pp 1-44 | Cite as

Boron-Containing Chiral Auxiliaries

Chapter
Part of the Topics in Heterocyclic Chemistry book series

Abstract

Organoboron chemistry has proven its general versatility over the last century. In this chapter, the focus is on boron-containing auxiliaries. First, a short overview of commonly used cyclic compounds is provided, followed by their diastereoselective synthesis in the main part. In six subsections, from cycloadditions to remote-controlled reactions are discussed in detail. Finally, arguably the most prominent transformation of one group of synthesized reagents – the allyl addition – is used to exemplify the broad applicability in asymmetric synthesis and in natural product synthesis in particular.

Keywords

Allyl addition Boron Diastereoselective synthesis Natural products 

References

  1. 1.
    All Nobel Prizes in Chemistry (2017) https://www.nobelprize.org/nobel_prizes/chemistry/laureates/. Accessed 3 Mar 2017
  2. 2.
    Lipscomb WN (1977) Die Borane und ihre Derivate (Nobel-Vortrag). Angew Chem 89(10):685–696. doi: 10.1002/ange.19770891004 CrossRefGoogle Scholar
  3. 3.
    Brown HC (1980) Aus kleinen Eicheln wachsen große Eichen – von den Boranen zu den Organoboranen (Nobelvortrag). Angew Chem 92(9):675–683. doi: 10.1002/ange.19800920905 CrossRefGoogle Scholar
  4. 4.
    Suzuki A (2011) Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds (Nobel lecture). Angew Chem Int Ed 50(30):6722–6737. doi: 10.1002/anie.201101379 CrossRefGoogle Scholar
  5. 5.
    Diner C, Szabo KJ (2017) Recent advances in the preparation and application of allylboron species in organic synthesis. J Am Chem Soc 139(1):2–14. doi: 10.1021/jacs.6b10017 PubMedCrossRefGoogle Scholar
  6. 6.
    Yus M, Gonzalez-Gomez JC, Foubelo F (2013) Diastereoselective allylation of carbonyl compounds and imines: application to the synthesis of natural products. Chem Rev 113(7):5595–5698. doi: 10.1021/cr400008h PubMedCrossRefGoogle Scholar
  7. 7.
    Yus M, González-Gómez JC, Foubelo F (2011) Catalytic enantioselective allylation of carbonyl compounds and imines. Chem Rev 111(12):7774–7854. doi: 10.1021/cr1004474 PubMedCrossRefGoogle Scholar
  8. 8.
    Denmark SE, Fu J (2003) Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. Chem Rev 103(8):2763–2794. doi: 10.1021/cr020050h PubMedCrossRefGoogle Scholar
  9. 9.
    Huo H-X, Duvall JR, Huang M-Y, Hong R (2014) Catalytic asymmetric allylation of carbonyl compounds and imines with allylic boronates. Org Chem Front 1(3):303–320. doi: 10.1039/C3QO00081H CrossRefGoogle Scholar
  10. 10.
    Garcia J, Kim BM, Masamune S (1987) Asymmetric addition of (E)-crotyl-trans-2,5-dimethylborolanes and (Z)-crotyl-trans-2,5-dimethylborolanes to aldehydes. J Org Chem 52(21):4831–4832. doi: 10.1021/Jo00230a043 CrossRefGoogle Scholar
  11. 11.
    Masamune S, Sato T, Kim BM, Wollmann TA (1986) Organoboron compounds in organic-synthesis. 4. Asymmetric aldol reactions. J Am Chem Soc 108(26):8279–8281. doi: 10.1021/Ja00286a036 CrossRefGoogle Scholar
  12. 12.
    Tanimoto N, Gerritz SW, Sawabe A, Noda T, Filla SA, Masamune S (1994) The synthesis of naturally-occurring (−)-calyculin-A. Angew Chem Int Ed 33(6):673–675. doi: 10.1002/anie.199406731 CrossRefGoogle Scholar
  13. 13.
    Tanimoto N, Gerritz SW, Sawabe A, Noda T, Filla SA, Masamune S (1994) Synthese von natürlich vorkommendem (−)-Calyculin A. Angew Chem 106(6):674–677. doi: 10.1002/ange.19941060611 CrossRefGoogle Scholar
  14. 14.
    Short RP, Masamune S (1987) Double asymmetric aldol reactions using the boron enolates derived from 3-(3-ethyl)pentyl propanethioate and ethanethioate with (R,R)-2,5-dimethylborolanyl triflate. Tetrahedron Lett 28(25):2841–2844. doi: 10.1016/S0040-4039(00)96223-3 CrossRefGoogle Scholar
  15. 15.
    Short RP, Masamune S (1989) Asymmetric allylboration with B-allyl-2-(trimethylsilyl)borolane. J Am Chem Soc 111(5):1892–1894. doi: 10.1021/Ja00187a061 CrossRefGoogle Scholar
  16. 16.
    Reetz MT, Rivadeneira E, Niemeyer C (1990) Reagent control in the aldol addition of chiral boron enolates based on the 2,5-diphenylborolane ligand system. Tetrahedron Lett 31(27):3863–3866. doi: 10.1016/S0040-4039(00)97489-6 CrossRefGoogle Scholar
  17. 17.
    Cole TE, Gonzalez T (1997) Transmetalation of organic groups from zirconacycles to haloboranes: a new route to borolane compounds. Tetrahedron Lett 38(49):8487–8490. doi: 10.1016/S0040-4039(97)10307-0 CrossRefGoogle Scholar
  18. 18.
    Burgos CH, Canales E, Matos K, Soderquist JA (2005) Asymmetric allyl- and crotylboration with the robust, versatile, and recyclable 10-TMS-9-borabicyclo[3.3.2]decanes. J Am Chem Soc 127(22):8044–8049. doi: 10.1021/ja043612i PubMedCrossRefGoogle Scholar
  19. 19.
    Lai C, Soderquist JA (2005) Nonracemic homopropargylic alcohols via asymmetric allenylboration with the robust and versatile 10-TMS-9-borabicyclo[3.3.2]decanes. Org Lett 7(5):799–802. doi: 10.1021/ol0476164 PubMedCrossRefGoogle Scholar
  20. 20.
    Soto-Cairoli B, Soderquist JA (2009) Strict reagent control in the asymmetric allylboration of N-TIPS-alpha-amino aldehydes with the B-allyl-10-TMS-9-borabicyclo[3.3.2]decanes. Org Lett 11(2):401–404. doi: 10.1021/ol802685e PubMedCrossRefGoogle Scholar
  21. 21.
    Kister J, Nuhant P, Lira R, Sorg A, Roush WR (2011) Enantio- and diastereoselective synthesis of (E)-1,5-syn-diols: application to the synthesis of the C(23)-C(40) fragment of tetrafibricin. Org Lett 13(7):1868–1871. doi: 10.1021/ol2003836 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Roman JG, Soderquist JA (2007) Asymmetric synthesis of 2 degrees- and 3 degrees-carbinols via B-methallyl-10-(TMS and Ph)-9-borabicyclo[3.3.2]decanes. J Org Chem 72(25):9772–9775. doi: 10.1021/jo701633k PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gonzalez AZ, Canales E, Soderquist JA (2006) N-propargylamides via the asymmetric michael addition of B-alkynyl-10-TMS-9-borabicyclo[3.3.2]decanes to N-acylimines. Org Lett 8(15):3331–3334. doi: 10.1021/ol0611595 PubMedCrossRefGoogle Scholar
  24. 24.
    Hernandez E, Soderquist JA (2005) Nonracemic alpha-allenyl carbinols from asymmetric propargylation with the 10-trimethylsilyl-9-borabicyclo[3.3.2]decanes. Org Lett 7(24):5397–5400. doi: 10.1021/ol051886k PubMedCrossRefGoogle Scholar
  25. 25.
    Mears RJ, Whiting A (1993) Directed asymmetric reduction of a carbonyl group via a new homochiral boronate ester. Tetrahedron Lett 34(50):8155–8156. doi: 10.1016/S0040-4039(00)61477-6 CrossRefGoogle Scholar
  26. 26.
    Conole G, Mears RJ, Desilva H, Whiting A (1995) The mechanism of directed remote asymmetric reduction of carbonyl groups via homochiral boronate esters. J Chem Soc Perkin Trans 1(14):1825–1836. doi: 10.1039/P19950001825 CrossRefGoogle Scholar
  27. 27.
    James JJ, Whiting A (1996) Force field parameters for the boronate function and their carbonyl complexes and application to modelling boronate esters. J Chem Soc Perkin Trans 2(9):1861–1867. doi: 10.1039/P29960001861 CrossRefGoogle Scholar
  28. 28.
    Mears RJ, De Silva H, Whiting A (1997) Synthesis of a new C2-symmetric chiral diol: application to asymmetric allylboration. Tetrahedron 53(51):17395–17406. doi: 10.1016/s0040-4020(97)10163-6 CrossRefGoogle Scholar
  29. 29.
    Mears RJ, Sailes HE, Watts JP, Whiting A (2000) Synthesis, structure and comparative stability of β-hydrazono, oximino methyl ether and imino boronates. J Chem Soc Perkin Trans 1(19):3250–3263. doi: 10.1039/B004573j CrossRefGoogle Scholar
  30. 30.
    Sailes HE, Watts JP, Whiting A (2000) ‘Transmitted’ remote double diastereoselection effects on the asymmetric reduction of β-boronate oxime ethers. Tetrahedron Lett 41(14):2457–2461. doi: 10.1016/S0040-4039(00)00179-9 CrossRefGoogle Scholar
  31. 31.
    Sailes HE, Watts JP, Whiting A (2000) Studies on the asymmetric reduction of β-ximino methyl ether boronates: reagent control, double diastereocontrol and transmitted remote asymmetric induction. J Chem Soc Perkin Trans 1(20):3362–3374. doi: 10.1039/B005837h CrossRefGoogle Scholar
  32. 32.
    Sailes H, Whiting A (2000) The control of remote asymmetric centres via reduction of acyclic carbonyl functions. J Chem Soc Perkin Trans 1(12):1785–1805. doi: 10.1039/b000155o CrossRefGoogle Scholar
  33. 33.
    Mears RJ, Sailes HE, Watts JP, Whiting A (2006) A stereoselective remote homochiral boronate ester-mediated aldol reaction. ARKIVOC 1:95–103Google Scholar
  34. 34.
    Berg CA, Eichenauer NC, Pietruszka J (2012) (2R,3R)-1,4-Dimethoxy-1,1,4,4-tetraphenylbutane-2,3-diol: valuable reagent in the asymmetric synthesis of organoboronates. Pure Appl Chem 84(11):2339–2416. doi: 10.1351/Pac-Con-12-03-04 CrossRefGoogle Scholar
  35. 35.
    Ditrich K, Bube T, Sturmer R, Hoffmann RW (1986) Total synthesis of mycinolide-V, the aglycone of a macrolide antibiotic of the mycinamycin series. Angew Chem Int Ed 25(11):1028–1030. doi: 10.1002/anie.198610281 CrossRefGoogle Scholar
  36. 36.
    Hoffmann RW, Ditrich K, Köster G, Stürmer R (1989) Stereoselective synthesis of alcohols, XXXI: stereoselective C-C bond formation using chiral Z-pentenylboronates. Chem Ber 122(9):1783–1789. doi: 10.1002/cber.19891220926 CrossRefGoogle Scholar
  37. 37.
    Hoffmann RW, Ladner W, Ditrich K (1989) Stereoselective synthesis of alcohols, XXXII. Synthesis of the Prelog-Djerassi aldehyde and of a C-1/C-9 segment of 6-deoxyerythronolide. Liebigs Ann Chem 1989(9):883–889. doi: 10.1002/jlac.198919890239 CrossRefGoogle Scholar
  38. 38.
    Stürmer R, Hoffmann RW (1990) Enantioselective allylboration of aldehydes with (4R,5R)-2-((S)-1-chloro-2-propenyl)-4,5-dicyclohexyl-1,3,2-dioxaborolane. Synlett 1990(12):759–761. doi: 10.1055/s-1990-21242 CrossRefGoogle Scholar
  39. 39.
    Andersen MW, Hildebrandt B, Hoffmann RW (1991) Effiziente stereoselektive Totalsynthese der Denticulatine A und B. Angew Chem 103(1):90–92. doi: 10.1002/ange.19911030119 CrossRefGoogle Scholar
  40. 40.
    Andersen MW, Hildebrandt B, Dahmann G, Hoffmann RW (1991) Stereoselective synthesis of alcohols, XXXVIII stereoselective total synthesis of the denticulatins. Chem Ber 124(9):2127–2139. doi: 10.1002/cber.19911240940 CrossRefGoogle Scholar
  41. 41.
    Stürmer R, Ritter K, Hoffmann RW (1993) Eine Kurze, lineare Synthese von (9S)-Dihydroerythronolid A. Angew Chem 105(1):112–114. doi: 10.1002/ange.19931050129 CrossRefGoogle Scholar
  42. 42.
    Hoffmann RW, Stürmer R (1994) Stereoselective synthesis of alcohols, XLVII[1] application of chiral Z-pentenylboronates to the synthesis of erythronolide building blocks. Chem Ber 127(12):2511–2518. doi: 10.1002/cber.19941271224 CrossRefGoogle Scholar
  43. 43.
    Hoffmann RW, Rolle U (1994) Synthesis of a C-15 C-27 segment of venturicidine. Tetrahedron Lett 35(27):4751–4754. doi: 10.1016/S0040-4039(00)76958-9 CrossRefGoogle Scholar
  44. 44.
    Matteson DS, Singh RP, Schafman B, Yang JJ (1998) Asymmetric synthesis of serricornin via boronic esters. J Org Chem 63(13):4466–4469. doi: 10.1021/Jo980432g CrossRefGoogle Scholar
  45. 45.
    Matteson DS, Man HW, Ho OC (1996) Asymmetric synthesis of stegobinone via boronic ester chemistry. J Am Chem Soc 118(19):4560–4566. doi: 10.1021/Ja960345a CrossRefGoogle Scholar
  46. 46.
    Rychnovsky SD, Thomas CR (2000) Synthesis of the C22-C26 tetrahydropyran segment of phorboxazole by a stereoselective prins cyclization. Org Lett 2(9):1217–1219. doi: 10.1021/ol005646a PubMedCrossRefGoogle Scholar
  47. 47.
    Singh RP, Twamley B, Fabry-Asztalos L, Matteson DS, Shreeve JM (2000) Efficient syntheses of fluorinated aryl alcohols of high enantiomeric purity via boronic esters. J Org Chem 65(23):8123–8125. doi: 10.1021/jo005622h PubMedCrossRefGoogle Scholar
  48. 48.
    Singh RP, Matteson DS (2000) Asymmetric homologation of boronic esters bearing azido and silyloxy substituents. J Org Chem 65(20):6650–6653. doi: 10.1021/jo005522b PubMedCrossRefGoogle Scholar
  49. 49.
    O’Donnell MJ, Cooper JT, Mader MM (2003) Acyclic stereoselective boron alkylation reactions for the asymmetric synthesis of beta-substituted alpha-amino acid derivatives. J Am Chem Soc 125(9):2370–2371. doi: 10.1021/ja0298794 PubMedCrossRefGoogle Scholar
  50. 50.
    Peric Simov B, Wuggenig F, Mereiter K, Andres H, France J, Schnelli P, Hammerschmidt F (2005) Direct chemical synthesis of chiral methanol of 98% ee and its conversion to [(2)H1,(3)H]methyl tosylate and [(2)H1,(3)H-methyl]methionine. J Am Chem Soc 127(40):13934–13940. doi: 10.1021/ja051568g PubMedCrossRefGoogle Scholar
  51. 51.
    Schweifer A, Hammerschmidt F (2008) Formal and improved synthesis of enantiopure chiral methanol. Tetrahedron 64(32):7605–7610. doi: 10.1016/j.tet.2008.05.091 CrossRefGoogle Scholar
  52. 52.
    Smith TE, Kuo WH, Balskus EP, Bock VD, Roizen JL, Theberge AB, Carroll KA, Kurihara T, Wessler JD (2008) Total synthesis of (−)-hennoxazole A. J Org Chem 73(1):142–150. doi: 10.1021/jo7018015 PubMedCrossRefGoogle Scholar
  53. 53.
    Kim BJ, Zhang J, Tan S, Matteson DS, Prusoff WH, Cheng YC (2012) Synthesis and properties of 1-(3′-dihydroxyboryl-2′,3′-dideoxyribosyl)pyrimidines. Org Biomol Chem 10(47):9349–9358. doi: 10.1039/c2ob26756j PubMedCrossRefGoogle Scholar
  54. 54.
    Li GS, Kabalka GW (1999) Application of 1,2: 5,6-di-O-cyclohexylidene-d-mannitol as the chiral director in Matteson’s asymmetric homologation. J Organomet Chem 581(1–2):66–69. doi: 10.1016/S0022-328x(99)00066-2 CrossRefGoogle Scholar
  55. 55.
    Matteson DS, Tripathy PB, Sarkar A, Sadhu KM (1989) A stereospecific convergent coupling of nucleophilic and electrophilic chiral carbons. J Am Chem Soc 111(12):4399–4402. doi: 10.1021/ja00194a038 CrossRefGoogle Scholar
  56. 56.
    Andersen MW, Hildebrandt B, Köster G, Hoffmann RW (1989) Stereoselective synthesis of alcohols, XXX: E- and Z-pentenylboronates, reagents for simple diastereoselection on addition to aldehydes. Chem Ber 122(9):1777–1782. doi: 10.1002/cber.19891220925 CrossRefGoogle Scholar
  57. 57.
    Matteson DS, Michnick TJ (1990) Stereoselective reaction of an enolate with chiral α-halo boronic acid-esters. Organometallics 9(12):3171–3177. doi: 10.1021/Om00162a031 CrossRefGoogle Scholar
  58. 58.
    Molander GA, Bobbitt KL (1993) Keto boronate reduction – 1,7-asymmetric induction. J Am Chem Soc 115(16):7517–7518. doi: 10.1021/Ja00069a067 CrossRefGoogle Scholar
  59. 59.
    Luithle JEA, Pietruszka J, Witt A (1998) Enantiomerically pure 1,3,2-dioxaborolanes: new reagents for the hydroboration of alkynes. Chem Commun 23:2651–2652. doi: 10.1039/A807163B CrossRefGoogle Scholar
  60. 60.
    Luithle JEA, Pietruszka J (1999) Synthesis of enantiomerically pure cyclopropanes from cyclopropylboronic acids. J Org Chem 64(22):8287–8297. doi: 10.1021/jo9910278 PubMedCrossRefGoogle Scholar
  61. 61.
    Luithle JEA, Pietruszka J (1997) Synthesis of enantiomerically pure cyclopropyl boronic esters. Liebigs Ann/Recl 1997(11):2297–2302. doi: 10.1002/jlac.199719971118 CrossRefGoogle Scholar
  62. 62.
    Haruta R, Ishiguro M, Ikeda N, Yamamoto H (1982) Chiral allenylboronic esters – a practical reagent for enantioselective carbon-carbon bond formation. J Am Chem Soc 104(26):7667–7669. doi: 10.1021/Ja00390a052 CrossRefGoogle Scholar
  63. 63.
    Roush WR, Walts AE, Hoong LK (1985) Diastereo- and enantioselective aldehyde addition reactions of 2-allyl-1,3,2-dioxaborolane-4,5-dicarboxylic esters, a useful class of tartrate ester modified allylboronates. J Am Chem Soc 107(26):8186–8190. doi: 10.1021/ja00312a062 CrossRefGoogle Scholar
  64. 64.
    Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL (1990) Asymmetric-synthesis using diisopropyl tartrate modified (E)-crotylboronates and (Z)-crotylboronates – preparation of the chiral crotylboronates and reactions with achiral aldehydes. J Am Chem Soc 112(17):6339–6348. doi: 10.1021/Ja00173a023 CrossRefGoogle Scholar
  65. 65.
    Renard P, Lallemand J (1996) 1,3-Dienylboronates in Diels-Alder reactions: Part II. Tetrahedron Asymmetry 7(9):2523–2524CrossRefGoogle Scholar
  66. 66.
    Bonk JD, Avery MA (1997) 4S,5S-[Bis(carbethoxy)]-2-ethenyl-1,3,2-dioxaborolane: a novel enantioselective dienophile. Tetrahedron Asymmetry 8(8):1149–1152. doi: 10.1016/S0957-4166(97)00122-5 CrossRefGoogle Scholar
  67. 67.
    Pietruszka J, Widenmeyer M (1997) Diastereoselective synthesis of cyclopropyl boronic esters. Synlett 1997(8):977–979. doi: 10.1055/s-1997-5790 CrossRefGoogle Scholar
  68. 68.
    Micalizio GC, Roush WR (2001) Studies on the synthesis of pectenotoxin II: synthesis of a C(11)-C(26) fragment precursor via [3 + 2]-annulation reactions of chiral allylsilanes. Org Lett 3(12):1949–1952. doi: 10.1021/ol0160250 PubMedCrossRefGoogle Scholar
  69. 69.
    Morgan JB, Morken JP (2003) Platinum-catalyzed tandem diboration/asymmetric allylboration: access to nonracemic functionalized 1,3-diols. Org Lett 5(14):2573–2575. doi: 10.1021/ol034936z PubMedCrossRefGoogle Scholar
  70. 70.
    Ballard CE, Morken JP (2004) Platinum-catalyzed tandem diboration/intramolecular allylboration: diastereoselective access to cyclohexanes bearing 1,3-diols. Synthesis-Stuttgart 2004(9):1321–1324. doi: 10.1055/s-2004-822379 CrossRefGoogle Scholar
  71. 71.
    Chen YP, Eltepu L, Wentworth P (2004) Diastereo- and enantio-selective crotylation of α-ketoesters using crotyl boronic acid ester complexes. Tetrahedron Lett 45(45):8285–8288. doi: 10.1016/j.tetlet.2004.09.082 CrossRefGoogle Scholar
  72. 72.
    Li DR, Zhang DH, Sun CY, Zhang JW, Yang L, Chen J, Liu B, Su C, Zhou WS, Lin GQ (2006) Total synthesis of phorboxazole B. Chem Eur J 12(4):1185–1204. doi: 10.1002/chem.200500892 PubMedCrossRefGoogle Scholar
  73. 73.
    Kim CH, An HJ, Shin WK, Yu W, Woo SK, Jung SK, Lee E (2006) Total synthesis of (−)-amphidinolide E. Angew Chem Int Ed Engl 45(47):8019–8021. doi: 10.1002/anie.200603363 PubMedCrossRefGoogle Scholar
  74. 74.
    Fürst R, Rinner U (2013) Synthesis of an advanced intermediate of the jatrophane diterpene Pl-4: a dibromide coupling approach. J Org Chem 78(17):8748–8758. doi: 10.1021/jo401480t PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Masuda Y, Suzuki J, Onda Y, Fujino Y, Yoshida M, Doi T (2014) Total synthesis and conformational analysis of apratoxin C. J Org Chem 79(17):8000–8009. doi: 10.1021/jo501130b PubMedCrossRefGoogle Scholar
  76. 76.
    Kennedy JWJ, Hall DG (2003) Design of chiral boronate-substituted acrylanilides. Self-activation and boron-transmitted 1,8-stereoinduction in [4+2] cycloaddition. J Organomet Chem 680(1–2):263–270. doi: 10.1016/S0022-328x(03)00400-5 CrossRefGoogle Scholar
  77. 77.
    Pietruszka J, Schöne N (2003) [3,3]-Sigmatrope Umlagerungen von Bor-haltigen Allylalkoholen: Synthese von Allyladditionsreagentien. Angew Chem 115(45):5796–5799. doi: 10.1002/ange.200352210 CrossRefGoogle Scholar
  78. 78.
    Fernández E, Pietruszka J (2009) Palladium-catalyzed carbonyl allylation: synthesis of enantiomerically pure α-substituted allylboronic esters. Synlett 2009(09):1474–1476. doi: 10.1055/s-0029-1217160 CrossRefGoogle Scholar
  79. 79.
    Fernández E, Frey W, Pietruszka J (2010) Synthesis of enantiomerically pure oxiranylboronic esters. Synlett 2010(9):1386–1388. doi: 10.1055/s-0029-1219829 CrossRefGoogle Scholar
  80. 80.
    Fernández E, Pietruszka J, Frey W (2010) Palladium-catalyzed synthesis of enantiomerically pure α-substituted allylboronic esters and their addition to aldehydes. J Org Chem 75(16):5580–5589. doi: 10.1021/jo1008959 PubMedCrossRefGoogle Scholar
  81. 81.
    Böse D, Niesobski P, Lübcke M, Pietruszka J (2014) A diastereoselective one-pot, three-step cascade toward α-substituted allylboronic esters. J Org Chem 79(10):4699–4703. doi: 10.1021/jo5004168 PubMedCrossRefGoogle Scholar
  82. 82.
    Brauns M, Muller F, Gülden D, Böse D, Frey W, Breugst M, Pietruszka J (2016) Enantioselective catalysts for the synthesis of α-substituted allylboronates – an accelerated approach towards isomerically pure homoallylic alcohols. Angew Chem Int Ed Engl 55(4):1548–1552. doi: 10.1002/anie.201509198 PubMedCrossRefGoogle Scholar
  83. 83.
    Brauns M, Muller F, Gülden D, Böse D, Frey W, Breugst M, Pietruszka J (2016) Enantioselektive Katalysatoren zur Synthese von α-substituierten Allylboronsäureestern - ein effizienter Zugang zu isomerenreinen Homoallylalkoholen. Angew Chem 128(4):1574–1578. doi: 10.1002/ange.201509198 CrossRefGoogle Scholar
  84. 84.
    Brauns M, Mantel M, Schmauck J, Guder M, Breugst M, Pietruszka J (2017) Highly enantioselective allylation of ketones – an efficient approach to all stereoisomers of tertiary homoallylic alcohols. Chem Eur J. doi: 10.1002/chem.201701740
  85. 85.
    Roush WR, Banfi L (1988) N,N'-Dibenzyl-N,N'-ethylenetartramide – a rationally designed chiral auxiliary for the allylboration reaction. J Am Chem Soc 110(12):3979–3982. doi: 10.1021/Ja00220a041 CrossRefGoogle Scholar
  86. 86.
    Roush WR, Grover PT (1995) N,N'-Bis(2,2,2-trifluoroethyl)-N,N'-ethylenetartramide: an improved chiral auxiliary for the asymmetric allylboration reaction. J Org Chem 60(12):3806–3813. doi: 10.1021/jo00117a036 CrossRefGoogle Scholar
  87. 87.
    Imai T, Mineta H, Nishida S (1990) Asymmetric cyclopropanation of 1-alkenylboronic esters and its application to the synthesis of optically-active cyclopropanols. J Org Chem 55(17):4986–4988. doi: 10.1021/Jo00304a004 CrossRefGoogle Scholar
  88. 88.
    Charette AB, Juteau H (1994) Design of amphoteric bifunctional ligands – application to the enantioselective Simmons-smith cyclopropanation of allylic alcohols. J Am Chem Soc 116(6):2651–2652. doi: 10.1021/Ja00085a068 CrossRefGoogle Scholar
  89. 89.
    Charette AB, Juteau H, Lebel H, Molinaro C (1998) Enantioselective cyclopropanation of allylic alcohols with dioxaborolane ligands: scope and synthetic applications. J Am Chem Soc 120(46):11943–11952. doi: 10.1021/Ja982055v CrossRefGoogle Scholar
  90. 90.
    Beaulieu LP, Schneider JF, Charette AB (2013) Highly enantioselective Simmons-Smith fluorocyclopropanation of allylic alcohols via the halogen scrambling strategy of zinc carbenoids. J Am Chem Soc 135(21):7819–7822. doi: 10.1021/ja402393w PubMedCrossRefGoogle Scholar
  91. 91.
    Taillemaud S, Diercxsens N, Gagnon A, Charette AB (2015) Mechanism-driven elaboration of an enantioselective bromocyclopropanation reaction of allylic alcohols. Angew Chem Int Ed Engl 54(47):14108–14112. doi: 10.1002/anie.201506083 PubMedCrossRefGoogle Scholar
  92. 92.
    Lin H, Tian L, Krauss IJ (2015) Enantioselective syn- and anti- homocrotylation of aldehydes: application to the formal synthesis of spongidepsin. J Am Chem Soc 137(40):13176–13182. doi: 10.1021/jacs.5b08858 PubMedCrossRefGoogle Scholar
  93. 93.
    Wallace RH, Zong KK (1999) The preparation of optically active boronic ester substituted δ-(2)-isoxazolines. J Organomet Chem 581(1–2):87–91. doi: 10.1016/S0022-328x(99)00055-8 CrossRefGoogle Scholar
  94. 94.
    Herold T, Hoffmann RW (1978) Enantioselektive Synthese von Homoallylalkoholen über chirale Allylboronsäureester. Angew Chem 90(10):822–823. doi: 10.1002/ange.19780901031 CrossRefGoogle Scholar
  95. 95.
    Herold T, Hoffmann RW (1978) Enantioselective synthesis of homoallyl alcohols via chiral allylboronic esters. Angew Chem Int Ed 17(10):768–769. doi: 10.1002/anie.197807682 CrossRefGoogle Scholar
  96. 96.
    Hoffmann RW, Ladner W (1979) On the absolute stereochemistry of C-2 and C-3 in stegobinone. Tetrahedron Lett 20(48):4653–4656. doi: 10.1016/s0040-4039(01)86674-0 CrossRefGoogle Scholar
  97. 97.
    Herold T, Schrott U, Hoffmann RW (1980) Asymmetrische Synthesen von 4-Penten-2-ol über Allylboronsaureester chiraler Glycole. Chem Ber 114:359–374CrossRefGoogle Scholar
  98. 98.
    Hoffmann RW, Ladner W, Steinbach K, Massa W, Schmidt R, Snatzke G (1981) Stereoselektive Synthese von Alkoholen, IX. Absolute Konfiguration von Stegobinon. Chem Ber 114(8):2786–2801. doi: 10.1002/cber.19811140811 CrossRefGoogle Scholar
  99. 99.
    Hoffmann RW, Zeiß H-J, Ladner W, Tabche S (1982) Stereoselektive Synthese von Alkoholen, XI. Doppelte Stereodifferenzierung bei der Addition von Crotylboronsäureestern an Aldehyde: Prelog-Djerassi-Lacton. Chem Ber 115(6):2357–2370. doi: 10.1002/cber.19821150628 CrossRefGoogle Scholar
  100. 100.
    Hoffmann RW, Endesfelder A, Zeiss HJ (1983) Stereoselective synthesis of alcohols. 14. Conversion of 2,3-O-isopropylidene-d-glyceraldehyde into 2-deoxy-d-erythro-pentose. Carbohydr Res 123(2):320–325. doi: 10.1016/0008-6215(83)88487-0 CrossRefGoogle Scholar
  101. 101.
    Chataigner I, Zammattio F, Lebreton J, Villiéras J (1998) Enantioselective synthesis of α-methylene-γ-lactams. Nucleophilic addition of a chirally modified β-functionalized allylboronate reagent to imines. Synlett 1998(3):275–276. doi: 10.1055/s-1998-1624 CrossRefGoogle Scholar
  102. 102.
    Lachance H, Lu X, Gravel M, Hall DG (2003) Scandium-catalyzed allylboration of aldehydes as a practical method for highly diastereo- and enantioselective construction of homoallylic alcohols. J Am Chem Soc 125(34):10160–10161. doi: 10.1021/ja036807j PubMedCrossRefGoogle Scholar
  103. 103.
    Gravel M, Lachance H, Lu XS, Hall DG (2004) Scope and limitations of the scandium-catalyzed enantioselective addition of chiral allylboronates to aldehydes. Synthesis-Stuttgart 2004(8):1290–1302. doi: 10.1055/s-2004-822359 CrossRefGoogle Scholar
  104. 104.
    Kennedy JW, Hall DG (2004) Lewis acid catalyzed allylboration: discovery, optimization, and application to the formation of stereogenic quaternary carbon centers. J Org Chem 69(13):4412–4428. doi: 10.1021/jo049773m PubMedCrossRefGoogle Scholar
  105. 105.
    Ramachandran PV, Tafelska-Kaczmarek A, Sakavuyi K (2011) Asymmetric fluoroallylboration of aldehydes. Org Lett 13(15):4044–4047. doi: 10.1021/ol201551y PubMedCrossRefGoogle Scholar
  106. 106.
    Sadhu KM, Matteson DS (1985) (Chloromethyl)lithium – efficient generation and capture by boronic esters and a simple preparation of diisopropyl (chloromethyl)boronate. Organometallics 4(9):1687–1689. doi: 10.1021/Om00128a038 CrossRefGoogle Scholar
  107. 107.
    Matteson DS, Peterson ML (1987) Synthesis of l-(+)-ribose via (S)-pinanediol (αS)-α-bromoboronic esters. J Org Chem 52(23):5116–5121. doi: 10.1021/jo00232a011 CrossRefGoogle Scholar
  108. 108.
    Wityak J, Earl RA, Abelman MM, Bethel YB, Fisher BN, Kauffman GS, Kettner CA, Ma P, Mcmillan JL, Mersinger LJ, Pesti J, Pierce ME, Rankin FW, Chorvat RJ, Confalone PN (1995) Synthesis of thrombin inhibitor dup-714. J Org Chem 60(12):3717–3722. doi: 10.1021/Jo00117a024 CrossRefGoogle Scholar
  109. 109.
    Falck JR, Bondlela M, Ye JH, Cho SD (1999) A preparation of benzylic and allylic boronates: cross-coupling of aryl- and alkenylstannanes with bromomethylboronates. Tetrahedron Lett 40(31):5647–5650. doi: 10.1016/S0040-4039(99)01136-3 CrossRefGoogle Scholar
  110. 110.
    Zhang A, Kan Y, Jiang B (2001) Asymmetric hetero-Diels-Alder reaction of chiral pinanediol 1,3-dienylboronates with azo-compounds. Tetrahedron 57(12):2305–2309. doi: 10.1016/S0040-4020(01)00110-7 CrossRefGoogle Scholar
  111. 111.
    Chen M, Roush WR (2010) Highly (E)-selective BF3*Et2O-promoted allylboration of chiral nonracemic α-substituted allylboronates and analysis of the origin of stereocontrol. Org Lett 12(12):2706–2709. doi: 10.1021/ol1007444 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nakamura H, Watanabe M, Ban HS, Nabeyama W, Asai A (2009) Synthesis and biological evaluation of boron peptide analogues of Belactosin C as proteasome inhibitors. Bioorg Med Chem Lett 19(12):3220–3224. doi: 10.1016/j.bmcl.2009.04.103 PubMedCrossRefGoogle Scholar
  113. 113.
    Caselli E, Romagnoli C, Vahabi R, Taracila MA, Bonomo RA, Prati F (2015) Click chemistry in lead optimization of boronic acids as β-lactamase inhibitors. J Med Chem 58(14):5445–5458. doi: 10.1021/acs.jmedchem.5b00341 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Shreder KR, Wong MS, Corral S, Yu Z, Winn DT, Wu M, Hu Y, Nomanbhoy T, Alemayehu S, Fuller SR, Rosenblum JS, Kozarich JW (2005) Boro-norleucine as a P1 residue for the design of selective and potent DPP7 inhibitors. Bioorg Med Chem Lett 15(19):4256–4260. doi: 10.1016/j.bmcl.2005.06.076 PubMedCrossRefGoogle Scholar
  115. 115.
    Matteson DS, Maliakal D, Fabry-Asztalos L (2008) Synthesis of a (β-acetamido-α-acetoxyethyl)boronic ester via azido boronic esters. J Organomet Chem 693(13):2258–2262. doi: 10.1016/j.jorganchem.2008.03.031 CrossRefGoogle Scholar
  116. 116.
    Woods WG, Strong PL (1966) 4,4,6-Trimethyl-1,3,2-dioxaborinane. A stable dialkoxyborane. J Am Chem Soc 88(20):4667–4671. doi: 10.1021/Ja00972a027 CrossRefGoogle Scholar
  117. 117.
    Wu TR, Shen L, Chong JM (2004) Asymmetric allylboration of aldehydes and ketones using 3,3′-disubstitutedbinaphthol-modified boronates. Org Lett 6(16):2701–2704. doi: 10.1021/ol0490882 PubMedCrossRefGoogle Scholar
  118. 118.
    Wang XB (1991) Lewis base-catalyzed asymmetric Diels-Alder reaction. J Chem Soc Chem Commun 21:1515–1517. doi: 10.1039/C39910001515 CrossRefGoogle Scholar
  119. 119.
    Davies CD, Marsden SP, Stokes ESE (1998) Chiral vinyl dioxazaborocines in synthesis: asymmetric synthesis of 5-substituted Δ2-isoxazolines via nitrile oxide cycloaddition. Tetrahedron Lett 39(46):8513–8516. doi: 10.1016/s0040-4039(98)01851-6 CrossRefGoogle Scholar
  120. 120.
    Davies CD, Marsden SP, Stokes ESE (2000) Enhanced asymmetric induction in cycloadditions to bridgehead-chiral vinyl dioxazaborocines. Tetrahedron Lett 41(21):4229–4233. doi: 10.1016/S0040-4039(00)00571-2 CrossRefGoogle Scholar
  121. 121.
    Kiyooka S, Kaneko Y, Komura M, Matsuo H, Nakano M (1991) Enantioselective chiral borane-mediated aldol reactions of silyl ketene acetals with aldehydes. The novel effect of the trialkysilyl group of the silyl ketene acetal on the reaction course. J Org Chem 56(7):2276–2278CrossRefGoogle Scholar
  122. 122.
    Brown JM, Lloyd-Jones GC (1994) Vinylborane formation in rhodium-catalyzed hydroboration of vinylarenes – mechanism versus borane structure and relationship to silation. J Am Chem Soc 116(3):866–878. doi: 10.1021/Ja00082a006 CrossRefGoogle Scholar
  123. 123.
    Itsuno S, Watanabe K, Matsumoto T, Kuroda S, Yokoi A, El-Shehawy A (1999) Enantioselective synthesis of optically active homoallylamines by nucleophilic addition of chirally modified allylboranes to N-silylimines. J Chem Soc Perkin Trans 1(14):2011–2016. doi: 10.1039/A902635e CrossRefGoogle Scholar
  124. 124.
    Corey EJ, Yu CM, Kim SS (1989) A practical and efficient method for enantioselective allylation of aldehydes. J Am Chem Soc 111(14):5495–5496. doi: 10.1021/Ja00196a082 CrossRefGoogle Scholar
  125. 125.
    Corey EJ, Imwinkelried R, Pikul S, Xiang YB (1989) Practical enantioselective Diels-Alder and aldol reactions using a new chiral controller system. J Am Chem Soc 111(14):5493–5495. doi: 10.1021/Ja00196a081. further readingCrossRefGoogle Scholar
  126. 126.
    Corey EJ, Kim SS (1990) Versatile chiral reagent for the highly enantioselective synthesis of either anti or syn ester aldols. J Am Chem Soc 112(12):4976–4977. doi: 10.1021/ja00168a062 CrossRefGoogle Scholar
  127. 127.
    Walkup RD, Mosher MD (1994) Synthesis of a nucleoside analog bearing a branched difunctional side-chain using the palladium-mediated cyclization of a γ-oxoallene. Tetrahedron Lett 35(46):8545–8548. doi: 10.1016/S0040-4039(00)78432-2 CrossRefGoogle Scholar
  128. 128.
    Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT (2003) Total synthesis of phorboxazole A. Angew Chem Int Ed Engl 42(11):1258–1262. doi: 10.1002/anie.200390322 PubMedCrossRefGoogle Scholar
  129. 129.
    Yu CM, Youn J, Jung J (2006) Asymmetric sequential allylic transfer reaction for the synthesis of 2-(1-stannylvinyl)-1,3-diols: concise synthesis of (−)-avenaciolide and (−)-isoavenaciolide. Angew Chem Int Ed Engl 45(10):1553–1556. doi: 10.1002/anie.200503863 PubMedCrossRefGoogle Scholar
  130. 130.
    Williams DR, Atwater BA, Bawel SA, Ke P, Gutierrez O, Tantillo DJ (2014) Stereocontrol in asymmetric S(E)′ reactions of γ-substituted α,β-unsaturated aldehydes. Org Lett 16(2):468–471. doi: 10.1021/ol403351x PubMedCrossRefGoogle Scholar
  131. 131.
    Molander GA, Ribagorda M (2003) Expanding organoboron chemistry: epoxidation of potassium organotrifluoroborates. J Am Chem Soc 125(37):11148–11149. doi: 10.1021/ja0351140 PubMedCrossRefGoogle Scholar
  132. 132.
    Uno BE, Gillis EP, Burke MD (2009) Vinyl MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesis. Tetrahedron 65(16):3130–3138. doi: 10.1016/j.tet.2008.11.010 CrossRefGoogle Scholar
  133. 133.
    Li J, Burke MD (2011) Pinene-derived iminodiacetic acid (PIDA): a powerful ligand for stereoselective synthesis and iterative cross-coupling of C(sp3) boronate building blocks. J Am Chem Soc 133(35):13774–13777. doi: 10.1021/ja205912y PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Brown HC, Campbell JB (1980) Hydroboration. 55. Hydroboration of alkynes with dibromoborane-dimethyl sulfide. Convenient preparation of alkenyldibromoboranes. J Org Chem 45(3):389–395. doi: 10.1021/jo01291a004 CrossRefGoogle Scholar
  135. 135.
    Brown HC, Chandrasekharan J (1983) Hydroboration. 65. Relative reactivities of representative alkenes and alkynes toward hydroboration by catecholborane. J Org Chem 48(25):5080–5082. doi: 10.1021/jo00173a055 CrossRefGoogle Scholar
  136. 136.
    Brown HC, Gupta SK (1971) 1,3,2-Benzodioxaborole, a convenient monofunctional hydroborating agent. Simple new synthesis of alkaneboronic esters and acids from olefins via hydroboration. J Am Chem Soc 93(7):1816–1818. doi: 10.1021/ja00736a061 CrossRefGoogle Scholar
  137. 137.
    Brown HC, Gupta SK (1972) Catecholborane (1,3,2-benzodioxaorole) as a new, general monohydroboration reagent for alkynes. Convenient synthesis of alkeneboronic esters and acids from alkynes via hydroboration. J Am Chem Soc 94(12):4370–4371. doi: 10.1021/ja00767a072 CrossRefGoogle Scholar
  138. 138.
    Brown HC, Gupta SK (1975) Hydroboration. XXXIX. 1,3,2-Benzodioxaborole (catecholborane) as a new hydroboration reagent for alkenes and alkynes. General synthesis of alkane- and alkeneboronic acids and esters via hydroboration. Directive effects in the hydroboration of alkenes and alkynes with catecholborane. J Am Chem Soc 97(18):5249–5255. doi: 10.1021/ja00851a038 CrossRefGoogle Scholar
  139. 139.
    Stille JK, Simpson JH (1987) Stereospecific palladium-catalyzed coupling reactions of vinyl iodides with acetylenic tin reagents. J Am Chem Soc 109(7):2138–2152. doi: 10.1021/ja00241a035 CrossRefGoogle Scholar
  140. 140.
    Zweifel G, Whitney CC (1967) Novel method for the synthesis of isomerically pure vinyl halides from alkynes via the hydroalumination reaction. J Am Chem Soc 89(11):2753–2754. doi: 10.1021/ja00987a054 CrossRefGoogle Scholar
  141. 141.
    Dieck HA, Heck RF (1975) Palladium-catalyzed conjugated diene synthesis from vinylic halides and olefinic compounds. J Org Chem 40(8):1083–1090. doi: 10.1021/jo00896a020 CrossRefGoogle Scholar
  142. 142.
    Brown HC, Bhat NG, Somayaji V (1983) Organoboranes. 30. Convenient procedures for the synthesis of alkyl- and alkenylboronic acids and esters. Organometallics 2(10):1311–1316. doi: 10.1021/om50004a008 CrossRefGoogle Scholar
  143. 143.
    Marko IE, Kumamoto T, Giard T (2002) Remarkable stereocontrol in the palladium-catalysed cyclopropanation of vinyl- and dienylboronates by substituted diazoalkanes. Adv Synth Catal 344(10):1063–1067. doi: 10.1002/1615-4169(200212)344:10<1063::Aid-Adsc1063>3.0.Co;2-L CrossRefGoogle Scholar
  144. 144.
    Matteson DS, Waldbill JO (1963) Norborneneboronates. J Org Chem 28(2):366. doi: 10.1021/Jo01037a021 CrossRefGoogle Scholar
  145. 145.
    Mortier J, Vaultier M, Plunian B, Toupet L (1999) First synthesis and crystal structures of chiral 1,3-dienylborates. Heterocycles 50(2):703–711. doi: 10.3987/COM-98-S(H)60 CrossRefGoogle Scholar
  146. 146.
    Jazouli M, Carboni B, Carrié R (1994) 1,3-Dipolar cycloaddition of diazocompounds to 1-alkenylboronic esters. Heteroatom Chem 5(5–6):513–518CrossRefGoogle Scholar
  147. 147.
    Jazouli M, Baba S, Carboni B, Carrié R, Soufiaoui M (1995) 1,3-dipolar cycloadditions to unsaturated boronic esters. II. Synthesis of borylated 2-isoxazolines. Conversion of some cycloadducts to 5-hydroxy-2-isoxazolines, 5-hydroxymethyl-2-isoxazolines and isoxazoles. J Organomet Chem 498:229–235CrossRefGoogle Scholar
  148. 148.
    Carboni B, Ollivault M, Le Bouguenec F, Carrié R, Jazouli M (1997) 1,3-Dipolar cycloadditions to unsaturated Organoboranes. III – Regio- and stereocontrolled access to boronic ester substituted isoxazolidines. Tetrahedorn Lett 38(38):6665–6668CrossRefGoogle Scholar
  149. 149.
    Wallace RH, Liu J (1994) A facile method for the preparation of 4-hydroxy-Δ2-isoxazolines via a cycloaddition/oxidation procedure employing nitrile oxides and vinylbotonic esters. Tetrahedron Lett 35(41):7493–7496CrossRefGoogle Scholar
  150. 150.
    Wallace RH, Zong KK (1992) Preparation and 1-carbon homologation of boronic ester substituted Δ2-isoxazolines: the 1,3 dipolar cycloaddition of nitrile oxides to vinyl boronic esters. Tetrahedorn Lett 33(46):6941–6944CrossRefGoogle Scholar
  151. 151.
    Wallace RH, Liu J, Zong KK, Eddings A (1997) An efficient method for the preparation of optically active 4-hydroxy-Δ2-isoxazolines. Tetrahedron Lett 38(39):6791–6794CrossRefGoogle Scholar
  152. 152.
    Liu J, Eddings A, Wallace RH (1997) Sodium percarbonate: a multifunctional reagent for the preparation of optically active 4-hydroxy-Δ2-isoxazolines. Tetrahedron Lett 38(39):6795–6798CrossRefGoogle Scholar
  153. 153.
    Matteson DS, Majumdar D (1980) α-Chloro boronic esters from homologation of boronic esters. J Am Chem Soc 102(25):7588–7590. doi: 10.1021/Ja00545a045 CrossRefGoogle Scholar
  154. 154.
    Matteson DS, Ray R (1980) Directed chiral synthesis with pinanediol boronic esters. J Am Chem Soc 102(25):7590–7591. doi: 10.1021/Ja00545a046 CrossRefGoogle Scholar
  155. 155.
    Matteson DS, Sadhu KM (1983) Boronic ester homologation with 99% chiral selectivity and its use in syntheses of the insect pheromones (3S,4S)-4-methyl-3-heptanol and exo-brevicomin. J Am Chem Soc 105(7):2077–2078. doi: 10.1021/ja00345a074 CrossRefGoogle Scholar
  156. 156.
    Tripathy PB, Matteson DS (1990) Asymmetric synthesis of the four stereoisomers of 4-methyl-3-heptanol via boronic esters: sequential double stereodifferentiation leads to very high purity. Synthesis 1990(3):200–206. doi: 10.1055/s-1990-26829 CrossRefGoogle Scholar
  157. 157.
    Matteson DS, Beedle EC (1987) A directed chiral synthesis of amino acids from boronic esters. Tetrahedron Lett 28(39):4499–4502. doi: 10.1016/s0040-4039(00)96547-x CrossRefGoogle Scholar
  158. 158.
    Matteson DS, Kandil AA, Soundararajan R (1990) Synthesis of asymmetrically deuterated glycerol and dibenzylglyceraldehyde via boronic esters. J Am Chem Soc 112(10):3964–3969. doi: 10.1021/Ja00166a037 CrossRefGoogle Scholar
  159. 159.
    Mantri P, Duffy DE, Kettner CA (1996) New asymmetric synthesis of α-aminoboronic acids containing functionalized side chains. J Org Chem 61(16):5690–5692. doi: 10.1021/Jo960628l CrossRefGoogle Scholar
  160. 160.
    Michnick TJ, Matteson DS (1991) (Bromomethyl)lithium: efficient in situ reactions. Synlett 1991(9):631–632. doi: 10.1055/s-1991-20821 CrossRefGoogle Scholar
  161. 161.
    Matteson DS (2013) Boronic esters in asymmetric synthesis. J Org Chem 78(20):10009–10023. doi: 10.1021/jo4013942 PubMedCrossRefGoogle Scholar
  162. 162.
    Ho OC, Soundararajan R, Lu J, Matteson DS, Wang Z, Chen X, Wei M, Willett RD (1995) ((Trityloxy)methyl)boronic esters. Organometallics 14(6):2855–2860. doi: 10.1021/om00006a034 CrossRefGoogle Scholar
  163. 163.
    Alexakis A, Backvall JE, Krause N, Pamies O, Dieguez M (2008) Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem Rev 108(8):2796–2823. doi: 10.1021/cr0683515 PubMedCrossRefGoogle Scholar
  164. 164.
    Alexakis A, Croset K (2002) Tandem copper-catalyzed enantioselective allylation-metathesis. Org Lett 4(23):4147–4149. doi: 10.1021/ol0269244 PubMedCrossRefGoogle Scholar
  165. 165.
    Malda H, van Zijl AW, Arnold LA, Feringa BL (2001) Enantioselective copper-catalyzed allylic alkylation with dialkylzincs using phosphoramidite ligands. Org Lett 3(8):1169–1171. doi: 10.1021/Ol0156289 PubMedCrossRefGoogle Scholar
  166. 166.
    Tissot-Croset K, Polet D, Alexakis A (2004) A highly effective phosphoramidite ligand for asymmetric allylic substitution. Angew Chem Int Ed Engl 43(18):2426–2428. doi: 10.1002/anie.200353744 PubMedCrossRefGoogle Scholar
  167. 167.
    Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M (2007) Copper-catalyzed enantioselective substitution of allylic carbonates with diboron: an efficient route to optically active α-chiral allylboronates. J Am Chem Soc 129(48):14856–14857. doi: 10.1021/ja076634o PubMedCrossRefGoogle Scholar
  168. 168.
    Ito H, Kawakami C, Sawamura M (2005) Copper-catalyzed γ-selective and stereospecific substitution reaction of allylic carbonates with diboron: efficient route to chiral allylboron compounds. J Am Chem Soc 127(46):16034–16035. doi: 10.1021/ja056099x PubMedCrossRefGoogle Scholar
  169. 169.
    Carosi L, Hall DG (2007) Catalytic enantioselective preparation of α-substituted allylboronates: one-pot addition to functionalized aldehydes and a route to chiral allylic trifluoroborate reagents. Angew Chem Int Ed Engl 46(31):5913–5915. doi: 10.1002/anie.200700975 PubMedCrossRefGoogle Scholar
  170. 170.
    Tamaru Y (1999) Novel catalytic reactions involving π-allylpalladium and -nickel as the key intermediates: umpolung and β-decarbopalladation of π-allylpalladium and nickel-catalyzed homoallylation of carbonyl compounds with 1,3-dienes. J Organomet Chem 576(1–2):215–231. doi: 10.1016/s0022-328x(98)01060-2 CrossRefGoogle Scholar
  171. 171.
    Tamaru Y (2005) Activation of allyl alcohols as allyl cations, allyl anions, and amphiphilic allylic species by palladium. Eur J Org Chem 2005(13):2647–2656. doi: 10.1002/ejoc.200500076 CrossRefGoogle Scholar
  172. 172.
    Zanoni G, Pontiroli A, Marchetti A, Vidari G (2007) Stereoselective carbonyl allylation by umpolung of allylpalladium(II) complexes. Eur J Org Chem 2007(22):3599–3611. doi: 10.1002/ejoc.200700054 CrossRefGoogle Scholar
  173. 173.
    Takahara JP, Masuyama Y, Kurusu Y (1992) Palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl2. J Am Chem Soc 114(7):2577–2586. doi: 10.1021/Ja00033a034 CrossRefGoogle Scholar
  174. 174.
    Yamamoto Y, Asao N (1993) Selective reactions using allylic metals. Chem Rev 93(6):2207–2293. doi: 10.1021/Cr00022a010 CrossRefGoogle Scholar
  175. 175.
    Masuyama Y, Takahara JP, Kurusu Y (1988) Allylic alcohols as synthons of allylic carbanions. Palladium-catalyzed carbonyl allylation by allylic alcohols with tin dichloride. J Am Chem Soc 110(13):4473–4474. doi: 10.1021/ja00221a091 CrossRefGoogle Scholar
  176. 176.
    Masuyama Y, Hayashi R, Otaka K, Kurusu Y (1988) Charge reversal of electrophilic π-allylpalladium intermediates; carbonyl allylation by allylic acetates with PdCl2(PhCN)2SnCl2. J Chem Soc Chem Commun:44–45. doi: 10.1039/C39880000044
  177. 177.
    Masuyama Y, Ito A, Kurusu Y (1998) Either γ-syn- or γ-anti-selective palladium-catalysed carbonyl allylation by mixed (E)- and (Z)-1,3-dichloropropene with tin(II) halides. Chem Commun 3:315–316. doi: 10.1039/A707865J CrossRefGoogle Scholar
  178. 178.
    Masuyama Y, Takahara JP, Kurusu Y (1989) Palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl2 – a solvation-controlled diastereoselection. Tetrahedron Lett 30(26):3437–3440. doi: 10.1016/S0040-4039(00)99265-7 CrossRefGoogle Scholar
  179. 179.
    Musco A, Pontellini R, Grassi M, Sironi A, Meille SV, Ruegger H, Ammann C, Pregosin PS (1988) Crystallographic and NMR studies of platinum(II) and palladium(II) η-3-methallyl trichlorostannate olefin complexes. Organometallics 7(10):2130–2137. doi: 10.1021/om00100a008 CrossRefGoogle Scholar
  180. 180.
    Pietruszka J, Fernández E (2009) Palladium-catalyzed carbonyl allylation: synthesis of enantiomerically pure α-substituted allylboronic esters. Synlett 2009(9):1474–1476. doi: 10.1055/s-0029-1217160 CrossRefGoogle Scholar
  181. 181.
    Raducan M, Alam R, Szabo KJ (2012) Palladium-catalyzed synthesis and isolation of functionalized allylboronic acids: selective, direct allylboration of ketones. Angew Chem Int Ed Engl 51(52):13050–13053. doi: 10.1002/anie.201207951 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Böse D, Fernández E, Pietruszka J (2011) Stereoselective synthesis of both enantiomers of rugulactone. J Org Chem 76(9):3463–3469. doi: 10.1021/jo2004583 PubMedCrossRefGoogle Scholar
  183. 183.
    Pietruszka J, Bartlett S, Böse D, Ghori D, Mechsner B (2013) Enantiomerically pure allylboronic esters as versatile reagents in the enantioselective synthesis of dihydro-α-pyrone-containing natural products. Synthesis 45(08):1106–1114. doi: 10.1055/s-0032-1318440 CrossRefGoogle Scholar
  184. 184.
    Jenkins PR, Gut R, Wetter H, Eschenmoser A (1979) Notiz über einen Zugang zu β,γ-ungesättigten Carbonsäurederivaten mit Hilfe der Amidacetal-Claisenumlagerung. Über synthetische Methoden, 17. Mitteilung. Helv Chim Acta 62(6):1922–1931. doi: 10.1002/hlca.19790620621 CrossRefGoogle Scholar
  185. 185.
    Procter G, Russell AT, Murphy PJ, Tan TS, Mather AN (1988) Epoxy-silanes in organic-synthesis. Tetrahedron 44(13):3953–3973. doi: 10.1016/S0040-4020(01)86648-5 CrossRefGoogle Scholar
  186. 186.
    Panek JS, Beresis R, Xu F, Yang M (1991) Diastereoselective electrophilic addition reactions to chiral β-dimethylphenylsilyl ester enolates. Synthesis of 2,3-anti-α-substituted-β-silyl-(E)-hex-4-enoates. J Org Chem 56(26):7341–7344. doi: 10.1021/jo00026a030 CrossRefGoogle Scholar
  187. 187.
    Beresis RT, Salomon JS, Yang MG, Jain NF, Panek JS (1998) Synthesis of chiral (E)-crotylsilanes: [3R and 3S] (4E)-methyl 3-(dimethylphenylsilyl)-4-hexenoate. Org Synth 75:78–88. doi: 10.15227/orgsyn.075.0078 CrossRefGoogle Scholar
  188. 188.
    Ritter K (1990) Claisen rearrangement of organotin compounds. Tetrahedron Lett 31(6):869–872. doi: 10.1016/S0040-4039(00)94650-1 CrossRefGoogle Scholar
  189. 189.
    Anderson JC, Roberts CA (1998) The tri-n-butyltin group as a novel stereocontrol element and synthetic handle in the aza-[2,3]-Wittig sigmatropic rearrangement. Tetrahedron Lett 39(1–2):159–162. doi: 10.1016/S0040-4039(97)10477-4 CrossRefGoogle Scholar
  190. 190.
    Kazmaier U, Schauß D, Raddatz S, Pohlman M (2001) Preparation and reactions of stannylated amino acids. Chem Eur J 7(2):456–464. doi: 10.1002/1521-3765(20010119)7:2<456::AID-CHEM456>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  191. 191.
    Ohmura T, Yamamoto Y, Miyaura N (2000) Rhodium- or iridium-catalyzed trans-hydroboration of terminal alkynes, giving (Z)-1-alkenylboron compounds. J Am Chem Soc 122(20):4990–4991. doi: 10.1021/Ja0002823 CrossRefGoogle Scholar
  192. 192.
    Pietruszka J, Schöne N (2004) New 1,3-disubstituted enantiomerically pure allylboronic esters by Johnson rearrangement of boron-substituted allyl alcohols. Eur J Org Chem 2004(24):5011–5019. doi: 10.1002/ejoc.200400572 CrossRefGoogle Scholar
  193. 193.
    Pietruszka J, Schöne N (2006) New enantiomerically pure allylboronic esters in allyl additions: synthesis and NMR investigation of intermediates. Synthesis-Stuttgart 2006(1):24–30. doi: 10.1055/s-2005-921756 CrossRefGoogle Scholar
  194. 194.
    Cmrecki V, Eichenauer NC, Frey W, Pietruszka J (2010) Microwave assisted synthesis of enantiomerically pure allylboronates. Tetrahedron 66(33):6550–6564. doi: 10.1016/j.tet.2010.04.100 CrossRefGoogle Scholar
  195. 195.
    Vahabi R, Frey W, Pietruszka J (2013) Synthesis of highly-substituted enantiomerically pure allylboronic esters and investigation of their stereoselective addition to aldehydes. J Org Chem 78(22):11549–11559. doi: 10.1021/jo402130u PubMedCrossRefGoogle Scholar
  196. 196.
    Gehrke Y, Berg CA, Vahabi R, Pietruszka J (2016) Synthesis of alkenylboronic esters: an alternative route to trisubstituted homoallylic alcohols. Eur J Org Chem 2016(14):2413–2420. doi: 10.1002/ejoc.201600139 CrossRefGoogle Scholar
  197. 197.
    Pietruszka J, Rieche ACM, Schöne N (2007) Synthesis of marine oxylipins constanolactones C and D. Synlett 2007(16):2525–2528. doi: 10.1055/s-2007-986647 CrossRefGoogle Scholar
  198. 198.
    Bischop M, Doum V, Nordschild ACM, Pietruszka J, Sandkuhl D (2010) Total synthesis of halicholactone and neohalicholactone. Synthesis-Stuttgart 2010(3):527–537. doi: 10.1055/s-0029-1217145 CrossRefGoogle Scholar
  199. 199.
    Eichenauer NC, Nordschild ACM, Bischop M, Schumacher D, Mackwitz MKW, Tschersich R, Wilhelm T, Pietruszka J (2015) Total synthesis of solandelactones A and B. Eur J Org Chem 2015(25):5620–5632. doi: 10.1002/ejoc.201500700 CrossRefGoogle Scholar
  200. 200.
    Pietruszka J, Rieche ACM (2008) Total synthesis of marine oxylipins solandelactones A–H. Adv Synth Catal 350(9):1407–1412. doi: 10.1002/adsc.200800198 CrossRefGoogle Scholar
  201. 201.
    Eichenauer NC, Tschersich R, Pietruszka J (2015) Total synthesis of solandelactone I. J Nat Prod 78(11):2782–2790. doi: 10.1021/acs.jnatprod.5b00757 PubMedCrossRefGoogle Scholar
  202. 202.
    Narasaka K, Pai FC (1984) Stereoselective reduction of β-hydroxyketones to 1,3-diols – highly selective 1,3-asymmetric induction via boron chelates. Tetrahedron 40(12):2233–2238. doi: 10.1016/0040-4020(84)80006-X CrossRefGoogle Scholar
  203. 203.
    Kathawala FG, Prager B, Prasad K, Repi O, Shapiro MJ, Stabler RS, Widler L (1986) Stereoselective reduction of δ-hydroxy-β-ketoesters. Helv Chim Acta 69(4):803–805. doi: 10.1002/hlca.19860690407 CrossRefGoogle Scholar
  204. 204.
    Chen KM, Hardtmann GE, Prasad K, Repic O, Shapiro MJ (1987) 1,3-Syn diastereoselective reduction of β-hydroxyketones utilizing alkoxydialkylboranes. Tetrahedron Lett 28(2):155–158. doi: 10.1016/S0040-4039(00)95673-9 CrossRefGoogle Scholar
  205. 205.
    Evans DA, Chapman KT, Carreira EM (1988) Directed reduction of β-hydroxy ketones employing tetramethylammonium triacetoxyborohydride. J Am Chem Soc 110(11):3560–3578. doi: 10.1021/Ja00219a035 CrossRefGoogle Scholar
  206. 206.
    Chen K-M, Gunderson KG, Hardtmann GE, Prasad K, Repic O, Shapiro MJ (1987) A novel method for the in situ generation of alkoxydialkylboranes and their use in the selective preparation of 1,3-syn-diols. Chem Lett 16(10):1923–1926. doi: 10.1246/cl.1987.1923 CrossRefGoogle Scholar
  207. 207.
    Molander GA, Bobbitt KL, Murray CK (1992) Keto boronate reduction – a novel method for high 1,3-relative asymmetric induction. J Am Chem Soc 114(7):2759–2760. doi: 10.1021/Ja00033a084 CrossRefGoogle Scholar
  208. 208.
    Mears RJ, Whiting A (1993) β-Boronate carbonyl derivatives – synthesis and evidence for the intervention of boronate ate-complexes in enolate alkylations. Tetrahedron 49(1):177–186. doi: 10.1016/S0040-4020(01)80517-2 CrossRefGoogle Scholar
  209. 209.
    Talley J, Martinez E, Zimmer D, Lundrigan-Soucy R (2006) Diphenylheterocycle cholesterol absorption inhibitors. WO 2006/102674Google Scholar
  210. 210.
    Mikhailov BM, Bubnov YN (1964) Reaction of triallylboron with carbonyl compounds. Bull Acad Sci USSR Div Chem Sci 13(10):1774–1776. doi: 10.1007/bf00849448 CrossRefGoogle Scholar
  211. 211.
    Hall DG (2008) New preparative methods for allylic boronates and their application in stereoselective catalytic allylborations. Pure Appl Chem 80(5):913–927. doi: 10.1351/pac200880050913 CrossRefGoogle Scholar
  212. 212.
    Favre E, Gaudemar M, Champetier MG, 1543 (1966) Sur les comporlements comparês du bore et de l'aluminium en synthèse organométallique. C R Hebd Seances Acad Sci Paris 263:1543–1545Google Scholar
  213. 213.
    Favre E, Gaudemar M (1974) Reactivite des propargyl- et allenyl-boronates de dibutyle vis-a-vis des derives carbonyles. J Organomet Chem 76(3):297–304. doi: 10.1016/s0022-328x(00)87376-3 CrossRefGoogle Scholar
  214. 214.
    Favre E, Gaudemar M (1974) Reactivite des propargyl- et allenyl-boronates de dibutyle vis-a-vis des derives carbonyles. J Organomet Chem 76(3):305–313. doi: 10.1016/s0022-328x(00)87377-5 CrossRefGoogle Scholar
  215. 215.
    Favre E, Gaudemar M (1975) Reactivite des propargyl- et allenyl-boronates de dibutyle vis-a-vis des derives carbonyles III. Stereochemie de la condensation sur les aldehydes. J Organomet Chem 92(1):17–25. doi: 10.1016/s0022-328x(00)91096-9 CrossRefGoogle Scholar
  216. 216.
    Herold T, Schrott U, Hoffmann RW, Schnelle G, Ladner W, Steinbach K (1981) Stereoselektive Synthese von Alkoholen, VI1) Asymmetrische Synthesen von 4-Penten-2-ol über Allylboronsäureester chiraler Glycole. Chem Ber 114(1):359–374. doi: 10.1002/cber.19811140138
  217. 217.
    Zimmerman HE, Traxler MD (1957) The stereochemistry of the Ivanov and Reformatsky reactions. I. J Am Chem Soc 79(8):1920–1923. doi: 10.1021/ja01565a041 CrossRefGoogle Scholar
  218. 218.
    Evans DA, Vogel E, Nelson JV (1979) Stereoselective aldol condensations via boron enolates. J Am Chem Soc 101(20):6120–6123. doi: 10.1021/Ja00514a045 CrossRefGoogle Scholar
  219. 219.
    Gung BW, Xue XW, Roush WR (2002) The origin of diastereofacial control in allylboration reactions using tartrate ester derived allylboronates: attractive interactions between the Lewis acid coordinated aldehyde carbonyl group and an ester carbonyl oxygen. J Am Chem Soc 124(36):10692–10697. doi: 10.1021/ja026373c PubMedCrossRefGoogle Scholar
  220. 220.
    Williams DR, Plummer SV, Patnaik S (2003) Formal synthesis of leucascandrolide A. Angew Chem Int Ed Engl 42(33):3934–3938. doi: 10.1002/anie.200351817 PubMedCrossRefGoogle Scholar
  221. 221.
    Hoffmann RW, Zeiss HJ (1981) Stereoselective synthesis of alcohols. 8. Diastereoselective synthesis of β-methylhomoallyl alcohols via crotylboronates. J Org Chem 46(7):1309–1314. doi: 10.1021/Jo00320a015 CrossRefGoogle Scholar
  222. 222.
    Hoffmann RW, Zeiß H-J (1979) Diastereoselektive Synthese von β-Methyl-homoallylalkoholen. Angew Chem 91(4):329–329. doi: 10.1002/ange.19790910413 CrossRefGoogle Scholar
  223. 223.
    Hoffmann RW (1988) α-Chiral allylboronates: reagents for asymmetric synthesis. Pure Appl Chem 60(1):123–130CrossRefGoogle Scholar
  224. 224.
    Hoffmann RW, Niel G, Schlapbach A (1990) Stereocontrol in allylboration reactions. Pure Appl Chem 62(10):1993–1998. doi: 10.1351/pac199062101993 CrossRefGoogle Scholar
  225. 225.
    Hoffmann RW, Dresely S, Lanz JW (1988) Stereoselective synthesis of alcohols, XXVII. Addition of (α-chlorocrotyl)boronates to aldehydes. Chem Ber 121(8):1501–1507. doi: 10.1002/cber.19881210826 CrossRefGoogle Scholar
  226. 226.
    Stivala CE, Gu Z, Smith LL, Zakarian A (2012) Studies toward the synthesis of spirolide C: exploration into the formation of the 23-membered all-carbon macrocyclic framework. Org Lett 14(3):804–807. doi: 10.1021/ol203342e PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Williams DR, Claeboe CD, Liang B, Zorn N, Chow NS (2012) A bidirectional S(E)′ strategy for 1,5-syn and 1,5-anti stereocontrol toward the synthesis of complex polyols. Org Lett 14(15):3866–3869. doi: 10.1021/ol3015682 PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Williams DR, Plummer SV, Patnaik S (2011) Studies for the enantiocontrolled preparation of substituted tetrahydropyrans: applications for the synthesis of leucascandrolide A macrolactone. Tetrahedron 67(27–28):5083–5097. doi: 10.1016/j.tet.2011.05.020 PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Ley SV, Tackett MN, Maddess ML, Anderson JC, Brennan PE, Cappi MW, Heer JP, Helgen C, Kori M, Kouklovsky C, Marsden SP, Norman J, Osborn DP, Palomero MÁ, Pavey JBJ, Pinel C, Robinson LA, Schnaubelt J, Scott JS, Spilling CD, Watanabe H, Wesson KE, Willis MC (2009) Total synthesis of Rapamycin. Chem Eur J 15(12):2874–2914. doi: 10.1002/chem.200801656 PubMedCrossRefGoogle Scholar
  230. 230.
    Wohlfahrt M, Harms K, Koert U (2012) Total synthesis of (+)-Awajanomycin. Eur J Org Chem 2012:2260–2265. doi: 10.1002/ejoc.201200059 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marvin Mantel
    • 1
  • Marcus Brauns
    • 1
  • Jörg Pietruszka
    • 1
    • 2
  1. 1.Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher ForstJülichGermany
  2. 2.Institute for Bio- and Geosciences 1 (IBG-1): Biotechnology, Forschungszentrum JülichJülichGermany

Personalised recommendations