49.
    Janza B, Studer A (2006) Org Lett 8:1875–1878PubMedGoogle Scholar
  50. 50.
    Leifert D, Artiukhin DG, Neugebauer J, Galstyan A, Strassert CA, Studer A (2016) Chem Commun 52:5997–6000Google Scholar
  51. 51.
    Li D, Mao T, Huang J, Zhu Q (2017) Org Lett 19:3223–3226PubMedGoogle Scholar
  52. 52.
    Li D, Mao T, Huang J, Zhu Q (2017) Chem Commun 53:1305–1308Google Scholar
  53. 53.
    Bachi MD, Balanov A, Bar-Ner N (1994) J Org Chem 59:7752–7758Google Scholar
  54. 54.
    Yadav AK, Yadav LDS (2016) Chem Commun 52:10621–10624Google Scholar
  55. 55.
    Mukerjee AK, Ashare R (1991) Chem Rev 91:1–24Google Scholar
  56. 56.
    Benati L, Calestani G, Leardini R, Minozzi M, Nanni D, Spagnolo P, Strazzari S, Zanardi G (2003) J Org Chem 68:3454–3464PubMedGoogle Scholar
  57. 57.
    Benati L, Leardini R, Minozzi M, Nanni D, Spagnolo P, Zanardi G (2000) J Org Chem 65:8669–8674PubMedGoogle Scholar
  58. 58.
    Minozzi M, Nanni D, Zanardi G, Calestani G (2006) ARKIVOC 6:6–14Google Scholar
  59. 59.
    Bachi MD, Denenmark D (1990) J Org Chem 55:3442–3444Google Scholar
  60. 60.
    John DI, Tyrrell ND, Thomas EJ (1981) J Chem Soc Chem Commun, 901–902Google Scholar
  61. 61.
    Guidotti S, Leardini R, Nanni D, Pareschi P, Zanardi G (1995) Tetrahedron Lett 36:451–454Google Scholar
  62. 62.
    Leardini R, McNab H, Nanni D (1995) Tetrahedron 51:12143–12158Google Scholar
  63. 63.
    Leardini R, Nanni D, Santori M, Zanardi G (1992) Tetrahedron 48:3961–3970Google Scholar
  64. 64.
    Leardini R, Nanni D, Tundo A, Zanardi G (1989) J Chem Soc Chem Commun, 757–758Google Scholar
  65. 65.
    Dong X, Xu Y, Liu J, Hu Y, Xiao T, Zhou L (2013) Chem Eur J 19:16928–16933PubMedGoogle Scholar
  66. 66.
    Fu W, Zhu M, Xu F, Fu Y, Xu C, Zou D (2014) RSC Adv 4:17226–17229Google Scholar
  67. 67.
    Dong X, Hu Y, Xiao T, Zhou L (2015) RSC Adv 5:39625–39629Google Scholar
  68. 68.
    Bowman WR, Bridge CF, Brookes P (2000) Tetrahedron Lett 41:8989–8994Google Scholar
  69. 69.
    Benati L, Bencivenni G, Leardini R, Minozzi M, Nanni D, Scialpi R, Spagnolo P, Zanardi G, Rizzoli C (2004) Org Lett 6:417–420PubMedGoogle Scholar
  70. 70.
    Curran DP, Liu H (1991) J Am Chem Soc 113:2127–2132Google Scholar
  71. 71.
    Camaggi CM, Leardini R, Nanni D, Zanardi G (1998) Tetrahedron 54:5587–5598Google Scholar
  72. 72.
    Sun X, Li J, Ni Y, Ren D, Hu Z, Yu S (2014) Asian J Org Chem 3:1317–1325Google Scholar
  73. 73.
    Leardini R, Nanni D, Pareschi P, Tundo A, Zanardi G (1997) J Org Chem 62:8394–8399PubMedGoogle Scholar
  74. 74.
    Larraufie MH (2014) Development of new radical cascades and multi-component reactions, results: developments of new radical cascades with N-acylcyanamides. Springer, Berlin, pp 39–78Google Scholar
  75. 75.
    Prabhath MRR, Williams L, Bhat SV, Sharma P (2017) Molecules 22:615Google Scholar
  76. 76.
    Bowman WR, Bridge CF, Cloonan MO, Leach DC (2001) Synlett 6:765–768Google Scholar
  77. 77.
    Bowman WR, Cloonan MO, Fletcher AJ, Stein T (2005) Org Biomol Chem 3:1460–1467PubMedGoogle Scholar
  78. 78.
    Monleón LM, Grande M, Anaya J (2007) Synlett 8:1243–1246Google Scholar
  79. 79.
    Monleón LM, Grande M, Anaya J (2012) Tetrahedron 68:10794–10805Google Scholar
  80. 80.
    Wang S-S, Fu H, Shen Y, Sun M, Li Y-M (2016) J Org Chem 81:2920–2929PubMedGoogle Scholar
  81. 81.
    Fu H, Wang S-S, Li Y-M (2016) Adv Synth Catal 358:3616–3626Google Scholar
  82. 82.
    Li Y-M, Wang S-S, Yu F, Shen Y, Chang K-J (2015) Org Biomol Chem 13:5376–5380PubMedGoogle Scholar
  83. 83.
    Wang S, Huang X, Wang Q, Ge Z, Wang X, Li R (2016) RSC Adv 6:11754–11757Google Scholar
  84. 84.
    Wang S-S, Fu H, Wang G, Sun M, Li Y-M (2016) RSC Adv 6:52391–52394Google Scholar
  85. 85.
    Li X, Fang X, Zhuang S, Liu P, Sun P (2017) Org Lett 19:3580–3583PubMedGoogle Scholar
  86. 86.
    Hart NK, Johns SR, Lamberton JA (1971) Aust J Chem 24:223–224Google Scholar
  87. 87.
    Hermecz I, Vasvari-Debreczy L, Horvath A, Balogh M, Kokosi J, De Vos C, Rodriguez L (1987) J Med Chem 30:1543–1549PubMedGoogle Scholar
  88. 88.
    Larraufie M-H, Malacria M, Courillon C, Ollivier C, Fensterbank L, Lacôte E (2013) Tetrahedron 69:7699–7705Google Scholar
  89. 89.
    Servais A, Azzouz M, Lopes D, Courillon C, Malacria M (2007) Angew Chem Int Ed 46:576–579Google Scholar
  90. 90.
    Beaume A, Courillon C, Derat E, Malacria M (2008) Chem Eur J 14:1238–1252PubMedGoogle Scholar
  91. 91.
    Larraufie M-H, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L (2010) J Am Chem Soc 132:4381–4387PubMedGoogle Scholar
  92. 92.
    Larraufie MH, Ollivier C, Fensterbank L, Malacria M, Lacôte E (2010) Angew Chem Int Ed 49:2178–2181Google Scholar
  93. 93.
    Hu Z, Li S, Hong P (2010) ARKIVOC 9:171–177Google Scholar
  94. 94.
    Zheng J, Zhang Y, Wang D, Cui S (2016) Org Lett 18:1768–1771PubMedGoogle Scholar
  95. 95.
    Zard SZ (1996) Synlett, 1148–1154Google Scholar
  96. 96.
    Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S (2015) Angew Chem Int Ed 54:4055–4059Google Scholar
  97. 97.
    Wang YF, Zhang FL, Chiba S (2013) Org Lett 15:2842–2845PubMedGoogle Scholar
  98. 98.
    Portela-Cubillo F, Scott JS, Walton JC (2008) Chem Commun, 2935–2937Google Scholar
  99. 99.
    Portela-Cubillo F, Scott JS, Walton JC (2009) J Org Chem 74:4934–4942PubMedGoogle Scholar
  100. 100.
    Li D, Ma H, Yu W (2015) Adv Synth Catal 357:3696–3702Google Scholar
  101. 101.
    Leardini R, McNab H, Minozzi M, Nanni D (2001) J Chem Soc Perkin Trans 1:1072–1078Google Scholar
  102. 102.
    Fong MC, Schiesser CH (1993) Tetrahedron Lett 34:4347–4348Google Scholar
  103. 103.
    Faulkner A, Race NJ, Scott JS, Bower JF (2014) Chem Sci 5:2416–2421Google Scholar
  104. 104.
    Race NJ, Faulkner A, Shaw MH, Bower JF (2016) Chem Sci 7:1508–1513Google Scholar
  105. 105.
    Davies J, Booth SG, Essafi S, Dryfe RAW, Leonori D (2015) Angew Chem Int Ed 54:14017–14021Google Scholar
  106. 106.
    Davies J, Sheikhb NS, Leonori D (2017) Angew Chem Int Ed.
  107. 107.
    Jiang H, Studer A (2017) Angew Chem Int Ed 56:12273–12276Google Scholar
  108. 108.
    Cai S-H, Xie J-H, Song S, Ye L, Feng C, Loh T-P (2016) ACS Catal 6:5571–5574Google Scholar
  109. 109.
    Mao R, Yuan Z, Li Y, Wu J (2017) Chem Eur J 23:8176–8179PubMedGoogle Scholar
  110. 110.
    Chiba S (2013) Bull Chem Soc Jpn 86:1400–1411Google Scholar
  111. 111.
    Zhang L, Ang GY, Chiba S (2010) Org Lett 12:3682–3685Google Scholar
  112. 112.
    Tnay YL, Chen C, Chua YY, Zhang L, Chiba S (2012) Org Lett 14:3550–3553PubMedGoogle Scholar
  113. 113.
    Wappes EA, Nakafuku KM, Nagib DA (2017) J Am Chem Soc 139:10204–10207PubMedGoogle Scholar
  114. 114.
    Li D, Yang T, Su H, Yu W (2015) Adv Synth Catal 357:2529–2539Google Scholar
  115. 115.
    Zhao H-B, Hou Z-W, Liu Z-J, Zhou Z-F, Song J, Xu H-C (2017) Angew Chem Int Ed 56:587–590Google Scholar
  116. 116.
    Yadav AK, Yadav LDS (2015) Org Biomol Chem 13:2606–2611PubMedGoogle Scholar
  117. 117.
    He Y, Li J, Luo S, Huang J, Zhu Q (2016) Chem Commun 52:8444–8447Google Scholar
  118. 118.
    Wang P, Tang S, Lei A (2017) Green Chem 19:2092–2095Google Scholar
  119. 119.
    Minin PL, Walton JC (2003) J Org Chem 68:2960–2963PubMedGoogle Scholar
  120. 120.
    Ready JM, Reisman SE, Hirata M, Weiss MM, Tamaki K, Ovaska TV, Wood JL (2004) Angew Chem Int Ed 43:1270–1272Google Scholar
  121. 121.
    Reisman SE, Ready JM, Hasuoka A, Smith CJ, Wood JL (2006) J Am Chem Soc 128:1448–1449PubMedGoogle Scholar
  122. 122.
    Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL (2008) J Am Chem Soc 130:2087–2100PubMedGoogle Scholar
  123. 123.
    Majumdar KC, Basu PK, Mukhopadhyay PP (2004) Tetrahedron 60:6239–6278Google Scholar
  124. 124.
    Alajarin M, Vidal A, Ortin M-M (2003) Tetrahedron Lett 44:3027–3030Google Scholar
  125. 125.
    Alajarín M, Vidal A, Ortín M-M (2003) Org Biomol Chem 1:4282–4292PubMedGoogle Scholar
  126. 126.
    Alajarín M, Vidal A, Ortína M-M, Bautista D (2004) New J Chem 28:570–577Google Scholar
  127. 127.
    Ishida T, Tsukano C, Takemoto Y (2012) Chem Lett 41:44–46Google Scholar
  128. 128.
    Ishida T, Takemoto Y (2013) Tetrahedron 69:4517–4523Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Chemical Engineering and Materials ScienceQuanzhou Normal UniversityQuanzhouP. R. China
  2. 2.Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouP. R. China

Personalised recommendations