Advertisement

Photocatalyzed Formation of Heterocycles

  • Stefano Crespi
  • Maurizio Fagnoni
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 54)

Abstract

Among the several approaches available for the formation of heterocycles, in the last years photocatalysis has become a unique tool. This peculiar strategy relies on the photocatalyzed formation of ground-state high-energy intermediates (e.g., radicals or radical ions) that furnishes the desired compounds upon a cyclization step, mostly involving an unsaturated or an aromatic moiety. The photocatalyzed approach is especially well suited for the formation of five- and six-membered rings containing oxygen and nitrogen, as detailed in the following.

Keywords

Electron transfer Photocatalysis Radical ions Radicals Visible light 

References

  1. 1.
    Baumann M, Baxendale IR (2013) An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J Org Chem 9:2265–2319.  https://doi.org/10.3762/bjoc.9.265 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lamberth C, Dinges J (2012) Bioactive heterocyclic compound classes. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Pozharskiĭ AF, Katritzky AR, Soldatenkov AT (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry, and applications, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  4. 4.
    Cabal M-P (2011) Six-membered heterocycles: 1,2-, 1,3-, and 1,4-diazines and related systems. In: Alvarez-Builla J, Vaquero JJ, Barluenga J (eds) Modern heterocyclic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1683–1776CrossRefGoogle Scholar
  5. 5.
    Majumdar KC, Chattopadhyay SK (2011) Heterocycles in natural product synthesis. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  6. 6.
    Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386.  https://doi.org/10.1021/cr0501339 CrossRefPubMedGoogle Scholar
  7. 7.
    Albini A, Fagnoni M (2013) Photochemically-generated intermediates in synthesis. Wiley, HobokenCrossRefGoogle Scholar
  8. 8.
    Ravelli D, Protti S, Fagnoni M (2016) Carbon–carbon bond forming reactions via photogenerated intermediates. Chem Rev 116:9850–9913.  https://doi.org/10.1021/acs.chemrev.5b00662 CrossRefPubMedGoogle Scholar
  9. 9.
    Fagnoni M, Dondi D, Ravelli D, Albini A (2007) Photocatalysis for the formation of the C−C bond. Chem Rev 107:2725–2756.  https://doi.org/10.1021/cr068352x CrossRefPubMedGoogle Scholar
  10. 10.
    Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363.  https://doi.org/10.1021/cr300503r CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ravelli D, Fagnoni M, Albini A (2013) Photoorganocatalysis. What for? Chem Soc Rev 42:97–113.  https://doi.org/10.1039/C2CS35250H CrossRefPubMedGoogle Scholar
  12. 12.
    Fukuzumi S, Ohkubo K (2014) Organic synthetic transformations using organic dyes as photoredox catalysts. Org Biomol Chem 12:6059–6071.  https://doi.org/10.1039/C4OB00843J CrossRefPubMedGoogle Scholar
  13. 13.
    Douglas JJ, Sevrin MJ, Stephenson CRJ (2016) Visible light photocatalysis: applications and new disconnections in the synthesis of pharmaceutical agents. Org Process Res Dev 20:1134–1147.  https://doi.org/10.1021/acs.oprd.6b00125 CrossRefGoogle Scholar
  14. 14.
    Ravelli D, Protti S, Fagnoni M (2016) Application of visible and solar light in organic synthesis. In: Bergamini G, Silvi S (eds) Applied photochemistry. Springer, Cham, pp 281–342CrossRefGoogle Scholar
  15. 15.
    Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166.  https://doi.org/10.1021/acs.chemrev.6b00057 CrossRefPubMedGoogle Scholar
  16. 16.
    Fagnoni M, Mella M, Albini A (1995) Radical addition to alkenes via electron transfer photosensitization. J Am Chem Soc 117:7877–7881.  https://doi.org/10.1021/ja00135a004 CrossRefGoogle Scholar
  17. 17.
    Zhou L, Lokman Hossain M, Xiao T (2016) Synthesis of N-containing heterocyclic compounds using visible-light photoredox catalysis. Chem Rec 16:319–334.  https://doi.org/10.1002/tcr.201500228 CrossRefPubMedGoogle Scholar
  18. 18.
    Capaldo L, Ravelli D (2017) Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur J Org Chem 2017:2056–2071.  https://doi.org/10.1002/ejoc.201601485 CrossRefGoogle Scholar
  19. 19.
    Fagnoni M (2003) Photoinduced electron transfer reactions in heterocyclic chemistry. Heterocycles 60:1921–1958.  https://doi.org/10.3987/REV-03-566 CrossRefGoogle Scholar
  20. 20.
    Xuan J, Lu L-Q, Chen J-R, Xiao W-J (2013) Visible-light-driven photoredox catalysis in the construction of carbocyclic and heterocyclic ring systems: photoredox catalysis in the construction of ring systems. Eur J Org Chem 2013:6755–6770.  https://doi.org/10.1002/ejoc.201300596 CrossRefGoogle Scholar
  21. 21.
    Wang R, Jiang H, Cheng Y, Kadi A, Fun H-K, Zhang Y, Yu S (2014) Somophilic isocyanide insertion: synthesis of 6-arylated and 6-trifluoro­methylated phenanthridines. Synthesis 46:2711–2726.  https://doi.org/10.1055/s-0034-1379217 CrossRefGoogle Scholar
  22. 22.
    Xie J, Jin H, Xu P, Zhu C (2014) When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Lett 55:36–48.  https://doi.org/10.1016/j.tetlet.2013.10.090 CrossRefGoogle Scholar
  23. 23.
    Chen J-R, Hu X-Q, Lu L-Q, Xiao W-J (2016) Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: reaction design and beyond. Acc Chem Res 49:1911–1923.  https://doi.org/10.1021/acs.accounts.6b00254 CrossRefPubMedGoogle Scholar
  24. 24.
    Menigaux D, Belmont P, Brachet E (2017) Light on unsaturated hydrocarbons – “Gotta Heterofunctionalize Them All”. Eur J Org Chem 2017:2008–2055.  https://doi.org/10.1002/ejoc.201601626 CrossRefGoogle Scholar
  25. 25.
    Boubertakh O, Goddard J-P (2017) Construction and functionalization of heteroarenes by use of photoredox catalysis. Eur J Org Chem 2017:2072–2084.  https://doi.org/10.1002/ejoc.201601653 CrossRefGoogle Scholar
  26. 26.
    Li J, Wang DZ (2015) Visible-light-promoted photoredox syntheses of α,β-epoxy ketones from styrenes and benzaldehydes under alkaline conditions. Org Lett 17:5260–5263.  https://doi.org/10.1021/acs.orglett.5b02629 CrossRefPubMedGoogle Scholar
  27. 27.
    Jafarpour M, Feizpour F, Rezaeifard A (2016) Aerobic stereoselective oxidation of olefins on a visible-light-irradiated titanium dioxide–cobalt–ascorbic acid nanohybrid. Synlett 28:235–238.  https://doi.org/10.1055/s-0036-1588897 CrossRefGoogle Scholar
  28. 28.
    Kim E, Choi S, Kim H, Cho EJ (2013) Generation of CF3-containing epoxides and aziridines by visible-light-driven trifluoromethylation of allylic alcohols and amines. Chem Eur J 19:6209–6212.  https://doi.org/10.1002/chem.201300564 CrossRefPubMedGoogle Scholar
  29. 29.
    Li W, Duan Y, Zhang M, Cheng J, Zhu C (2016) A photoredox catalyzed radical–radical coupling reaction: facile access to multi-substituted nitrogen heterocycles. Chem Commun 52:7596–7599.  https://doi.org/10.1039/C6CC02027E CrossRefGoogle Scholar
  30. 30.
    Bauer A, Westkämper F, Grimme S, Bach T (2005) Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436:1139–1140.  https://doi.org/10.1038/nature03955 CrossRefPubMedGoogle Scholar
  31. 31.
    Li D, Che C-M, Kwong H-L, Yam VW-W (1992) Photoinduced C–C bond formation from alkyl halides catalysed by luminescent dinuclear gold(I) and copper(I) complexes. J Chem Soc Dalton Trans 3325–3329.  https://doi.org/10.1039/DT9920003325
  32. 32.
    Revol G, McCallum T, Morin M, Gagosz F, Barriault L (2013) Photoredox transformations with dimeric gold complexes. Angew Chem Int Ed 52:13342–13345.  https://doi.org/10.1002/anie.201306727 CrossRefGoogle Scholar
  33. 33.
    Lin Q-Y, Xu X-H, Zhang K, Qing F-L (2016) Visible-light-induced hydrodifluoromethylation of alkenes with a bromodifluoromethylphosphonium bromide. Angew Chem Int Ed 55:1479–1483.  https://doi.org/10.1002/anie.201509282 CrossRefGoogle Scholar
  34. 34.
    Yoshioka E, Kohtani S, Tanaka E, Hata Y, Miyabe H (2015) Carbon radical addition–cyclization reaction induced by ruthenium-photocatalyst under visible light irradiation. Tetrahedron 71:773–781.  https://doi.org/10.1016/j.tet.2014.12.068 CrossRefGoogle Scholar
  35. 35.
    Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Takemoto Y, Miyabe H (2014) Direct photoinduced electron transfer from excited state of rhodamine B for carbon-radical generation. Synlett 26:265–270.  https://doi.org/10.1055/s-0034-1379699 CrossRefGoogle Scholar
  36. 36.
    Qin Q, Yu S (2015) Visible-light-promoted remote C(sp3)–H amidation and chlorination. Org Lett 17:1894–1897.  https://doi.org/10.1021/acs.orglett.5b00582 CrossRefPubMedGoogle Scholar
  37. 37.
    Wolff ME (1963) Cyclization of N-halogenated amines (the Hofmann-Löffler reaction). Chem Rev 63:55–64.  https://doi.org/10.1021/cr60221a004 CrossRefGoogle Scholar
  38. 38.
    Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR (2014) Catalytic olefin hydroamination with aminium radical cations: a photoredox method for direct C–N bond formation. J Am Chem Soc 136:12217–12220.  https://doi.org/10.1021/ja5056774 CrossRefPubMedGoogle Scholar
  39. 39.
    Liu D, Zhao G, Xiang L (2010) Diverse strategies for the synthesis of the indoline scaffold. Eur J Org Chem 2010:3975–3984.  https://doi.org/10.1002/ejoc.201000323 CrossRefGoogle Scholar
  40. 40.
    Tasker SZ, Jamison TF (2015) Highly regioselective indoline synthesis under nickel/photoredox dual catalysis. J Am Chem Soc 137:9531–9534.  https://doi.org/10.1021/jacs.5b05597 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Xiong T, Zhang Q (2016) New amination strategies based on nitrogen-centered radical chemistry. Chem Soc Rev 45:3069–3087.  https://doi.org/10.1039/C5CS00852B CrossRefPubMedGoogle Scholar
  42. 42.
    Davies J, Booth SG, Essafi S, Dryfe RAW, Leonori D (2015) Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew Chem Int Ed 54:14017–14021.  https://doi.org/10.1002/anie.201507641 CrossRefGoogle Scholar
  43. 43.
    Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S (2015) Visible-light-promoted iminyl-radical formation from acyl oximes: a unified approach to pyridines, quinolines, and phenanthridines. Angew Chem Int Ed 54:4055–4059.  https://doi.org/10.1002/anie.201411342 CrossRefGoogle Scholar
  44. 44.
    Lorance ED, Kramer WH, Gould IR (2002) Kinetics of reductive N−O bond fragmentation: the role of a conical intersection. J Am Chem Soc 124:15225–15238.  https://doi.org/10.1021/ja020768e CrossRefPubMedGoogle Scholar
  45. 45.
    Rathore R, Lindeman SV, Kochi JK (1997) Charge-transfer probes for molecular recognition via steric hindrance in donor-acceptor pairs. J Am Chem Soc 119:9393–9404.  https://doi.org/10.1021/ja9720319 CrossRefGoogle Scholar
  46. 46.
    Cossy J, Belotti D (2006) Generation of ketyl radical anions by photoinduced electron transfer (PET) between ketones and amines. Synthetic applications. Tetrahedron 62:6459–6470.  https://doi.org/10.1016/j.tet.2006.03.062 CrossRefGoogle Scholar
  47. 47.
    Nappi M, Bergonzini G, Melchiorre P (2014) Metal-free photochemical aromatic perfluoroalkylation of α-cyano arylacetates. Angew Chem Int Ed 53:4921–4925.  https://doi.org/10.1002/anie.201402008 CrossRefGoogle Scholar
  48. 48.
    Cai S-H, Xie J-H, Song S, Ye L, Feng C, Loh T-P (2016) Visible-light-promoted carboimination of unactivated alkenes for the synthesis of densely functionalized pyrroline derivatives. ACS Catal 6:5571–5574.  https://doi.org/10.1021/acscatal.6b01230 CrossRefGoogle Scholar
  49. 49.
    Liu Y, Zhang J-L, Song R-J, Li J-H (2014) Visible-light-facilitated 5-exo-trig cyclization of 1,6-dienes with alkyl chlorides: selective scission of the C(sp3)–H bond in alkyl chlorides: visible-light-facilitated 5-exo-trig cyclization of 1,6-dienes. Eur J Org Chem 2014:1177–1181.  https://doi.org/10.1002/ejoc.201301849 CrossRefGoogle Scholar
  50. 50.
    Hari DP, König B (2013) The photocatalyzed meerwein arylation: classic reaction of aryl diazonium salts in a new light. Angew Chem Int Ed 52:4734–4743.  https://doi.org/10.1002/anie.201210276 CrossRefGoogle Scholar
  51. 51.
    Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Kawashima A, Takemoto Y, Miyabe H (2016) Aqueous-medium carbon–carbon bond-forming radical reactions catalyzed by excited rhodamine B as a metal-free organic dye under visible light irradiation. J Org Chem 81:7217–7229.  https://doi.org/10.1021/acs.joc.6b01102 CrossRefPubMedGoogle Scholar
  52. 52.
    Hu B, Li Y, Dong W, Ren K, Xie X, Wan J, Zhang Z (2016) Visible light-induced intramolecular dearomative cyclization of α-bromo-N-benzyl-alkylamides: efficient construction of 2-azaspiro[4.5]decanes. Chem Commun 52:3709–3712.  https://doi.org/10.1039/C5CC09726F CrossRefGoogle Scholar
  53. 53.
    Rios R (2012) Enantioselective methodologies for the synthesis of spiro compounds. Chem Soc Rev 41:1060–1074.  https://doi.org/10.1039/C1CS15156H CrossRefPubMedGoogle Scholar
  54. 54.
    D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM (2014) Metal complex catalysis in the synthesis of spirocarbocycles. Chem Rev 114:5775–5814.  https://doi.org/10.1021/cr400291c CrossRefPubMedGoogle Scholar
  55. 55.
    Huan F, Chen Q-Y, Guo Y (2016) Visible light-induced photoredox construction of trifluoromethylated quaternary carbon centers from trifluoromethylated tertiary bromides. J Org Chem 81:7051–7063.  https://doi.org/10.1021/acs.joc.6b00930 CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang M, Li W, Duan Y, Xu P, Zhang S, Zhu C (2016) Cascade photoredox/iodide catalysis: access to difluoro-γ-lactams via aminodifluoroalkylation of alkenes. Org Lett 18:3266–3269.  https://doi.org/10.1021/acs.orglett.6b01515 CrossRefPubMedGoogle Scholar
  57. 57.
    Chen L, Kim YM, Kucera DJ, Harrison KE, Bahmanyar S, Scott JM, Yazbeck D (2006) Fluorination-free synthesis of a 4,4-difluoro-3,3-dimethylproline derivative. J Org Chem 71:5468–5473.  https://doi.org/10.1021/jo060057p CrossRefPubMedGoogle Scholar
  58. 58.
    Vicente-García E, Catti F, Ramón R, Lavilla R (2010) Unsaturated lactams: new inputs for Povarov-type multicomponent reactions. Org Lett 12:860–863.  https://doi.org/10.1021/ol902913j CrossRefPubMedGoogle Scholar
  59. 59.
    Zard SZ (2008) Recent progress in the generation and use of nitrogen-centred radicals. Chem Soc Rev 37:1603–1618.  https://doi.org/10.1039/b613443m CrossRefGoogle Scholar
  60. 60.
    Choi GJ, Knowles RR (2015) Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J Am Chem Soc 137:9226–9229.  https://doi.org/10.1021/jacs.5b05377 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Singh GS, Desta ZY (2012) Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem Rev 112:6104–6155.  https://doi.org/10.1021/cr300135y CrossRefPubMedGoogle Scholar
  62. 62.
    Galliford CV, Scheidt KA (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed 46:8748–8758.  https://doi.org/10.1002/anie.200701342 CrossRefGoogle Scholar
  63. 63.
    Ball-Jones NR, Badillo JJ, Franz AK (2012) Strategies for the enantioselective synthesis of spirooxindoles. Org Biomol Chem 10:5165–5181.  https://doi.org/10.1039/c2ob25184a CrossRefPubMedGoogle Scholar
  64. 64.
    Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C (2013) Visible-light-induced trifluoromethylation of N-aryl acrylamides: a convenient and effective method to synthesize CF3-containing oxindoles bearing a quaternary carbon center. Chem Eur J 19:14039–14042.  https://doi.org/10.1002/chem.201302407 CrossRefPubMedGoogle Scholar
  65. 65.
    Tang X-J, Thomoson CS, Dolbier WR (2014) Photoredox-catalyzed tandem radical cyclization of N-arylacrylamides: general methods to construct fluorinated 3,3-disubstituted 2-oxindoles using fluoroalkylsulfonyl chlorides. Org Lett 16:4594–4597.  https://doi.org/10.1021/ol502163f CrossRefPubMedGoogle Scholar
  66. 66.
    Fu W, Zhu M, Zou G, Xu C, Wang Z (2014) Visible-light-mediated trifluoroethylation of N-arylacrylamides with trifluoroethyl iodide: synthesis of CF3-containing oxindoles. Synlett 25:2513–2517.  https://doi.org/10.1055/s-0034-1379071 CrossRefGoogle Scholar
  67. 67.
    Bergonzini G, Cassani C, Wallentin C-J (2015) Acyl radicals from aromatic carboxylic acids by means of visible-light photoredox catalysis. Angew Chem Int Ed 54:14066–14069.  https://doi.org/10.1002/anie.201506432 CrossRefGoogle Scholar
  68. 68.
    Bergonzini G, Cassani C, Lorimer-Olsson H, Hörberg J, Wallentin C-J (2016) Visible-light-mediated photocatalytic difunctionalization of olefins by radical acylarylation and tandem acylation/semipinacol rearrangement. Chem Eur J 22:3292–3295.  https://doi.org/10.1002/chem.201504985 CrossRefPubMedGoogle Scholar
  69. 69.
    Xia D, Miao T, Li P, Wang L (2015) Visible-light photoredox catalysis: direct synthesis of sulfonated oxindoles from N-arylacrylamides and arylsulfinic acids by means of a cascade C−S/C−C formation process. Chem Asian J 10:1919–1925.  https://doi.org/10.1002/asia.201500498 CrossRefPubMedGoogle Scholar
  70. 70.
    Yang W, Yang S, Li P, Wang L (2015) Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chem Commun 51:7520–7523.  https://doi.org/10.1039/C5CC00878F CrossRefGoogle Scholar
  71. 71.
    Liu F, Li P (2016) Visible-light-promoted (Phenylsulfonyl)methylation of electron-rich heteroarenes and N-arylacrylamides. J Org Chem 81:6972–6979.  https://doi.org/10.1021/acs.joc.6b00689 CrossRefPubMedGoogle Scholar
  72. 72.
    Xia D, Li Y, Miao T, Li P, Wang L (2017) Visible-light-induced dual C–C bond formation via selective C(sp3)–H bond cleavage: efficient access to alkylated oxindoles from activated alkenes and simple ethers under metal-free conditions. Green Chem 19:1732–1739.  https://doi.org/10.1039/C6GC03323G CrossRefGoogle Scholar
  73. 73.
    Zhang J-L, Liu Y, Song R-J, Jiang G-F, Li J-H (2014) 1,2-alkylarylation of activated alkenes with two C–H bonds by using visible-light catalysis. Synlett 25:1031–1035.  https://doi.org/10.1055/s-0033-1340956 CrossRefGoogle Scholar
  74. 74.
    Wei X-J, Wang L, Du S-F, Wu L-Z, Liu Q (2016) Visible-light photoredox intramolecular difluoroacetamidation: facile synthesis of 3,3-difluoro-2-oxindoles from bromodifluoroacetamides. Org Biomol Chem 14:2195–2199.  https://doi.org/10.1039/C5OB02121A CrossRefPubMedGoogle Scholar
  75. 75.
    Yu L-C, Gu J-W, Zhang S, Zhang X (2017) Visible-light-promoted tandem difluoroalkylation-amidation: access to difluorooxindoles from free anilines. J Org Chem 82:3943–3949.  https://doi.org/10.1021/acs.joc.7b00111 CrossRefPubMedGoogle Scholar
  76. 76.
    Chen J-Q, Wei Y-L, Xu G-Q, Liang Y-M, Xu P-F (2016) Intramolecular 1,5-H transfer reaction of aryl iodides through visible-light photoredox catalysis: a concise method for the synthesis of natural product scaffolds. Chem Commun 52:6455–6458.  https://doi.org/10.1039/C6CC02007K CrossRefGoogle Scholar
  77. 77.
    Xia X-D, Lu L-Q, Liu W-Q, Chen D-Z, Zheng Y-H, Wu L-Z, Xiao W-J (2016) Visible-light-driven photocatalytic activation of inert sulfur ylides for 3-acyl oxindole synthesis. Chem Eur J 22:8432–8437.  https://doi.org/10.1002/chem.201600871 CrossRefPubMedGoogle Scholar
  78. 78.
    Shen J, Cheng G, Cui X (2013) “One pot” regiospecific synthesis of polysubstituted pyrroles from benzylamines and ynones under metal free conditions. Chem Commun 49:10641–10643.  https://doi.org/10.1039/c3cc43844a CrossRefGoogle Scholar
  79. 79.
    Gao M, He C, Chen H, Bai R, Cheng B, Lei A (2013) Synthesis of pyrroles by click reaction: silver-catalyzed cycloaddition of terminal alkynes with isocyanides. Angew Chem Int Ed 52:6958–6961.  https://doi.org/10.1002/anie.201302604 CrossRefGoogle Scholar
  80. 80.
    Trofimov BA, Sobenina LN, Demenev AP, Mikhaleva AI (2004) C-vinylpyrroles as pyrrole building blocks. Chem Rev 104:2481–2506.  https://doi.org/10.1021/cr020100i CrossRefPubMedGoogle Scholar
  81. 81.
    Fan H, Peng J, Hamann MT, Hu J-F (2008) Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem Rev 108:264–287.  https://doi.org/10.1021/cr078199m CrossRefPubMedGoogle Scholar
  82. 82.
    Xuan J, Xia X-D, Zeng T-T, Feng Z-J, Chen J-R, Lu L-Q, Xiao W-J (2014) Visible-light-induced formal [3 + 2] cycloaddition for pyrrole synthesis under metal-free conditions. Angew Chem Int Ed 53:5653–5656.  https://doi.org/10.1002/anie.201400602 CrossRefGoogle Scholar
  83. 83.
    Müller F, Mattay J (1991) [3 + 2] cycloadditions with azirine radical cations: a new synthesis of N-substituted imidazoles. Angew Chem Int Ed Eng 30:1336–1337.  https://doi.org/10.1002/anie.199113361 CrossRefGoogle Scholar
  84. 84.
    Albrecht E, Averdung J, Bischof EW, Heidbreder A, Kirschberg T, Müller F, Mattay J (1994) Photoinduced electron transfer (PET) in organic synthesis. [3 + 2]-type cycloaddition, cyclization and C-C bond cleavage reactions. J Photochem Photobiol A Chem 82:219–232.  https://doi.org/10.1016/1010-6030(94)02015-9 CrossRefGoogle Scholar
  85. 85.
    Huang L, Zhao J (2013) Iodo-bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of C–C bonds via reductive and oxidative quenching catalytic mechanisms. RSC Adv 3:23377.  https://doi.org/10.1039/c3ra43299h CrossRefGoogle Scholar
  86. 86.
    Vila C, Lau J, Rueping M (2014) Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal. Beilstein J Org Chem 10:1233–1238.  https://doi.org/10.3762/bjoc.10.122 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chandrasekhar D, Borra S, Kapure JS, Shivaji GS, Srinivasulu G, Maurya RA (2015) Visible-light photoredox catalysis: direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Org Chem Front 2:1308–1312.  https://doi.org/10.1039/C5QO00207A CrossRefGoogle Scholar
  88. 88.
    Lei T, Liu W-Q, Li J, Huang M-Y, Yang B, Meng Q-Y, Chen B, Tung C-H, Wu L-Z (2016) Visible light initiated hantzsch synthesis of 2,5-diaryl-substituted pyrroles at ambient conditions. Org Lett 18:2479–2482.  https://doi.org/10.1021/acs.orglett.6b01059 CrossRefPubMedGoogle Scholar
  89. 89.
    Sagadevan A, Ragupathi A, Hwang KC (2015) Photoinduced copper-catalyzed regioselective synthesis of indoles: three-component coupling of arylamines, terminal alkynes, and quinones. Angew Chem Int Ed 54:13896–13901.  https://doi.org/10.1002/anie.201506579 CrossRefGoogle Scholar
  90. 90.
    Cai S, Yang K, Wang DZ (2014) Gold catalysis coupled with visible light stimulation: syntheses of functionalized indoles. Org Lett 16:2606–2609.  https://doi.org/10.1021/ol501071k CrossRefPubMedGoogle Scholar
  91. 91.
    Zhang P, Xiao T, Xiong S, Dong X, Zhou L (2014) Synthesis of 3-acylindoles by visible-light induced intramolecular oxidative cyclization of o-alkynylated N,N-dialkylamines. Org Lett 16:3264–3267.  https://doi.org/10.1021/ol501276j CrossRefPubMedGoogle Scholar
  92. 92.
    Dong X, Hu Y, Xiao T, Zhou L (2015) Synthesis of 2-trifluoromethyl indoles via visible-light induced intramolecular radical cyclization. RSC Adv 5:39625–39629.  https://doi.org/10.1039/C5RA05967D CrossRefGoogle Scholar
  93. 93.
    Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M (2013) Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C–C-bond cleavage reactions. J Am Chem Soc 135:1823–1829.  https://doi.org/10.1021/ja309580a CrossRefPubMedGoogle Scholar
  94. 94.
    Zoller J, Fabry DC, Ronge MA, Rueping M (2014) Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C–H activation. Angew Chem Int Ed 53:13264–13268.  https://doi.org/10.1002/anie.201405478 CrossRefGoogle Scholar
  95. 95.
    Wu C-J, Meng Q-Y, Lei T, Zhong J-J, Liu W-Q, Zhao L-M, Li Z-J, Chen B, Tung C-H, Wu L-Z (2016) An oxidant-free strategy for indole synthesis via intramolecular C–C bond construction under visible light irradiation: cross-coupling hydrogen evolution reaction. ACS Catal 6:4635–4639.  https://doi.org/10.1021/acscatal.6b00917 CrossRefGoogle Scholar
  96. 96.
    Rusch F, Unkel L-N, Alpers D, Hoffmann F, Brasholz M (2015) A visible light photocatalytic cross-dehydrogenative coupling/dehydrogenation/6π-cyclization/oxidation cascade: synthesis of 12-nitroindoloisoquinolines from 2-aryltetrahydroisoquinolines. Chem Eur J 21:8336–8340.  https://doi.org/10.1002/chem.201500612 CrossRefPubMedGoogle Scholar
  97. 97.
    Panferova LI, Smirnov VO, Levin VV, Kokorekin VA, Struchkova MI, Dilman AD (2017) Synthesis of 3-fluoroindoles via photoredox catalysis. J Org Chem 82:745–753.  https://doi.org/10.1021/acs.joc.6b02344 CrossRefPubMedGoogle Scholar
  98. 98.
    Pagire SK, Reiser O (2017) Tandem cyclisation of vinyl radicals: a sustainable approach to indolines utilizing visible-light photoredox catalysis. Green Chem 19:1721–1725.  https://doi.org/10.1039/C7GC00445A CrossRefGoogle Scholar
  99. 99.
    Yuan X, Wu X, Dong S, Wu G, Ye J (2016) Brønsted acid cocatalysis in photocatalytic intramolecular coupling of tertiary amines: efficient synthesis of 2-arylindols. Org Biomol Chem 14:7447–7450.  https://doi.org/10.1039/C6OB01239F CrossRefPubMedGoogle Scholar
  100. 100.
    Hernandez-Perez AC, Collins SK (2013) A visible-light-mediated synthesis of carbazoles. Angew Chem Int Ed 52:12696–12700.  https://doi.org/10.1002/anie.201306920 CrossRefGoogle Scholar
  101. 101.
    Choi S, Chatterjee T, Choi WJ, You Y, Cho EJ (2015) Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catal 5:4796–4802.  https://doi.org/10.1021/acscatal.5b00817 CrossRefGoogle Scholar
  102. 102.
    Hamilton DS, Nicewicz DA (2012) Direct catalytic anti-markovnikov hydroetherification of alkenols. J Am Chem Soc 134:18577–18580.  https://doi.org/10.1021/ja309635w CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Ohkubo K, Mizushima K, Iwata R, Souma K, Suzuki N, Fukuzumi S (2010) Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives. Chem Commun 46:601–603.  https://doi.org/10.1039/B920606J CrossRefGoogle Scholar
  104. 104.
    Grandjean J-MM, Nicewicz DA (2013) Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols. Angew Chem Int Ed 52:3967–3971.  https://doi.org/10.1002/anie.201210111 CrossRefGoogle Scholar
  105. 105.
    Neumann M, Zeitler K (2013) A cooperative hydrogen-bond-promoted organophotoredox catalysis strategy for highly diastereoselective, reductive enone cyclization. Chem Eur J 19:6950–6955.  https://doi.org/10.1002/chem.201204573 CrossRefPubMedGoogle Scholar
  106. 106.
    Roh Y, Jang H-Y, Lynch V, Bauld NL, Krische MJ (2002) Anion radical chain cycloaddition of tethered enones: intramolecular cyclobutanation and diels – alder cycloaddition. Org Lett 4:611–613.  https://doi.org/10.1021/ol0172065 CrossRefPubMedGoogle Scholar
  107. 107.
    Pandey G, Hajra S, Ghorai MK, Kumar KR (1997) Designing photosystems for harvesting photons into electrons by sequential electron-transfer processes: reversing the reactivity profiles of α,β-unsaturated ketones as carbon radical precursor by one electron reductive β-activation. J Am Chem Soc 119:8777–8787.  https://doi.org/10.1021/ja9641564 CrossRefGoogle Scholar
  108. 108.
    Gu X, Lu P, Fan W, Li P, Yao Y (2013) Visible light photoredox atom transfer Ueno – Stork reaction. Org Biomol Chem 11:7088–7091.  https://doi.org/10.1039/c3ob41600c CrossRefPubMedGoogle Scholar
  109. 109.
    Villar F, Kolly-Kovac T, Equey O, Renaud P (2003) Highly stereoselective radical cyclization of haloacetals controlled by the acetal center. Chem Eur J 9:1566–1577.  https://doi.org/10.1002/chem.200390180 CrossRefPubMedGoogle Scholar
  110. 110.
    Noto N, Koike T, Akita M (2016) Diastereoselective synthesis of CF3- and CF2H-substituted spiroethers from aryl-fused cycloalkenylalkanols by photoredox catalysis. J Org Chem 81:7064–7071.  https://doi.org/10.1021/acs.joc.6b00953 CrossRefPubMedGoogle Scholar
  111. 111.
    Tomita R, Koike T, Akita M (2015) Photoredox-catalyzed stereoselective conversion of alkynes into tetrasubstituted trifluoromethylated alkenes. Angew Chem Int Ed 54:12923–12927.  https://doi.org/10.1002/anie.201505550 CrossRefGoogle Scholar
  112. 112.
    Katagiri T, Uneyama K (2000) A chemistry of 2,3-epoxy-1,1,1-trifluoropropane. J Fluor Chem 105:285–293.  https://doi.org/10.1016/S0022-1139(99)00274-2 CrossRefGoogle Scholar
  113. 113.
    Katagiri T, Yamaji S, Handa M, Irie M, Uneyama K (2001) Diastereoselectivity controlled by electrostatic repulsion between the negative charge on a trifluoromethyl group and that on aromatic rings. Chem Commun 2054–2055.  https://doi.org/10.1039/B105602F
  114. 114.
    Lin R, Sun H, Yang C, Shen W, Xia W (2015) Visible light-induced difunctionalization of electron-enriched styrenes: synthesis of tetrahydrofurans and tetrahydropyrans. Chem Commun 51:399–401.  https://doi.org/10.1039/C4CC08221D CrossRefGoogle Scholar
  115. 115.
    Li W, Yang C, Gao G-L, Xia W (2016) Visible-light-induced cyclization of electron-enriched phenyl benzyl sulfides: synthesis of tetrahydrofurans and tetrahydropyrans. Synlett 27:1391–1396.  https://doi.org/10.1055/s-0035-1561393 CrossRefGoogle Scholar
  116. 116.
    Chu L, Lipshultz JM, MacMillan DWC (2015) Merging Photoredox and Nickel catalysis: the direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew Chem Int Ed 54:7929–7933.  https://doi.org/10.1002/anie.201501908 CrossRefGoogle Scholar
  117. 117.
    Shi L, Xia W (2012) Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem Soc Rev 41:7687–7697.  https://doi.org/10.1039/C2CS35203F CrossRefPubMedGoogle Scholar
  118. 118.
    Hopkinson MN, Sahoo B, Glorius F (2014) Dual photoredox and gold catalysis: intermolecular multicomponent oxyarylation of alkenes. Adv Synth Catal 356:2794–2800.  https://doi.org/10.1002/adsc.201400580 CrossRefGoogle Scholar
  119. 119.
    Aprile C, Boronat M, Ferrer B, Corma A, García H (2006) Radical trapping by gold chlorides forming organogold intermediates. J Am Chem Soc 128:8388–8389.  https://doi.org/10.1021/ja062000q CrossRefPubMedGoogle Scholar
  120. 120.
    Hari DP, Schroll P, König B (2012) Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. J Am Chem Soc 134:2958–2961.  https://doi.org/10.1021/ja212099r CrossRefPubMedGoogle Scholar
  121. 121.
    Hashmi ASK, Blanco MC, Fischer D, Bats JW (2006) Gold catalysis: evidence for the in-situ reduction of Gold(III) during the cyclization of allenyl carbinols. Eur J Org Chem 2006:1387–1389.  https://doi.org/10.1002/ejoc.200600009 CrossRefGoogle Scholar
  122. 122.
    Rackl D, Kais V, Lutsker E, Reiser O (2017) Synthesis of chiral tetrahydrofurans and pyrrolidines by visible-light-mediated deoxygenation. Eur J Org Chem 2017:2130–2138.  https://doi.org/10.1002/ejoc.201700014 CrossRefGoogle Scholar
  123. 123.
    Sopher DW, Utley JHP (1981) Alkene formation in the cathodic reduction of oxalates. J Chem Soc Chem Commun 134–136.  https://doi.org/10.1039/c39810000134
  124. 124.
    Islam N, Sopher DW, Utley JHP (1987) Electro-organic reactions. Tetrahedron 43:959–970.  https://doi.org/10.1016/S0040-4020(01)90033-X CrossRefGoogle Scholar
  125. 125.
    Rackl D, Kais V, Kreitmeier P, Reiser O (2014) Visible light photoredox-catalyzed deoxygenation of alcohols. Beilstein J Org Chem 10:2157–2165.  https://doi.org/10.3762/bjoc.10.223 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Blum TR, Zhu Y, Nordeen SA, Yoon TP (2014) Photocatalytic synthesis of dihydrobenzofurans by oxidative [3 + 2] cycloaddition of phenols. Angew Chem Int Ed 53:11056–11059.  https://doi.org/10.1002/anie.201406393 CrossRefGoogle Scholar
  127. 127.
    Shang Y-J, Qian Y-P, Liu X-D, Dai F, Shang X-L, Jia W-Q, Liu Q, Fang J-G, Zhou B (2009) Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution. J Org Chem 74:5025–5031.  https://doi.org/10.1021/jo9007095 CrossRefPubMedGoogle Scholar
  128. 128.
    Sako M, Hosokawa H, Ito T, Iinuma M (2004) Regioselective oxidative coupling of 4-hydroxystilbenes: synthesis of resveratrol and ε-viniferin (E)-dehydrodimers. J Org Chem 69:2598–2600.  https://doi.org/10.1021/jo035791c CrossRefPubMedGoogle Scholar
  129. 129.
    Li C, Lu J, Xu X, Hu R, Pan Y (2012) pH-switched HRP-catalyzed dimerization of resveratrol: a selective biomimetic synthesis. Green Chem 14:3281–3284.  https://doi.org/10.1039/c2gc36288k CrossRefGoogle Scholar
  130. 130.
    Ponzoni C, Beneventi E, Cramarossa MR, Raimondi S, Trevisi G, Pagnoni UM, Riva S, Forti L (2007) Laccase-catalyzed dimerization of hydroxystilbenes. Adv Synth Catal 349:1497–1506.  https://doi.org/10.1002/adsc.200700043 CrossRefGoogle Scholar
  131. 131.
    Song T, Zhou B, Peng G-W, Zhang Q-B, Wu L-Z, Liu Q, Wang Y (2014) Aerobic oxidative coupling of resveratrol and its analogues by visible light using mesoporous graphitic carbon nitride (mpg-C3N4) as a bioinspired catalyst. Chem Eur J 20:678–682.  https://doi.org/10.1002/chem.201303587 CrossRefPubMedGoogle Scholar
  132. 132.
    Guo W, Lu L-Q, Wang Y, Wang Y-N, Chen J-R, Xiao W-J (2015) Metal-free, room-temperature, radical alkoxycarbonylation of aryldiazonium salts through visible-light photoredox catalysis. Angew Chem Int Ed 54:2265–2269.  https://doi.org/10.1002/anie.201408837 CrossRefGoogle Scholar
  133. 133.
    Fang B, Xie X, Zhao C, Jing P, Li H, Wang Z, Gu J, She X (2013) Asymmetric total synthesis of fusarentin 6-methyl ether and its biomimetic transformation into fusarentin 6,7-dimethyl ether, 7-O-demethylmonocerin, and (+)-monocerin. J Org Chem 78:6338–6343.  https://doi.org/10.1021/jo400760q CrossRefPubMedGoogle Scholar
  134. 134.
    Powell LH, Docherty PH, Hulcoop DG, Kemmitt PD, Burton JW (2008) Oxidative radical cyclisations for the synthesis of γ-lactones. Chem Commun 22:2559.  https://doi.org/10.1039/b802473a CrossRefGoogle Scholar
  135. 135.
    Iwahama T, Sakaguchi S, Ishii Y (2000) Catalytic α-hydroxy carbon radical generation and addition. Synthesis of α-hydroxy-γ-lactones from alcohols, α,β-unsaturated esters and dioxygen. Chem Commun 7:613–614.  https://doi.org/10.1039/b000707m CrossRefGoogle Scholar
  136. 136.
    Tarantino KT, Liu P, Knowles RR (2013) Catalytic ketyl-olefin cyclizations enabled by proton-coupled electron transfer. J Am Chem Soc 135:10022–10025.  https://doi.org/10.1021/ja404342j CrossRefPubMedGoogle Scholar
  137. 137.
    Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46:5284–5304.  https://doi.org/10.1002/anie.200600917 CrossRefGoogle Scholar
  138. 138.
    Stubbe J, Nocera DG, Yee CS, Chang MCY (2003) Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103:2167–2202.  https://doi.org/10.1021/cr020421u CrossRefPubMedGoogle Scholar
  139. 139.
    Kaila VRI, Verkhovsky MI, Wikström M (2010) Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 110:7062–7081.  https://doi.org/10.1021/cr1002003 CrossRefPubMedGoogle Scholar
  140. 140.
    Edmonds DJ, Johnston D, Procter DJ (2004) Samarium(II)-iodide-mediated cyclizations in natural product synthesis. Chem Rev 104:3371–3404.  https://doi.org/10.1021/cr030017a CrossRefPubMedGoogle Scholar
  141. 141.
    Nicolaou KC, Ellery SP, Chen JS (2009) Samarium diiodide mediated reactions in total synthesis. Angew Chem Int Ed 48:7140–7165.  https://doi.org/10.1002/anie.200902151 CrossRefGoogle Scholar
  142. 142.
    Guo W, Cheng H-G, Chen L-Y, Xuan J, Feng Z-J, Chen J-R, Lu L-Q, Xiao W-J (2014) De Novo synthesis of γ,γ-disubstituted butyrolactones through a visible light photocatalytic arylation-lactonization sequence. Adv Synth Catal 356:2787–2793.  https://doi.org/10.1002/adsc.201400041 CrossRefGoogle Scholar
  143. 143.
    Wei X-J, Yang D-T, Wang L, Song T, Wu L-Z, Liu Q (2013) A novel intermolecular synthesis of γ-lactones via visible-light photoredox catalysis. Org Lett 15:6054–6057.  https://doi.org/10.1021/ol402954t CrossRefPubMedGoogle Scholar
  144. 144.
    Cavanaugh CL, Nicewicz DA (2015) Synthesis of α-benzyloxyamino-γ-butyrolactones via a polar radical crossover cycloaddition reaction. Org Lett 17:6082–6085.  https://doi.org/10.1021/acs.orglett.5b03113 CrossRefPubMedGoogle Scholar
  145. 145.
    Zeller MA, Riener M, Nicewicz DA (2014) Butyrolactone synthesis via polar radical crossover cycloaddition reactions: diastereoselective syntheses of methylenolactocin and protolichesterinic acid. Org Lett 16:4810–4813.  https://doi.org/10.1021/ol5022993 CrossRefPubMedGoogle Scholar
  146. 146.
    Patil DV, Yun H, Shin S (2015) Catalytic cross-coupling of vinyl golds with diazonium salts under photoredox and thermal conditions. Adv Synth Catal 357:2622–2628.  https://doi.org/10.1002/adsc.201500525 CrossRefGoogle Scholar
  147. 147.
    Zeitler K (2009) Photoredox catalysis with visible light. Angew Chem Int Ed 48:9785–9789.  https://doi.org/10.1002/anie.200904056 CrossRefGoogle Scholar
  148. 148.
    Jiang H, Cheng Y, Zhang Y, Yu S (2013) De Novo synthesis of polysubstituted naphthols and furans using photoredox neutral coupling of alkynes with 2-Bromo-1,3-dicarbonyl compounds. Org Lett 15:4884–4887.  https://doi.org/10.1021/ol402325z CrossRefPubMedGoogle Scholar
  149. 149.
    Zhou H, Deng X, Ma Z, Zhang A, Qin Q, Tan RX, Yu S (2016) Synthesis of furo[3,2-c]coumarin derivatives using visible-light-promoted radical alkyne insertion with bromocoumarins. Org Biomol Chem 14:6065–6070.  https://doi.org/10.1039/C6OB00768F CrossRefPubMedGoogle Scholar
  150. 150.
    Wang S, Jia W-L, Wang L, Liu Q, Wu L-Z (2016) Domino radical addition/oxidation sequence with photocatalysis: one-pot synthesis of polysubstituted furans from α-chloro-alkyl ketones and styrenes. Chem Eur J 22:13794–13798.  https://doi.org/10.1002/chem.201602053 CrossRefPubMedGoogle Scholar
  151. 151.
    Xia Z, Khaled O, Mouriès-Mansuy V, Ollivier C, Fensterbank L (2016) Dual photoredox/gold catalysis arylative cyclization of o-alkynylphenols with aryldiazonium salts: a flexible synthesis of benzofurans. J Org Chem 81:7182–7190.  https://doi.org/10.1021/acs.joc.6b01060 CrossRefPubMedGoogle Scholar
  152. 152.
    Lin X, Gan Z, Lu J, Su Z, Hu C, Zhang Y, Wu Y, Gao L, Song Z (2016) Visible light-promoted radical cyclization of silicon-tethered alkyl iodide and phenyl alkyne. An efficient approach to synthesize benzosilolines. Chem Commun 52:6189–6192.  https://doi.org/10.1039/C6CC00635C CrossRefGoogle Scholar
  153. 153.
    Zhang W-X, Zhang S, Xi Z (2011) Zirconocene and Si-tethered diynes: a happy match directed toward organometallic chemistry and organic synthesis. Acc Chem Res 44:541–551.  https://doi.org/10.1021/ar200078e CrossRefPubMedGoogle Scholar
  154. 154.
    Wang L, Duan Z (2013) Formation of silacycles via metal-mediated or catalyzed Si-C bond cleavage. Chin Sci Bull 58:307–315.  https://doi.org/10.1007/s11434-012-5351-4 CrossRefGoogle Scholar
  155. 155.
    Hari DP, Hering T, König B (2012) Visible light photocatalytic synthesis of benzothiophenes. Org Lett 14:5334–5337.  https://doi.org/10.1021/ol302517n CrossRefPubMedGoogle Scholar
  156. 156.
    Münster N, Parker NA, van Dijk L, Paton RS, Smith MD (2017) Visible light photocatalysis of 6π heterocyclization. Angew Chem Int Ed 56:9468–9472.  https://doi.org/10.1002/anie.201705333 CrossRefGoogle Scholar
  157. 157.
    Xie J, Xue Q, Jin H, Li H, Cheng Y, Zhu C (2013) A visible-light-promoted aerobic C–H/C–N cleavage cascade to isoxazolidine skeletons. Chem Sci 4:1281–1286.  https://doi.org/10.1039/c2sc22131d CrossRefGoogle Scholar
  158. 158.
    Ralston KJ, Ramstadius HC, Brewster RC, Niblock HS, Hulme AN (2015) Self-assembly of disorazole C1 through a one-pot alkyne metathesis homodimerization strategy. Angew Chem Int Ed 54:7086–7090.  https://doi.org/10.1002/anie.201501922 CrossRefGoogle Scholar
  159. 159.
    Hou H, Zhu S, Pan F, Rueping M (2014) Visible-light photoredox-catalyzed synthesis of nitrones: unexpected rate acceleration by water in the synthesis of isoxazolidines. Org Lett 16:2872–2875.  https://doi.org/10.1021/ol500893g CrossRefPubMedGoogle Scholar
  160. 160.
    Hu X-Q, Chen J-R, Wei Q, Liu F-L, Deng Q-H, Beauchemin AM, Xiao W-J (2014) Photocatalytic generation of N-centered hydrazonyl radicals: a strategy for hydroamination of β,γ-unsaturated hydrazones. Angew Chem Int Ed 53:12163–12167.  https://doi.org/10.1002/anie.201406491 CrossRefGoogle Scholar
  161. 161.
    Lu Z, Parrish JD, Yoon TP (2014) [3 + 2] photooxygenation of aryl cyclopropanes via visible light photocatalysis. Tetrahedron 70:4270–4278.  https://doi.org/10.1016/j.tet.2014.02.045 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Ischay MA, Lu Z, Yoon TP (2010) [2 + 2] cycloadditions by oxidative visible light photocatalysis. J Am Chem Soc 132:8572–8574.  https://doi.org/10.1021/ja103934y CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Lin W-C, Yang D-Y (2013) Visible light photoredox catalysis: synthesis of indazolo[2,3- a]quinolines from 2-(2-nitrophenyl)-1,2,3,4-tetrahydroquinolines. Org Lett 15:4862–4865.  https://doi.org/10.1021/ol402286d CrossRefPubMedGoogle Scholar
  164. 164.
    Shindoh N, Tokuyama H, Takemoto Y, Takasu K (2008) Auto-tandem catalysis in the synthesis of substituted quinolines from aldimines and electron-rich olefins: cascade povarov – hydrogen-transfer reaction. J Org Chem 73:7451–7456.  https://doi.org/10.1021/jo8009243 CrossRefPubMedGoogle Scholar
  165. 165.
    Fan X-W, Lei T, Zhou C, Meng Q-Y, Chen B, Tung C-H, Wu L-Z (2016) Radical addition of hydrazones by α-Bromo ketones to prepare 1,3,5-trisubstituted pyrazoles via visible light catalysis. J Org Chem 81:7127–7133.  https://doi.org/10.1021/acs.joc.6b00992 CrossRefPubMedGoogle Scholar
  166. 166.
    Cheng J, Li W, Duan Y, Cheng Y, Yu S, Zhu C (2017) Relay visible-light photoredox catalysis: synthesis of pyrazole derivatives via formal [4 + 1] annulation and aromatization. Org Lett 19:214–217.  https://doi.org/10.1021/acs.orglett.6b03497 CrossRefPubMedGoogle Scholar
  167. 167.
    Svejstrup TD, Zawodny W, Douglas JJ, Bidgeli D, Sheikh NS, Leonori D (2016) Visible-light-mediated generation of nitrile oxides for the photoredox synthesis of isoxazolines and isoxazoles. Chem Commun 52:12302–12305.  https://doi.org/10.1039/C6CC06029C CrossRefGoogle Scholar
  168. 168.
    Chen J-Q, Yu W-L, Wei Y-L, Li T-H, Xu P-F (2017) Photoredox-induced functionalization of alkenes for the synthesis of substituted imidazolines and oxazolidines. J Org Chem 82:243–249.  https://doi.org/10.1021/acs.joc.6b02377 CrossRefPubMedGoogle Scholar
  169. 169.
    Umemoto T, Ishihara S (1993) Power-variable electrophilic trifluoromethylating agents. S-, Se-, and Te-(trifluoromethyl)dibenzothio-, -seleno-, and -tellurophenium salt system. J Am Chem Soc 115:2156–2164.  https://doi.org/10.1021/ja00059a009 CrossRefGoogle Scholar
  170. 170.
    Noto N, Miyazawa K, Koike T, Akita M (2015) Anti-diastereoselective synthesis of CF3-containing spirooxazolines and spirooxazines via regiospecific trifluoromethylative spirocyclization by photoredox catalysis. Org Lett 17:3710–3713.  https://doi.org/10.1021/acs.orglett.5b01694 CrossRefPubMedGoogle Scholar
  171. 171.
    Morse PD, Nicewicz DA (2015) Divergent regioselectivity in photoredox-catalyzed hydrofunctionalization reactions of unsaturated amides and thioamides. Chem Sci 6:270–274.  https://doi.org/10.1039/C4SC02331E CrossRefPubMedGoogle Scholar
  172. 172.
    Yadav AK, Yadav LDS (2015) Visible-light-mediated difunctionalization of styrenes: an unprecedented approach to 5-aryl-2-imino-1,3-oxathiolanes. Green Chem 17:3515–3520.  https://doi.org/10.1039/C5GC00642B CrossRefGoogle Scholar
  173. 173.
    Aizawa Y, Kanai T, Hasegawa K, Yamaguchi T, Iizuka Y, Iwaoka T, Yoshioka T (1990) Studies on hindered phenols and analogs. 2. 1,3-Benzoxathioles having SRS-A inhibiting activity. J Med Chem 33:1491–1496.  https://doi.org/10.1021/jm00167a032 CrossRefPubMedGoogle Scholar
  174. 174.
    Bisogno FR, Cuetos A, Lavandera I, Gotor V (2009) Simple and quick preparation of α-thiocyanate ketones in hydroalcoholic media. Access to 5-aryl-2-imino-1,3-oxathiolanes. Green Chem 11:452–454.  https://doi.org/10.1039/b900137a CrossRefGoogle Scholar
  175. 175.
    Yadav AK, Yadav LDS (2016) Eosin Y catalyzed difunctionalization of styrenes using O2 and CS2: a direct access to 1,3-oxathiolane-2-thiones. Green Chem 18:4240–4244.  https://doi.org/10.1039/C6GC00924G CrossRefGoogle Scholar
  176. 176.
    Zeng T-T, Xuan J, Ding W, Wang K, Lu L-Q, Xiao W-J (2015) [3 + 2] cycloaddition/oxidative aromatization sequence via photoredox catalysis: one-pot synthesis of oxazoles from 2H-azirines and aldehydes. Org Lett 17:4070–4073.  https://doi.org/10.1021/acs.orglett.5b01994 CrossRefPubMedGoogle Scholar
  177. 177.
    Palacios F, de Retana AMO, de Marigorta EM, de los Santos JM (2001) 2H-azirines as synthetic tools in organic chemistry. Eur J Org Chem 2001:2401–2414.  https://doi.org/10.1002/1099-0690(200107)2001:13<2401::AID-EJOC2401>3.0.CO;2-U CrossRefGoogle Scholar
  178. 178.
    Chen L, Li H, Li P, Wang L (2016) Visible-light photoredox catalyzed three-component cyclization of 2H-azirines, alkynyl bromides, and molecular oxygen to oxazole skeleton. Org Lett 18:3646–3649.  https://doi.org/10.1021/acs.orglett.6b01696 CrossRefPubMedGoogle Scholar
  179. 179.
    Deng Q-H, Zou Y-Q, Lu L-Q, Tang Z-L, Chen J-R, Xiao W-J (2014) De Novo synthesis of imidazoles by visible-light-induced photocatalytic aerobic oxidation/[3 + 2] cycloaddition/aromatization cascade. Chem Asian J 9:2432–2435.  https://doi.org/10.1002/asia.201402443 CrossRefPubMedGoogle Scholar
  180. 180.
    Chatterjee T, Cho JY, Cho EJ (2016) Synthesis of substituted oxazoles by visible-light photocatalysis. J Org Chem 81:6995–7000.  https://doi.org/10.1021/acs.joc.6b00989 CrossRefPubMedGoogle Scholar
  181. 181.
    Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A (2014) Visible-light-mediated decarboxylation/oxidative amidation of α-Keto acids with amines under mild reaction conditions using O2. Angew Chem Int Ed 53:502–506.  https://doi.org/10.1002/anie.201308614 CrossRefGoogle Scholar
  182. 182.
    Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S (2011) Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew Chem Int Ed 50:657–660.  https://doi.org/10.1002/anie.201004365 CrossRefGoogle Scholar
  183. 183.
    Wade AR, Pawar HR, Biware MV, Chikate RC (2015) Synergism in semiconducting nanocomposites: visible light photocatalysis towards the formation of C–S and C–N bonds. Green Chem 17:3879–3888.  https://doi.org/10.1039/C5GC00748H CrossRefGoogle Scholar
  184. 184.
    Das S, Samanta S, Maji SK, Samanta PK, Dutta AK, Srivastava DN, Adhikary B, Biswas P (2013) Visible-light-driven synthesis of 2-substituted benzothiazoles using CdS nanosphere as heterogenous recyclable catalyst. Tetrahedron Lett 54:1090–1096.  https://doi.org/10.1016/j.tetlet.2012.12.044 CrossRefGoogle Scholar
  185. 185.
    Samanta S, Das S, Biswas P (2013) Photocatalysis by 3,6-disubstituted-s-tetrazine: visible-light driven metal-free green synthesis of 2-substituted benzimidazole and benzothiazole. J Org Chem 78:11184–11193.  https://doi.org/10.1021/jo401445j CrossRefPubMedGoogle Scholar
  186. 186.
    Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J-X, Wu L-Z, Lei A (2015) External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic C–H thiolation for constructing C–S bonds. J Am Chem Soc 137:9273–9280.  https://doi.org/10.1021/jacs.5b05665 CrossRefPubMedGoogle Scholar
  187. 187.
    Srivastava V, Yadav A, Yadav L (2013) Eosin Y catalyzed visible-light-driven aerobic oxidative cyclization of thioamides to 1,2,4-thiadiazoles. Synlett 24:465–470.  https://doi.org/10.1055/s-0032-1318158 CrossRefGoogle Scholar
  188. 188.
    Nandi D, Taher A, Ul Islam R, Siwal S, Choudhary M, Mallick K (2016) Carbon nitride supported copper nanoparticles: light-induced electronic effect of the support for triazole synthesis. R Soc Open Sci 3:160580.  https://doi.org/10.1098/rsos.160580 CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Pandey G, Kapur M, Islam Khan M, Gaikwad SM (2003) A new access to polyhydroxy piperidines of the azasugar class: synthesis and glycosidase inhibition studies. Org Biomol Chem 1:3321–3326.  https://doi.org/10.1039/b307455b CrossRefPubMedGoogle Scholar
  190. 190.
    Kyu Khim S, Mariano PS (1994) A novel method for synthesis of functionalized piperidines. Tetrahedron Lett 35:999–1002.  https://doi.org/10.1016/S0040-4039(00)79949-7 CrossRefGoogle Scholar
  191. 191.
    Pandey G, Kapur M (2002) Design and development of a common synthetic strategy for a variety of 1-N-iminosugars. Org Lett 4:3883–3886.  https://doi.org/10.1021/ol026711e CrossRefPubMedGoogle Scholar
  192. 192.
    Chen L, Chao CS, Pan Y, Dong S, Teo YC, Wang J, Tan C-H (2013) Amphiphilic methyleneamino synthon through organic dye catalyzed-decarboxylative aminoalkylation. Org Biomol Chem 11:5922–5925.  https://doi.org/10.1039/c3ob41091a CrossRefPubMedGoogle Scholar
  193. 193.
    Liang Z, Xu S, Tian W, Zhang R (2015) Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides. Beilstein J Org Chem 11:425–430.  https://doi.org/10.3762/bjoc.11.48 CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Guo J-T, Yang D-C, Guan Z, He Y-H (2017) Chlorophyll-catalyzed visible-light-mediated synthesis of tetrahydroquinolines from N,N-dimethylanilines and maleimides. J Org Chem 82:1888–1894.  https://doi.org/10.1021/acs.joc.6b03034 CrossRefPubMedGoogle Scholar
  195. 195.
    Nicholls TP, Constable GE, Robertson JC, Gardiner MG, Bissember AC (2016) Brønsted acid cocatalysis in copper(I)-photocatalyzed α-amino C–H bond functionalization. ACS Catal 6:451–457.  https://doi.org/10.1021/acscatal.5b02014 CrossRefGoogle Scholar
  196. 196.
    Bertrand S, Hoffmann N, Pete J-P, Bulach V (1999) Stereoselective radical-tandem reaction of aniline derivatives with (5R)-5-menthyloxy-2,5-dihydrofuran-2-one initiated by photochemical induced electron transfer. Chem Commun 22:2291–2292.  https://doi.org/10.1039/a906051k CrossRefGoogle Scholar
  197. 197.
    Bertrand S, Hoffmann N, Humbel S, Pete JP (2000) Diastereoselective tandem addition – cyclization reactions of unsaturated tertiary amines initiated by photochemical electron transfer (PET). J Org Chem 65:8690–8703.  https://doi.org/10.1021/jo001166l CrossRefPubMedGoogle Scholar
  198. 198.
    Marinković S, Brulé C, Hoffmann N, Prost E, Nuzillard J-M, Bulach V (2004) Origin of chiral induction in radical reactions with the diastereoisomers (5R)- and (5S)-5-l-menthyloxyfuran-2[5H]-one. J Org Chem 69:1646–1651.  https://doi.org/10.1021/jo030292x CrossRefPubMedGoogle Scholar
  199. 199.
    Li L, Xiao T, Chen H, Zhou L (2017) Visible-light-mediated two-fold unsymmetrical C(sp3)–H functionalization and double C–F substitution. Chem Eur J 23:2249–2254.  https://doi.org/10.1002/chem.201605919 CrossRefPubMedGoogle Scholar
  200. 200.
    Benimana SE, Cromwell NE, Meer HN, Marvin CC (2016) Visible light photoredox and Polonovski-Potier cyclizations for the synthesis of (±)-5-epi-cermizine C and (±)-epimyrtine. Tetrahedron Lett 57:5062–5064.  https://doi.org/10.1016/j.tetlet.2016.10.007 CrossRefGoogle Scholar
  201. 201.
    Orgren LR, Maverick EE, Marvin CC (2015) Synthesis of (±)-tetrabenazine by visible light photoredox catalysis. J Org Chem 80:12635–12640.  https://doi.org/10.1021/acs.joc.5b02199 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Tang S, Deng Y-L, Li J, Wang W-X, Ding G-L, Wang M-W, Xiao Z-P, Wang Y-C, Sheng R-L (2015) Synthesis of perfluorinated isoquinolinediones through visible-light-induced cyclization of alkenes. J Org Chem 80:12599–12605.  https://doi.org/10.1021/acs.joc.5b01803 CrossRefPubMedGoogle Scholar
  203. 203.
    Zheng L, Yang C, Xu Z, Gao F, Xia W (2015) Difunctionalization of alkenes via the visible-light-induced trifluoromethylarylation/1,4-aryl shift/desulfonylation cascade reactions. J Org Chem 80:5730–5736.  https://doi.org/10.1021/acs.joc.5b00677 CrossRefPubMedGoogle Scholar
  204. 204.
    Xia X-F, Zhu S-L, Wang D, Liang Y-M (2017) Sulfide and sulfonyl chloride as sulfonylating precursors for the synthesis of sulfone-containing isoquinolinonediones. Adv Synth Catal 359:859–865.  https://doi.org/10.1002/adsc.201600982 CrossRefGoogle Scholar
  205. 205.
    Gu Z, Zhang H, Xu P, Cheng Y, Zhu C (2015) Visible-light-induced radical tandem aryldifluoroacetylation of cinnamamides: access to difluoroacetylated quinolone-2-ones and 1-azaspiro[4.5]decanes. Adv Synth Catal 357:3057–3063.  https://doi.org/10.1002/adsc.201500514 CrossRefGoogle Scholar
  206. 206.
    Petersen WF, Taylor RJK, Donald JR (2017) Photoredox-catalyzed reductive carbamoyl radical generation: a redox-neutral intermolecular addition–cyclization approach to functionalized 3,4-dihydroquinolin-2-ones. Org Lett 19:874–877.  https://doi.org/10.1021/acs.orglett.7b00022 CrossRefPubMedGoogle Scholar
  207. 207.
    Wang H, Yu S (2015) Synthesis of isoquinolones using visible-light-promoted denitrogenative alkyne insertion of 1,2,3-benzotriazinones. Org Lett 17:4272–4275.  https://doi.org/10.1021/acs.orglett.5b01960 CrossRefPubMedGoogle Scholar
  208. 208.
    Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org Lett 12:368–371.  https://doi.org/10.1021/ol902703k CrossRefPubMedGoogle Scholar
  209. 209.
    Kaldas SJ, Cannillo A, McCallum T, Barriault L (2015) Indole functionalization via photoredox gold catalysis. Org Lett 17:2864–2866.  https://doi.org/10.1021/acs.orglett.5b01260 CrossRefPubMedGoogle Scholar
  210. 210.
    Alpers D, Brasholz M, Rehbein J (2017) Photoredox-induced radical 6-exo-trig cyclizations onto the indole nucleus: aromative versus dearomative pathways. Eur J Org Chem 2017:2186–2193.  https://doi.org/10.1002/ejoc.201700150 CrossRefGoogle Scholar
  211. 211.
    Mühmel S, Alpers D, Hoffmann F, Brasholz M (2015) Iridium(III) photocatalysis: a visible-light-induced dearomatizative tandem [4 + 2] cyclization to furnish benzindolizidines. Chem Eur J 21:12308–12312.  https://doi.org/10.1002/chem.201502572 CrossRefPubMedGoogle Scholar
  212. 212.
    An J, Zou Y-Q, Yang Q-Q, Wang Q, Xiao W-J (2013) Visible light-induced aerobic oxyamidation of indoles: a photocatalytic strategy for the preparation of tetrahydro-5H-indolo[2,3-b]quinolinols. Adv Synth Catal 355:1483–1489.  https://doi.org/10.1002/adsc.201300175 CrossRefGoogle Scholar
  213. 213.
    McCallum T, Slavko E, Morin M, Barriault L (2015) Light-mediated deoxygenation of alcohols with a dimeric gold catalyst: light-mediated deoxygenation of alcohols. Eur J Org Chem 2015:81–85.  https://doi.org/10.1002/ejoc.201403351 CrossRefGoogle Scholar
  214. 214.
    Mattes SL, Farid S (1980) Photosensitized electron-transfer reactions of phenylacetylene. J Chem Soc Chem Commun 126–128.  https://doi.org/10.1039/c39800000126
  215. 215.
    Wang K, Meng L-G, Wang L (2017) Visible-light-promoted [2 + 2 + 2] cyclization of alkynes with nitriles to pyridines using pyrylium salts as photoredox catalysts. Org Lett 19:1958–1961.  https://doi.org/10.1021/acs.orglett.7b00292 CrossRefPubMedGoogle Scholar
  216. 216.
    Tong K, Zheng T, Zhang Y, Yu S (2015) Synthesis of ortho -(Fluoro)alkylated pyridines via visible light-promoted radical isocyanide insertion. Adv Synth Catal 357:3681–3686.  https://doi.org/10.1002/adsc.201500674 CrossRefGoogle Scholar
  217. 217.
    Rohokale RS, Koenig B, Dhavale DD (2016) Synthesis of 2,4,6-trisubstituted pyridines by oxidative Eosin Y photoredox catalysis. J Org Chem 81:7121–7126.  https://doi.org/10.1021/acs.joc.6b00979 CrossRefPubMedGoogle Scholar
  218. 218.
    Hu B, Li Y, Dong W, Xie X, Wan J, Zhang Z (2016) Visible light-induced aerobic C–N bond activation: a photocatalytic strategy for the preparation of 2-arylpyridines and 2-arylquinolines. RSC Adv 6:48315–48318.  https://doi.org/10.1039/C6RA07962H CrossRefGoogle Scholar
  219. 219.
    Dong X, Xu Y, Liu JJ, Hu Y, Xiao T, Zhou L (2013) Visible-light-induced radical cyclization of trifluoroacetimidoyl chlorides with alkynes: catalytic synthesis of 2-trifluoromethyl quinolines. Chem Eur J 19:16928–16933.  https://doi.org/10.1002/chem.201303149 CrossRefPubMedGoogle Scholar
  220. 220.
    Wang Q, Huang J, Zhou L (2015) Synthesis of quinolines by visible-light induced radical reaction of vinyl azides and α-carbonyl benzyl bromides. Adv Synth Catal 357:2479–2484.  https://doi.org/10.1002/adsc.201500141 CrossRefGoogle Scholar
  221. 221.
    Cheng Y, Yuan X, Jiang H, Wang R, Ma J, Zhang Y, Yu S (2014) Regiospecific synthesis of 1-trifluoromethylisoquinolines enabled by photoredox somophilic vinyl isocyanide insertion. Adv Synth Catal 356:2859–2866.  https://doi.org/10.1002/adsc.201400504 CrossRefGoogle Scholar
  222. 222.
    Jiang H, Cheng Y, Wang R, Zhang Y, Yu S (2014) Synthesis of isoquinolines via visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts. Chem Commun 50:6164–6167.  https://doi.org/10.1039/c4cc01122h CrossRefGoogle Scholar
  223. 223.
    Zhang Z, Tang X, Dolbier WR (2015) Photoredox-catalyzed tandem insertion/cyclization reactions of difluoromethyl and 1,1-difluoroalkyl radicals with biphenyl isocyanides. Org Lett 17:4401–4403.  https://doi.org/10.1021/acs.orglett.5b02061 CrossRefPubMedGoogle Scholar
  224. 224.
    Wang S, Jia W-L, Wang L, Liu Q (2015) Preparation of 6-difluoromethylphosphonated phenanthridines by visible-light-driven radical cyclization of 2-isocyanobiphenyls: preparation of 6-difluoromethylphosphonated phenanthridines. Eur J Org Chem 2015:6817–6821.  https://doi.org/10.1002/ejoc.201500988 CrossRefGoogle Scholar
  225. 225.
    Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J (2016) Radical fluoroalkylation of isocyanides with fluorinated sulfones by visible-light photoredox catalysis. Angew Chem Int Ed 55:2743–2747.  https://doi.org/10.1002/anie.201510533 CrossRefGoogle Scholar
  226. 226.
    Gu L, Jin C, Liu J, Ding H, Fan B (2014) Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines. Chem Commun 50:4643–4645.  https://doi.org/10.1039/C4CC01487A CrossRefGoogle Scholar
  227. 227.
    Jiang H, Cheng Y, Wang R, Zheng M, Zhang Y, Yu S (2013) Synthesis of 6-alkylated phenanthridine derivatives using photoredox neutral somophilic isocyanide insertion. Angew Chem Int Ed 52:13289–13292.  https://doi.org/10.1002/anie.201308376 CrossRefGoogle Scholar
  228. 228.
    Xiao T, Li L, Lin G, Wang Q, Zhang P, Mao Z, Zhou L (2014) Synthesis of 6-substituted phenanthridines by metal-free, visible-light induced aerobic oxidative cyclization of 2-isocyanobiphenyls with hydrazines. Green Chem 16:2418–2421.  https://doi.org/10.1039/C3GC42517G CrossRefGoogle Scholar
  229. 229.
    An X-D, Yu S (2015) Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine. Org Lett 17:2692–2695.  https://doi.org/10.1021/acs.orglett.5b01096 CrossRefPubMedGoogle Scholar
  230. 230.
    Yasu Y, Arai Y, Tomita R, Koike T, Akita M (2014) Highly regio- and diastereoselective synthesis of CF3-substituted lactones via photoredox-catalyzed carbolactonization of alkenoic acids. Org Lett 16:780–783.  https://doi.org/10.1021/ol403500y CrossRefPubMedGoogle Scholar
  231. 231.
    Crespi S, Jäger S, König B, Fagnoni M (2017) A photocatalytic meerwein approach to the synthesis of isochromanones and isochromenones. Eur J Org Chem 2017:2147–2153.  https://doi.org/10.1002/ejoc.201601458 CrossRefGoogle Scholar
  232. 232.
    Feng S, Xie X, Zhang W, Liu L, Zhong Z, Xu D, She X (2016) Visible-light-promoted dual C–C bond formations of alkynoates via a domino radical addition/cyclization reaction: a synthesis of coumarins. Org Lett 18:3846–3849.  https://doi.org/10.1021/acs.orglett.6b01857 CrossRefPubMedGoogle Scholar
  233. 233.
    Fava E, Nakajima M, Nguyen ALP, Rueping M (2016) Photoredox-catalyzed Ketyl–Olefin coupling for the synthesis of substituted chromanols. J Org Chem 81:6959–6964.  https://doi.org/10.1021/acs.joc.6b01006 CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Yang Z, Li H, Zhang L, Zhang M-T, Cheng J-P, Luo S (2015) Organic photocatalytic cyclization of polyenes: a visible-light-mediated radical cascade approach. Chem Eur J 21:14723–14727.  https://doi.org/10.1002/chem.201503118 CrossRefPubMedGoogle Scholar
  235. 235.
    Xiang H, Zhao Q, Tang Z, Xiao J, Xia P, Wang C, Yang C, Chen X, Yang H (2017) Visible-light-driven, radical-triggered tandem cyclization of O-hydroxyaryl enaminones: facile access to 3-CF2/CF3-containing chromones. Org Lett 19:146–149.  https://doi.org/10.1021/acs.orglett.6b03441 CrossRefPubMedGoogle Scholar
  236. 236.
    Lin R, Sun H, Yang C, Yang Y, Zhao X, Xia W (2015) Visible-light-induced bromoetherification of alkenols for the synthesis of β-bromotetrahydrofurans and -tetrahydropyrans. Beilstein J Org Chem 11:31–36.  https://doi.org/10.3762/bjoc.11.5 CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Plutschack MB, Seeberger PH, Gilmore K (2017) Visible-light-mediated achmatowicz rearrangement. Org Lett 19:30–33.  https://doi.org/10.1021/acs.orglett.6b03237 CrossRefPubMedGoogle Scholar
  238. 238.
    Choi Y, Yu C, Kim JS, Cho EJ (2016) Visible-light-induced arylthiofluoroalkylations of unactivated heteroaromatics and alkenes. Org Lett 18:3246–3249.  https://doi.org/10.1021/acs.orglett.6b01495 CrossRefPubMedGoogle Scholar
  239. 239.
    Griesbeck AG, Sadlek O, Polborn K (2006) Photoinduced electron transfer (PET) cyclization and photooxygenation of 2,6-diaryl-1,6-heptadienes and 2,7-diaryl-1,7-octadienes. Liebigs Ann 1996:545–549.  https://doi.org/10.1002/jlac.199619960414 CrossRefGoogle Scholar
  240. 240.
    Miyashi T, Konno A, Takahashi Y (1988) Evidence for a chair cyclohexane-1,4-radical cation intermediate in the single electron-transfer-induced Cope rearrangement of 2,5-diaryl-1,5-hexadienes. J Am Chem Soc 110:3676–3677.  https://doi.org/10.1021/ja00219a062 CrossRefGoogle Scholar
  241. 241.
    Takahashi Y, Okitsu O, Ando M, Miyashi T (1994) Electron-transfer induced intramolecular [2 + 2] cyloaddition of 2,6-diarylhepta-1,6-dienes. Tetrahedron Lett 35:3953–3956.  https://doi.org/10.1016/S0040-4039(00)76711-6 CrossRefGoogle Scholar
  242. 242.
    Gesmundo NJ, Nicewicz DA (2014) Cyclization–endoperoxidation cascade reactions of dienes mediated by a pyrylium photoredox catalyst. Beilstein J Org Chem 10:1272–1281.  https://doi.org/10.3762/bjoc.10.128 CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Kotani H, Ohkubo K, Fukuzumi S (2004) Photocatalytic oxygenation of anthracenes and olefins with dioxygen via selective radical coupling using 9-mesityl-10-methylacridinium ion as an effective electron-transfer photocatalyst. J Am Chem Soc 126:15999–16006.  https://doi.org/10.1021/ja048353b CrossRefPubMedGoogle Scholar
  244. 244.
    Rawner T, Knorn M, Lutsker E, Hossain A, Reiser O (2016) Synthesis of trifluoromethylated sultones from alkenols using a copper photoredox catalyst. J Org Chem 81:7139–7147.  https://doi.org/10.1021/acs.joc.6b01001 CrossRefPubMedGoogle Scholar
  245. 245.
    Xuan J, Feng Z-J, Duan S-W, Xiao W-J (2012) Room temperature synthesis of isoquino[2,1-a][3,1]oxazine and isoquino[2,1-a]pyrimidine derivatives via visible light photoredox catalysis. RSC Adv 2:4065–4068.  https://doi.org/10.1039/c2ra20403g CrossRefGoogle Scholar
  246. 246.
    Zhao Y, Huang B, Yang C, Chen Q, Xia W (2016) Sunlight-driven forging of amide/ester bonds from three independent components: an approach to carbamates. Org Lett 18:5572–5575.  https://doi.org/10.1021/acs.orglett.6b02811 CrossRefPubMedGoogle Scholar
  247. 247.
    Liu K, Zou M, Lei A (2016) Aerobic oxidative carbonylation of enamides by merging palladium with photoredox catalysis. J Org Chem 81:7088–7092.  https://doi.org/10.1021/acs.joc.6b00965 CrossRefPubMedGoogle Scholar
  248. 248.
    Deng Q-H, Chen J-R, Wei Q, Zhao Q-Q, Lu L-Q, Xiao W-J (2015) Visible-light-induced photocatalytic oxytrifluoromethylation of N-allylamides for the synthesis of CF3-containing oxazolines and benzoxazines. Chem Commun 51:3537–3540.  https://doi.org/10.1039/C4CC10217G CrossRefGoogle Scholar
  249. 249.
    Frazier CP, Palmer LI, Samoshin AV, Read de Alaniz J (2015) Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Lett 56:3353–3357.  https://doi.org/10.1016/j.tetlet.2015.01.024 CrossRefGoogle Scholar
  250. 250.
    Li D, Ma H, Yu W (2015) Visible light-induced radical cyclization of ethyl 2-(N-arylcarbamoyl)-2-chloroiminoacetates: synthesis of quinoxalin-2(1H)-ones. Adv Synth Catal 357:3696–3702.  https://doi.org/10.1002/adsc.201500774 CrossRefGoogle Scholar
  251. 251.
    He Z, Bae M, Wu J, Jamison TF (2014) Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis. Angew Chem Int Ed 53:14451–14455.  https://doi.org/10.1002/anie.201408522 CrossRefGoogle Scholar
  252. 252.
    Sun X, Wang W, Li Y, Ma J, Yu S (2016) Halogen-bond-promoted double radical isocyanide insertion under visible-light irradiation: synthesis of 2-fluoroalkylated quinoxalines. Org Lett 18:4638–4641.  https://doi.org/10.1021/acs.orglett.6b02271 CrossRefPubMedGoogle Scholar
  253. 253.
    Nguyen TM, Nicewicz DA (2013) Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system. J Am Chem Soc 135:9588–9591.  https://doi.org/10.1021/ja4031616 CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Pandey G, Pal S, Laha R (2013) Direct benzylic C–H activation for C–O bond formation by photoredox catalysis. Angew Chem Int Ed 52:5146–5149.  https://doi.org/10.1002/anie.201210333 CrossRefGoogle Scholar
  255. 255.
    Manley DW, Walton JC (2014) A clean and selective radical homocoupling employing carboxylic acids with titania photoredox catalysis. Org Lett 16:5394–5397.  https://doi.org/10.1021/ol502625w CrossRefPubMedGoogle Scholar
  256. 256.
    Xiao T, Li L, Xie Y, Mao Z-W, Zhou L (2016) Synthesis of Gem-difluorinated fused quinolines via visible light-mediated cascade radical cyclization. Org Lett 18:1004–1007.  https://doi.org/10.1021/acs.orglett.6b00119 CrossRefPubMedGoogle Scholar
  257. 257.
    Gao F, Yang C, Ma N, Gao G-L, Li D, Xia W (2016) Visible-light-mediated 1,7-Enyne bicyclizations for synthesis of cyclopenta[c]quinolines and benzo[j]phenanthridines. Org Lett 18:600–603.  https://doi.org/10.1021/acs.orglett.5b03662 CrossRefPubMedGoogle Scholar
  258. 258.
    Li C-G, Xu G-Q, Xu P-F (2017) Synthesis of fused pyran derivatives via visible-light-induced cascade cyclization of 1,7-enynes with acyl chlorides. Org Lett 19:512–515.  https://doi.org/10.1021/acs.orglett.6b03684 CrossRefPubMedGoogle Scholar
  259. 259.
    Han Y-Y, Jiang H, Wang R, Yu S (2016) Synthesis of tetracyclic quinazolinones using a visible-light-promoted radical cascade approach. J Org Chem 81:7276–7281.  https://doi.org/10.1021/acs.joc.6b00869 CrossRefPubMedGoogle Scholar
  260. 260.
    Huang H, Li Y (2017) Sustainable difluoroalkylation cyclization cascades of 1,8-enynes. J Org Chem 82:4449–4457.  https://doi.org/10.1021/acs.joc.7b00350 CrossRefPubMedGoogle Scholar
  261. 261.
    Morris SA, Nguyen TH, Zheng N (2015) Diastereoselective oxidative C–N/C–O and C–N/C–N bond formation tandems initiated by visible light: synthesis of fused N-arylindolines. Adv Synth Catal 357:2311–2316.  https://doi.org/10.1002/adsc.201500317 CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Dong W, Hu B, Gao X, Li Y, Xie X, Zhang Z (2016) Visible-light-induced photocatalytic aerobic oxidation/povarov cyclization reaction: synthesis of substituted quinoline-fused lactones. J Org Chem 81:8770–8776.  https://doi.org/10.1021/acs.joc.6b01253 CrossRefPubMedGoogle Scholar
  263. 263.
    Yuan Y-C, Liu H-L, Hu X-B, Wei Y, Shi M (2016) Visible-light-induced trifluoromethylation of isonitrile-substituted methylenecyclopropanes: facile access to 6-(trifluoromethyl)-7,8-dihydrobenzo[k]phenanthridine derivatives. Chem Eur J 22:13059–13063.  https://doi.org/10.1002/chem.201602920 CrossRefPubMedGoogle Scholar
  264. 264.
    Borra S, Chandrasekhar D, Adhikary S, Rasala S, Gokulnath S, Maurya RA (2017) Visible-light driven photocascade catalysis: union of N,N-dimethylanilines and α-azidochalcones in flow microreactors. J Org Chem 82:2249–2256.  https://doi.org/10.1021/acs.joc.6b02932 CrossRefPubMedGoogle Scholar
  265. 265.
    Parrish JD, Ischay MA, Lu Z, Guo S, Peters NR, Yoon TP (2012) Endoperoxide synthesis by photocatalytic aerobic [2 + 2 + 2] cycloadditions. Org Lett 14:1640–1643.  https://doi.org/10.1021/ol300428q CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PhotoGreen Lab, Department of ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations