Advertisement

Acylbenzotriazoles: New Allies for Short Linear and Cyclic Peptide Constructs

  • Danniebelle N. HaaseEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 43)

Abstract

Peptides and proteins have tremendous potential as medicinal drugs, but their potential has largely been untapped due to several problems such as their fast degradation by enzymes and limited bioavailability. Major advances in the development of peptide synthesis methods, availability of a wide array of coupling reagents and other augments have lowered the barrier to entry for peptide drugs. However, greater access to peptides and proteins is needed in order to realize the possibilities for diagnosing, treating and monitoring critical diseases. Acylbenzotriazoles are an expedient gateway to cyclic and difficult peptides. With this overview, we now describe the use of acylbenzotriazoles as allies for the construction of peptides and peptide conjugates. The efficacy of N-(protected-α aminoacyl)benzotriazoles for the preparation of an extensive range of enantiopure peptides with good yields and purities on solid-phase or in solution, as well as challenges encountered and the way forward is addressed in the chapter.

Keywords

Acylbenzotriazole Amino acids Isopeptide Microwave Peptide synthesis Peptides Solid-phase 

References

  1. 1.
    Bruno BJ, Miller GD, Lim CS (2013) Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4(11):1443–1467CrossRefGoogle Scholar
  2. 2.
    Dunn BM (ed) (2015) Peptide chemistry and drug design. Wiley, New JerseyGoogle Scholar
  3. 3.
    Fischer G, Rossmann M, Hyvönen M (2015) Alternative modulation of protein–protein interactions by small molecules. Curr Opin Biotechnol 35:78–85CrossRefGoogle Scholar
  4. 4.
    Ramakers BEI, van Hest JCM, Löwik DWPM (2014) Molecular tools for the construction of peptide-based materials. Chem Soc Rev 43(8):2743–2756CrossRefGoogle Scholar
  5. 5.
    Palomo JM (2014) Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv 4(62):32658–32672CrossRefGoogle Scholar
  6. 6.
    Tang W, Becker ML (2014) “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 43(20):7013–7039CrossRefGoogle Scholar
  7. 7.
    Chen M, Heimer P, Imhof D (2015) Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 47(7):1283–1299CrossRefGoogle Scholar
  8. 8.
    Vanier GS (2013) Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM). Methods Mol Biol 1047:235–249CrossRefGoogle Scholar
  9. 9.
    Chow HY, Li X (2015) Development of thiol-independent peptide ligations for protein chemical synthesis. Tetrahedron Lett 56:3715–3720CrossRefGoogle Scholar
  10. 10.
    Malins LR, Payne RJ (2015) Synthetic amino acids for applications in peptide ligation–desulfurization chemistry. Aust J Chem 68(4):521–537CrossRefGoogle Scholar
  11. 11.
    Ibrahim TS, Tala SR, El-Feky SA, Abdel-Samii ZK, Katritzky AR (2011) Benzotriazole reagents for the syntheses of Fmoc-, Boc- and Alloc-protected amino acids. Synlett 14:2013–2016Google Scholar
  12. 12.
    Ibrahim TS, Tala SR, El-Feky SA, Abdel-Samii ZK, Katritzky AR (2012) Cysteinoyl- and cysteine-containing dipeptidoylbenzotriazoles with free sulfhydryl groups: easy access to N-terminal and internal cysteine peptides. Chem Biol Drug Des 80(2):194–202CrossRefGoogle Scholar
  13. 13.
    Butula I, Lj Č, Proštenik MV, Vela V, Zorko F (1977) Reaktion mit 1-chlorocarbonylbenzotriazol; II1. Synthese von Carbamidsäure-estern und verwandten. Synthesis 1977(10):704–706CrossRefGoogle Scholar
  14. 14.
    Paio A, Zaramella A, Ferritto R, Conti N, Marchioro C, Seneci P (1999) Solid-supported benzotriazoles: synthetic auxiliaries and traceless linkers for the combinatorial synthesis of amine libraries. J Comb Chem 1(4):317–325CrossRefGoogle Scholar
  15. 15.
    Dener JM, Rice KD, Newcomb WS, Wang VR, Young WB, Gangloff AR, Kuo EY-L, Cregar L, Putnam D, Wong M (2001) Dibasic inhibitors of human mast cell tryptase. Part 3: identification of a series of potent and selective inhibitors containing the benzamidine functionality. Bioorg Med Chem Lett 11:1629–1633CrossRefGoogle Scholar
  16. 16.
    Kumareswaran R, Hassner A (2001) Asymmetric syntheses of N-acetyl-(R)-coniine and N-Boc-(2R,6R)-solenopsin A via ring-closing metathesis. Tetrahedron Asymmetry 12:2269–2276CrossRefGoogle Scholar
  17. 17.
    Wang J, Liang Y-L, Qu J (2006) Boiling water-catalyzed neutral and selective N-Boc deprotection. Chem Commun 5144–5146Google Scholar
  18. 18.
    Wünsch E, Graf W, Keller O, Keller W, Wersin G (1986) On the synthesis of benzyloxycarbonyl amino acids. Synthesis 1986(11):958–960CrossRefGoogle Scholar
  19. 19.
    Akamatsu M, Fujimoto Y, Kataoka M, Suda Y, Kusumoto S, Fukase K (2006) Synthesis of lipid A monosaccharide analogues containing acidic amino acid: exploring the structural basis for the endotoxic and antagonistic activities. Bioorg Med Chem 14:6759–6777CrossRefGoogle Scholar
  20. 20.
    Smith MB, March J (2007) 20 Advanced organic chemistry: reactions mechanism and structure, 6th edn. Wiley, HobokenGoogle Scholar
  21. 21.
    Paquet A (1982) Introduction of 9-fluorenylmethyloxycarbonyl, trichloroethoxycarbonyl, and benzyloxycarbonyl amine protecting groups into O-unprotected hydroxyamino acids using succinimidyl carbonates. Can J Chem 60(8):976–980CrossRefGoogle Scholar
  22. 22.
    Ten Kortenaar PBW, Van Dijk BG, Peeters JM, Raaben BJ, Adams PJHM, Tesser GI (1986) Rapid and efficient method for the preparation of Fmoc-amino acids starting from 9-fluorenylmethanol. Int J Pept Protein Res 27(4):398–400CrossRefGoogle Scholar
  23. 23.
    Lapatsanis L, Milias G, Froussios K, Kolovos M (1983) Synthesis of N-2,2,2-(Trichloroethoxycarbonyl)-L-amino acids and N-(9-fluorenylmethoxycarbonyl)-L-amino acids involving succinimidoxy anion as a leaving group in amino acid protection. Synthesis 1983(8):671–673CrossRefGoogle Scholar
  24. 24.
    Chinchilla R, Dodsworth DJ, Najera C, Soriano JM (2001) A new polymer-supported reagent for the Fmoc-protection of amino acids. Tetrahedron Lett 42(43):7579–7581CrossRefGoogle Scholar
  25. 25.
    Bogdan FM, Chow CS (1998) The synthesis of allyl- and allyloxycarbonyl-protected RNA phosphoramidites. Useful reagents for solid-phase synthesis of RNAs with base-labile modifications. Tetrahedron Lett 39(14):1897–1900CrossRefGoogle Scholar
  26. 26.
    Hayakawa Y, Wakabayashi S, Kato H, Noyori R (1990) The allylic protection method in solid-phase oligonucleotide synthesis. An efficient preparation of solid-anchored DNA oligomers. J Am Chem Soc 112(5):1691–1696CrossRefGoogle Scholar
  27. 27.
    Henklein P, Heyne H-U, Halatsch W-R, Niedrich H (1987) 5-Norbornene-2,3-dicarboximido carbonochloridate. A new stable reagent for the introduction of amino-protecting groups. Synthesis 1987(2):166–167CrossRefGoogle Scholar
  28. 28.
    Hlebowicz E, Andersen AJ, Andersson L, Moss BA (2005) Identification of Fmoc-β-Ala-OH and Fmoc-β-Ala-amino acid-OH as new impurities in Fmoc-protected amino acid derivatives. Synthesis 65(1):90–97Google Scholar
  29. 29.
    Zalipsky S (1998) Alkyl succinimidyl carbonates undergo Lossen rearrangement in basic buffers. Chem Commun 1:69–70CrossRefGoogle Scholar
  30. 30.
    Isidro-Llobet A, Just-Baringo X, Ewenson A, Alvarez M, Albericio F (2007) Fmoc-2-mercaptobenzothiazole, for the introduction of the Fmoc moiety free of side-reactions. Biopolymers 88(5):733–737CrossRefGoogle Scholar
  31. 31.
    Carpino LA, Han GY (1972) 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37(22):3404–3409CrossRefGoogle Scholar
  32. 32.
    Grzonka Z, Lammek B (1974) A simple method of preparation of t-butoxycarbonyl amino acids. Synthesis 1974(9):661–662CrossRefGoogle Scholar
  33. 33.
    Tessier M, Albericio F, Pedroso E, Grandas A, Eritja R, Giralt E, Granier C, Van Rietschoten J (1983) Amino-acids condensations in the preparation of Nα-9-fluorenylrnethyloxycarbonylamino-acids with 9-fluorenylmethylchloroformate. Int J Pept Protein Res 22(1):125–128CrossRefGoogle Scholar
  34. 34.
    Cruz LJ, Beteta NG, Ewenson A, Albericio F (2004) “One-Pot” preparation of N-carbamate protected amino acids via the azide. Org Process Res Dev 8(6):920–924CrossRefGoogle Scholar
  35. 35.
    Katritzky AR, Fali CN, Li J, Ager DJ, Prakash I (1997) Synthesis of 1-(T-butoxycarbonyl)benzotriazole and 1-(p-methoxybenzyloxycarbonyl)benzotriazole and their use in the protection of amino acids. Synth Commun 27(9):1623–1630CrossRefGoogle Scholar
  36. 36.
    Katritzky AR, Zhang G-F, Fan W-Q, Wu J, Pernak J (1993) Studies on the thermal decarboxylation of 1-alkoxycarbonylbenzotriazoles. J Phys Org Chem 6(10):567–573CrossRefGoogle Scholar
  37. 37.
    Yang C-W (2012) A comparative study of short linear motif compositions of the influenza A virus ribonucleoproteins. PLoS One 7(6), e38637CrossRefGoogle Scholar
  38. 38.
    Searle MS, Williams DH, Packman LC (1995) A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native β-hairpin. Nat Struct Biol 2:999–1006CrossRefGoogle Scholar
  39. 39.
    El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602CrossRefGoogle Scholar
  40. 40.
    Katritzky AR, Angrish P, Todadze E (2009) Chiral acylation with N-(protected α-aminoacyl)benzotriazoles for advantageous syntheses of peptides and peptide conjugates. Synlett 2009(15):2392–2411CrossRefGoogle Scholar
  41. 41.
    Chandrudu S, Simerska P, Toth I (2013) Chemical methods for peptide and protein production. Molecules 18(4):4373–4388CrossRefGoogle Scholar
  42. 42.
    Katritzky AR, Suzuki K, Singh SK (2004) Highly diastereoselective peptide chain extensions of unprotected amino acids with N-(Z-α-aminoacyl)benzotriazoles. Synthesis 2004(16):2645–2652CrossRefGoogle Scholar
  43. 43.
    Katritzky AR, Angrish P, Suzuki K (2006) The efficient preparation of di- and tripeptides by coupling N-(Cbz- or Fmoc-α-aminoacyl)benzotriazoles with unprotected amino acids. Synthesis 2006(3):411–424CrossRefGoogle Scholar
  44. 44.
    Katritzky AR, Meher G, Angrish P (2006) Peptides by extension at the N- or C-termini of lysine. Chem Biol Drug Des 68(6):326–333CrossRefGoogle Scholar
  45. 45.
    Katritzky AR, Todadze E, Cusido J, Angrish P, Shestopalov AA (2006) Selective peptide chain extension at the N-terminus of aspartic and glutamic acids utilizing 1-(N-protected-α-aminoacyl)benzotriazoles. Chem Biol Drug Des 68(1):37–41CrossRefGoogle Scholar
  46. 46.
    Katritzky AR, Todadze E, Shestopalov AA, Cusido J, Angrish P (2006) Selective peptide chain extension at the C-terminus of aspartic and glutamic acids utilizing N-protected (α-aminoacyl)benzotriazoles. Chem Biol Drug Des 68(1):42–47CrossRefGoogle Scholar
  47. 47.
    Katritzky AR, Meher G, Narindoshvili T (2008) Efficient synthesis of peptides by extension at the N- and C-termini of arginine. J Org Chem 73(18):7153–7158CrossRefGoogle Scholar
  48. 48.
    Katritzky AR, Todadze E, Angrish P, Draghici B (2007) Efficient peptide coupling involving sterically hindered amino acids. J Org Chem 72(15):5794–5801CrossRefGoogle Scholar
  49. 49.
    Katritzky AR, Khashab NM, Yoshioka M, Haase DN, Wilson KR, Johnson JV, Chung A, Haskell-Luevano C (2007) Microwave-assisted solid-phase peptide synthesis utilizing N-Fmoc-protected (α-aminoacyl)benzotriazoles. Chem Biol Drug Des 70(5):465–468CrossRefGoogle Scholar
  50. 50.
    Katritzky AR, Yoshioka M, Narindoshvili T, Chung A, Khashab NM (2008) N-Fmoc-protected(α-dipeptidoyl)benzotriazoles for efficient solid-phase peptide synthesis by segment condensation. Chem Biol Drug Des 2(3):182–188CrossRefGoogle Scholar
  51. 51.
    Isao A, Rolf A, Stefan K, Julius R Jr (1995) Synthesis and coupling reactions of α, α-dialkylated amino acids with nucleobase side chains. Proc Natl Acad Sci 92(26):12013–12016CrossRefGoogle Scholar
  52. 52.
    Chatterjee J, Laufer B, Kessler H (2012) Synthesis of N-methylated cyclic peptides. Nat Protoc 7(3):432–444CrossRefGoogle Scholar
  53. 53.
    Katritzky AR, Wang M, Yang H, Zhang S, Akhmedov NG (2002) 1-(α-Boc-aminoacyl)benzotriazoles: stable chiral α-aminoacylation reagents. Arkivoc (viii):134–142Google Scholar
  54. 54.
    Katritzky AR, Vincek AS, Suzuki K (2005) Microwave-assisted synthesis of peptidyl phosphorus ylides. Arkivoc (v):116–126Google Scholar
  55. 55.
    Katritzky AR, Angrish P (2006) Efficient microwave assisted access to chiral O-(α-protected-aminoacyl)steroids. Steroids 71(8):660–669CrossRefGoogle Scholar
  56. 56.
    Chan WC, White PD (2000) Basic principles. In White PD (ed) Fmoc solid phase peptide synthesis, a practical approach. University Press, New YorkGoogle Scholar
  57. 57.
    Katritzky AR, Haase DN, Johnson JV, Chung A (2009) Benzotriazole-assisted solid-phase assembly of Leu-enkephalin, amyloid β segment 34–42, and other “Difficult” peptide sequences. J Org Chem 74(5):2028–2032CrossRefGoogle Scholar
  58. 58.
    Monroc S, Feliu L, Planas M, Bardaji E (2006) Microwave-assisted cyclization of peptides on SynPhase™ lanterns. Synlett 2006(9):1311–1314CrossRefGoogle Scholar
  59. 59.
    Erdélyia M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 2002(11):1592–1596Google Scholar
  60. 60.
    Gorske BC, Jewell SA, Guerard EJ, Blackwell HE (2005) Expedient synthesis and design strategies for new peptoid construction. Org Lett 7(8):1521–1524CrossRefGoogle Scholar
  61. 61.
    Yu HM, Chen ST, Wang KT (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Org Chem 57(18):4781–4784CrossRefGoogle Scholar
  62. 62.
    Matsushita T, Hinou H, Fumoto M, Kurogochi M, Fujitani N, Shimizu H, Nishimura S-I (2006) J Org Chem 71(8):3051–3063CrossRefGoogle Scholar
  63. 63.
    Mergler M, Dick F, Sax B, Stähelin C, Vorherr TJ (2003) The aspartimide problem in Fmoc-based 56 Part II. J Peptide Sci 9(8):518–526CrossRefGoogle Scholar
  64. 64.
    Humphrey JM, Chamberlin AR (1997) Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev 97(6):2243–2266CrossRefGoogle Scholar
  65. 65.
    Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60(11):2447–2467CrossRefGoogle Scholar
  66. 66.
    Pourvali A, Cochrane JR, Hutton CA (2014) A new method for peptide synthesis in the N→C direction: amide assembly through silver-promoted reaction of thioamides. Chem Commun 50(100):15963–15966CrossRefGoogle Scholar
  67. 67.
    Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2:587–593CrossRefGoogle Scholar
  68. 68.
    Avan I, Hall CD, Katritzky AR (2014) Peptidomimetics via modifications of amino acids and peptide bonds. Chem Soc Rev 43(10):3575–3594CrossRefGoogle Scholar
  69. 69.
    Beagle LK, Hansen FK, Monbaliu J-CM, DesRosiers MP, Phillips AM, Stevens CV, Katritzky AR (2012) Efficient synthesis of 2,5-diketopiperazines by staudinger-mediated cyclization. Synlett 23(16):2337–2340CrossRefGoogle Scholar
  70. 70.
    Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112(7):3641–3716CrossRefGoogle Scholar
  71. 71.
    Monbaliu J-CM, Hansen MK, Beagle LK, Panzner MK, Steel PJ, Todadze E, Stevens CV, Katritzky AR (2012) A new benzotriazole-mediated stereoflexible gateway to hetero-2,5-diketopiperazines. Chem Eur J 18(9):2632–2638CrossRefGoogle Scholar
  72. 72.
    Balboni G, Guerrini R, Salvadori S, Tomatis R, Bryant SD, Bianchi C, Attila M, Lazarus LH (1997) Opioid diketopiperazines: synthesis and activity of a prototypic class of opioid antagonists. Biol Chem 378(1):19–29CrossRefGoogle Scholar
  73. 73.
    Bryant SD, Balboni G, Guerrini R, Salvadori S, Tomatis R, Bianchi C, Attila M, Lazarus LH (1997) Opioid diketopiperazines: refinement of the δ opioid antagonist pharmacophore. Biol Chem 378(2):107–114CrossRefGoogle Scholar
  74. 74.
    Crescenzi O, Fraternali F, Picone D, Tancredi T, Balboni G, Guerrini R, Lazarus LH, Salvadori S, Temussi PA (1997) Design and solution structure of a partially rigid opioid antagonist lacking the basic center — models of antagonism. Eur J Biochem 247(1):66–73CrossRefGoogle Scholar
  75. 75.
    Hayashi Y, Orikasa S, Tanaka K, Kanoh K, Kiso Y (2000) Total synthesis of anti-microtubule diketopiperazine derivatives: phenylahistin and aurantiamine. J Org Chem 65(24):8402–8405CrossRefGoogle Scholar
  76. 76.
    Edmondson S, Danishefsky SJ, Sepp-Lorenzino L, Rosen N (1999) Total synthesis of spirotryprostatin A, leading to the discovery of some biologically promising analogues. J Am Chem Soc 121(10):2147–2155CrossRefGoogle Scholar
  77. 77.
    Kanoh K, Kohno S, Katada J, Takahashi J, Uno I, Hayashi Y (1999) Synthesis and biological activities of phenylahistin derivatives. Bioorg Med Chem 7(7):1451–1457CrossRefGoogle Scholar
  78. 78.
    Graz CJM, Grant GD, Brauns SC, Hunt A, Jamie H, Milne PJ (2000) Cyclic dipeptides in the induction of maturation for cancer therapy. J Pharm Pharmacol 52(1):75–82CrossRefGoogle Scholar
  79. 79.
    Boger DL, Fink BE, Hedrick MP (2000) A new class of highly cytotoxic diketopiperazines. Bioorg Med Chem Lett 10(10):1019–1020CrossRefGoogle Scholar
  80. 80.
    Prakash KRC, Tang Y, Kozikowski AP, Flippen-Anderson JL, Knoblach SM, Faden AI (2002) Bioorg Med Chem 10(9):3043–3048CrossRefGoogle Scholar
  81. 81.
    Sugie Y, Hirai H, Inagaki T, Ishiguro M, Kim YJ, Kojima Y, Sakakibara T, Sakemi S, Sugiura A, Suzuki Y, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima N (2001) A new antibiotic CJ-17,665 from Aspergillus ochraceus. J Antibiotics 54(11):911–916CrossRefGoogle Scholar
  82. 82.
    Stevens BW, Joska TM, Anderson AC (2006) Progress toward re-engineering non-ribosomal peptide synthetase proteins: a potential new source of pharmacological agents. Drug Dev Res 66(1):9–18CrossRefGoogle Scholar
  83. 83.
    Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, van Aalten DMF (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47(23):5713–5720CrossRefGoogle Scholar
  84. 84.
    Nilanonta C, Isaka M, Kittakoop P, Saenboonrueng J, Rukachaisirikul V, Kongsaeree P, Thebtaranonth Y (2003) New Diketopiperazines from the Entomopathogenic Fungus Verticillium hemipterigenum BCC 1449. J Antibiotics 56(7):647–651CrossRefGoogle Scholar
  85. 85.
    Sinha S, Srivastava R, De Clercq E, Singh RK (2004) Synthesis and antiviral properties of arabino and ribonucleosides of 1,3-dideazaadenine, 4-nitro-1,3-dideazapurine and diketopiperazine. Nucleosides Nucleotides Nucleic Acids 23(12):1815–1824CrossRefGoogle Scholar
  86. 86.
    Hu F, Chou CJ, Gottesfeld JM (2009) Design and synthesis of novel hybrid benzamide–peptide histone deacetylase inhibitors. Bioorg Med Chem Lett 19(14):3928–3931CrossRefGoogle Scholar
  87. 87.
    Fairweather KA, Sayyadi N, Luck IJ, Clegg JK, Jolliffe KA (2010) Synthesis of all-L cyclic tetrapeptides using pseudoprolines as removable turn inducers. Org Lett 12(14):3136–3139CrossRefGoogle Scholar
  88. 88.
    Singh EK, Ravula S, Pan C-M, Pan P-S, Vasko RC, Lapera SA, Weerasinghe SVW, Pflum MKH, McAlpine SR (2008) Synthesis and biological evaluation of histone deacetylase inhibitors that are based on FR235222: a cyclic tetrapeptide scaffold. Bioorg Med Chem Lett 18(8):2549–2554CrossRefGoogle Scholar
  89. 89.
    Singh EK, Nazarova LA, Lapera SA, Alexander LD, McAlpine SR (2010) Histone deacetylase inhibitors: synthesis of cyclic tetrapeptides and their triazole analogs. Tetrahedron Lett 51(33):4357–4360CrossRefGoogle Scholar
  90. 90.
    Nolasco L, Gonzalez MP, Caggiano L, Jackson RFW (2009) Application of negishi cross-coupling to the synthesis of the cyclic tripeptides OF4949-III and K-13. J Org Chem 74(21):8280–8289CrossRefGoogle Scholar
  91. 91.
    Pérez-Picaso L, Escalante J, Olivo HF, Yolanda Rios M (2009) Efficient microwave assisted syntheses of 2,5-diketopiperazines in aqueous media. Molecules 14(8):2836–2849CrossRefGoogle Scholar
  92. 92.
    Cini E, Botta CB, Rodriguez M, Taddei M (2009) Microwaves enhance cyclisation of tetrapeptides. Tetrahedron Lett 50(51):7159–7161CrossRefGoogle Scholar
  93. 93.
    Kopple KD, Ghazarian HG (1968) Convenient synthesis of 2,5-piperazinediones. J Org Chem 33(2):862–864CrossRefGoogle Scholar
  94. 94.
    Ueda T, Saito M, Kato T, Izumiya N (1983) Facile synthesis of cyclic dipeptides and detection of racemization. Bull Chem Soc Jpn 56(2):568–572CrossRefGoogle Scholar
  95. 95.
    Lin Q, Blackwell HE (2006) Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem Commun 27:2884–2886CrossRefGoogle Scholar
  96. 96.
    Tullberg M, Grøtli M, Luthman K (2006) Efficient synthesis of 2,5-diketopiperazines using microwave assisted heating. Tetrahedron 62(31):7484–7491CrossRefGoogle Scholar
  97. 97.
    Houston DR, Eggleston I, Synstad B, Eijsink VGH, van Aalten DMF (2002) The cyclic dipeptide CI-4 [cyclo-(l-Arg-d-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochem J 368(1):23–27CrossRefGoogle Scholar
  98. 98.
    Montero A, Beierle JM, Olsen CA, Ghadiri MR (2009) Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic α/β-tetrapeptide architectures. J Am Chem Soc 131(8):3033–3041CrossRefGoogle Scholar
  99. 99.
    Saxon E, Armstrong JI, Bertozzi CR (2000) A “Traceless” staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2(14):2141–2143CrossRefGoogle Scholar
  100. 100.
    Jain HD, Zhang C, Zhou S, Zhou H, Ma J, Liu X, Liao X, Deveau AM, Dieckhaus CM, Johnson MA, Smith KS, Macdonald TL, Kakeya H, Osada H, Cook JM (2008) Synthesis and structure–activity relationship studies on tryprostatin A, an inhibitor of breast cancer resistance protein. Bioorg Med Chem 16(8):4626–4651CrossRefGoogle Scholar
  101. 101.
    Pérez-Balado C, de Lera AR (2010) Concise total synthesis and structural revision of (+)-pestalazine B. Org Biomol Chem 8(22):5179–5186CrossRefGoogle Scholar
  102. 102.
    Kwon OS, Park SH, Yun B-S, Pyun YR, Kim C-J (2001) Cyclo (D-Pro-L-Val), a specific.BETA.-glucosidase inhibitor produced by Aspergillus sp. F70609. J Antibiot 54(2):179–181CrossRefGoogle Scholar
  103. 103.
    Gupta S, Macala M, Schafmeister CE (2006) Synthesis of structurally diverse bis-peptide oligomers. J Org Chem 71(23):8691–8695CrossRefGoogle Scholar
  104. 104.
    Zhao S, Smith KS, Deveau AM, Dieckhaus CM, Johnson MA, Macdonald TL, Cook JM (2002) Biological activity of the tryprostatins and their diastereomers on human carcinoma cell lines. J Med Chem 45(8):1559–1562CrossRefGoogle Scholar
  105. 105.
    Fischer PM (2003) Diketopiperazines in peptide and combinatorial chemistry. J Pept Sci 9(1):9–35. doi: 10.1002/psc.446 CrossRefGoogle Scholar
  106. 106.
    Lim HJ, Gallucci JC, RajanBabu TV (2010) Annulated diketopiperazines from dipeptides or Schöllkopf reagents via tandem cyclization−intramolecular N-arylation. Org Lett 12(9):2162–2165CrossRefGoogle Scholar
  107. 107.
    Moir EM, Yoshiizumi K, Cairns J, Cowley P, Ferguson M, Jeremiah F, Kiyoi T, Morphy R, Tierney J, Wishart G, York M, Baker J, Cottney JE, Houghton AK, McPhail P, Osprey A, Walker G, Adam JM (2010) Design, synthesis, and structure–activity relationship study of bicyclic piperazine analogs of indole-3-carboxamides as novel cannabinoid CB1 receptor agonists. Bioorg Med Chem Lett 20(24):7327–7330CrossRefGoogle Scholar
  108. 108.
    Fdhila F, Vázquez V, Sánchez JL, Riguera R (2003) dd-Diketopiperazines: antibiotics active against vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J Nat Prod 66(10):1299–1301. doi: 10.1021/np030233e CrossRefGoogle Scholar
  109. 109.
    Eguchi C, Kakuta A (1974) Cyclic dipeptides. I Thermodynamics of the cis-trans isomerization of the side chains in cyclic dipeptides. J Am Chem Soc 96(12):3985–3989CrossRefGoogle Scholar
  110. 110.
    Pichowicz M, Simpkins NS, Blake AJ, Wilson C (2008) Studies towards complex bridged alkaloids: regio- and stereocontrolled enolate chemistry of 2,5-diketopiperazines. Tetrahedron 64(17):3713–3735CrossRefGoogle Scholar
  111. 111.
    Sanz-Cervera JF, Stocking EM, Usui T, Osada H, Williams RM (2000) Synthesis and evaluation of microtubule assembly inhibition and cytotoxicity of prenylated derivatives of cyclo-l-Trp-l-Pro. Bioorg Med Chem 8(10):2407–2415CrossRefGoogle Scholar
  112. 112.
    Ha K, Monbaliu J-CM, Williams BC, Pillai GG, Ocampo CE, Zeller M, Stevens CV, Katritzky AR (2012) A convenient synthesis of difficult medium-sized cyclic peptides by Staudinger mediated ring-closure. Org Biomol Chem 10:8055–8058CrossRefGoogle Scholar
  113. 113.
    Fischer E, Fourneau E (1901) Ueber einige Derivate des Glykocolls. Ber Dtsch Chem Ges 34(2):2868–2879CrossRefGoogle Scholar
  114. 114.
    Payne RJ, Wong C-H (2010) Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun 46:21–43CrossRefGoogle Scholar
  115. 115.
    Rohde H, Seitz O (2010) Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides. Biopolymers 94(4):551–559CrossRefGoogle Scholar
  116. 116.
    Coin I (2010) The depsipeptide method for solid-phase synthesis of difficult peptides. J Pept Sci 16(5):223–230CrossRefGoogle Scholar
  117. 117.
    Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351CrossRefGoogle Scholar
  118. 118.
    Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47(52):10030–10074CrossRefGoogle Scholar
  119. 119.
    Dirksen A, Dawson PE (2008) Expanding the scope of chemoselective peptide ligations in chemical biology. Curr Opin Chem Biol 12(6):760–766CrossRefGoogle Scholar
  120. 120.
    Coltart DM (2000) Peptide segment coupling by prior ligation and proximity-induced intramolecular acyl transfer. Tetrahedron 56(22):3449–3491CrossRefGoogle Scholar
  121. 121.
    Deakyne CA, Ludden AK, Roux MV, Notario R, Demchenko AV, Chickos JS, Liebman JF (2010) Energetics of the lighter chalcogen analogues of carboxylic acid esters. J Phys Chem B 114(49):16253–16262CrossRefGoogle Scholar
  122. 122.
    Castro EA (2009) Kinetics and mechanism of the aminolysis of thioesters and thiocarbonates in solution. Pure Appl Chem 81(4):685–696CrossRefGoogle Scholar
  123. 123.
    Erben MF, Boese R, Della Védova CO, Oberhammer H, Willner H (2006) Toward an intimate understanding of the structural properties and conformational preference of oxoesters and thioesters: gas and crystal structure and conformational analysis of dimethyl monothiocarbonate, CH3OC(O)SCH3. J Org Chem 71(2):616–622CrossRefGoogle Scholar
  124. 124.
    Yang W, Drueckhammer DG (2001) Understanding the relative acyl-transfer reactivity of oxoesters and thioesters: computational analysis of transition state delocalization effects. J Am Chem Soc 123(44):11004–11009CrossRefGoogle Scholar
  125. 125.
    Yang W, Drueckhammer DG (2000) Computational studies of the aminolysis of oxoesters and thioesters in aqueous solution. Org Lett 2(26):4133–4136CrossRefGoogle Scholar
  126. 126.
    Castro EA (1999) Kinetics and mechanisms of reactions of thiol, thiono, and dithio analogues of carboxylic esters with nucleophiles. Chem Rev 99(12):3505–3524CrossRefGoogle Scholar
  127. 127.
    Albers T, Watkins DL, Gameiro AF, Povstyanoy V, Povstyanoy MV, Lebedyeva IO (2015) Benzotriazole-based strategies toward peptidomimetics, conjugates, and other peptide derivatives. Top Heterocycl Chem. doi: 10.1007/7081_2015_182 Google Scholar
  128. 128.
    Monbaliu J-CM, Katritzky AR (2012) Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun 48:11601–11622CrossRefGoogle Scholar
  129. 129.
    El Khatib M, Elagawany M, Jabeen F, Todadze E, Bol'shakov O, Oliferenko A, Khelashvili L, El-Feky SA, Asiri A, Katritzky AR (2012) Traceless chemical ligations from O-acyl serine sites. Org Biomol Chem 10(25):4836–4838CrossRefGoogle Scholar
  130. 130.
    Horikawa M, Shigeri Y, Yumoto N, Yoshikawa S, Nakajima T, Ohfune Y (1998) Syntheses of potent Leu-enkephalin analogs possessing β-hydroxy-α, α-disubstituted-α-amino acid and their characterization to opioid receptors. Bioorg Med Chem Lett 8(15):2027–2032CrossRefGoogle Scholar
  131. 131.
    Mutter M, Chandravarkar A, Boyat C, Lopez J, Dos Santos S, Mandal B, Mimna R, Murat K, Patiny L, Saucède L, Tuchscherer G (2004) Switch peptides in statu nascendi: induction of conformational transitions relevant to degenerative diseases. Angew Chem Int Ed 43(32):4172–4178CrossRefGoogle Scholar
  132. 132.
    Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y (2004) Novel and efficient synthesis of difficult sequence-containing peptides through ON intramolecular acyl migration reaction of O-acyl isopeptides. Chem Commun 2004:12–125Google Scholar
  133. 133.
    Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y (2004) Design and synthesis of a novel water-soluble Aβ1-42 isopeptide: an efficient strategy for the preparation of Alzheimer’s disease-related peptide, Aβ1-42, via ON intramolecular acyl migration reaction. Tetrahedron 45(31):5965–5968CrossRefGoogle Scholar
  134. 134.
    Sohma Y, Hayashi Y, Skwarczynski M, Hamada Y, Sasaki M, Kimura T, Kiso Y (2004) O-N intramolecular acyl migration reaction in the development of prodrugs and the synthesis of difficult sequence-containing bioactive peptides. Biopolymers 76(4):344–356CrossRefGoogle Scholar
  135. 135.
    Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian H, Biernert M, Beyermann M (2004) Synthesis of “difficult” peptide sequences: application of a depsipeptide technique to the Jung-Redemann 10- and 26-mers and the amyloid peptide A(1-42). Tetrahedron Lett 45(40):7519–7523CrossRefGoogle Scholar
  136. 136.
    Bozso Z, Penke B, Simon D, Laczkó I, Juhász G, Szegedi V, Kasza A, Soós K, Hetényi A, Wéber E, Tóháti H, Csete M, Zarándi M, Fülöp L (2010) Controlled in situ preparation of Aβ(1–42) oligomers from the isopeptide “iso-Aβ(1–42)”, physicochemical and biological characterization. Peptides 31(2):248–256CrossRefGoogle Scholar
  137. 137.
    Sohma Y, Yoshiya T, Taniguchi A, Kimura T, Hayashi Y, Kiso Y (2007) Development of O-acyl isopeptide method. Biopolymers 88(2):253–262CrossRefGoogle Scholar
  138. 138.
    Carpino LA, Krause E, Sferdean CD, Schümann M, Biernert M, Beyermann M (2005) Dramatically enhanced N→O acyl migration during the trifluoroacetic acid-based deprotection step in solid phase peptide synthesis. Tetrahedron Lett 46(8):1361–1364CrossRefGoogle Scholar
  139. 139.
    Vila-Perelló M, Hori Y, Ribó M, Muir TW (2008) Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew Chem Int Ed 47(40):7764–7767CrossRefGoogle Scholar
  140. 140.
    Taniguchi A, Sohma Y, Kimura M, Okada T, Ikeda K, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y (2006) “Click Peptide” based on the “O-Acyl Isopeptide Method”: control of Aβ1−42 production from a photo-triggered Aβ1−42 analogue. J Am Chem Soc 128(3):696–697CrossRefGoogle Scholar
  141. 141.
    Sohma Y, Kiso Y (2006) “Click Peptides”—chemical biology-oriented synthesis of Alzheimer’s disease-related amyloid β peptide (Aβ) analogues based on the “O-Acyl Isopeptide Method”. ChemBioChem 7(10):1549–1557CrossRefGoogle Scholar
  142. 142.
    Shigenaga A, Hirakawa H, Yamamoto J, Ogura K, Denda M, Yamaguchi K, Tsuji D, Itoh K, Otaka A (2011) Design and synthesis of caged ceramide: UV-responsive ceramide releasing system based on UV-induced amide bond cleavage followed by O-N acyl transfer. Tetrahedron 67(22):3984–3990CrossRefGoogle Scholar
  143. 143.
    Sohma Y, Taniguchi A, Skwarczynski M, Yoshiya T, Fukao F, Kimura T, Hayashi Y, Kiso Y (2006) O-Acyl isopeptide method’ for the efficient synthesis of difficult sequence-containing peptides: use of ‘O-acyl isodipeptide unit’. Tetrahedron Lett 47(18):3013–3017CrossRefGoogle Scholar
  144. 144.
    Dos Santos S, Chandravarkar A, Mandal B, Mimna R, Murat K, Saucède L, Tella P, Tuchscherer G, Mutter M (2005) Switch-peptides: controlling self-assembly of amyloid β-derived peptides in vitro by consecutive triggering of acyl migrations. J Am Chem Soc 127(34):11888–11889CrossRefGoogle Scholar
  145. 145.
    Oliyai R, Stella VJ (1995) Structural factors affecting the kinetics of O, N-acyl transfer in potential O-peptide prodrugs. Bioorg Med Chem Lett 5(22):2735–2740CrossRefGoogle Scholar
  146. 146.
    Oliyai R, Siahaan TJ, Stella VJ (1995) The importance of structural factors on the rate and the extent of N, O-acyl migration in cyclic and linear peptides. Pharm Res 12(3):323–328CrossRefGoogle Scholar
  147. 147.
    Yoshiya T, Ito N, Kimura T, Kiso Y (2008) Isopeptide method: development of S-acyl isopeptide method for the synthesis of difficult sequence-containing peptides. J Pept Sci 14(11):1203–1208CrossRefGoogle Scholar
  148. 148.
    Yoshiya T, Hasegawa Y, Kawamura W, Kawashima H, Sohma Y, Kimura T, Kiso Y (2010) S-acyl isopeptide method: Use of allyl-type protective group for improved preparation of thioester-containing S-acyl isopeptides by Fmoc-based SPPS. Biopolymers 96(2):228–239CrossRefGoogle Scholar
  149. 149.
    Monbaliu J-CM, Dive G, Stevens CV, Katritzky AR (2013) Governing parameters of long-range intramolecular S-to-N acyl transfers within (S)-acyl isopeptides. J Chem Theory Comput 9(2):927–934CrossRefGoogle Scholar
  150. 150.
    Ha K, Chahar M, Monbaliu J-CM, Todadze E, Hansen FK, Oliferenko AA, Ocampo CE, Leino D, Lillicotch A, Stevens CV, Katritzky AR (2012) Long-range intramolecular S → N acyl migration: a study of the formation of native peptide analogues via 13-, 15-, and 16-membered cyclic transition states. J Org Chem 77(6):2637–2648CrossRefGoogle Scholar
  151. 151.
    Hansen FK, Ha K, Todadze E, Lillicotch A, Frey A, Katritzky AR (2011) Microwave-assisted chemical ligation of S-acyl peptides containing non-terminal cysteine residues. Org Biomol Chem 9(20):7162–7167CrossRefGoogle Scholar
  152. 152.
    Katritzky AR, Tala SR, Abo-Dya NE, Ibrahim TS, El-Feky SA, Gyanda K, Pandya KM (2011) Chemical ligation of S-acylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states. J Org Chem 76(1):85–96CrossRefGoogle Scholar
  153. 153.
    Katritzky AR, Abo-Dya NE, Tala SR, Abdel-Samii ZK (2010) The chemical ligation of selectively S-acylated cysteine peptides to form native peptides via 5-, 11- and 14-membered cyclic transition states. Org Biomol Chem 8:2316–2319CrossRefGoogle Scholar
  154. 154.
    Oliferenko AA, Katritzky (2011) Alternating chemical ligation reactivity of S-acyl peptides explained with theory and computations. Org Biomol Chem 9:4756–4759Google Scholar
  155. 155.
    Haase C, Seitz O (2009) Internal cysteine accelerates thioester-based peptide ligation. Eur J Org Chem 2009(13):2096–2101CrossRefGoogle Scholar
  156. 156.
    Seghers S, Van Waes FEA, Cukalovic A, Monbaliu J-CM, De Visscher J, Thybaut JW, Heugebaert TSA, Stevens CV (2015) Efficient continuous flow benzotriazole activation and coupling of amino acids. J Flow Chem 5(4):220–227Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Dow Chemical CompanyCollegevilleUSA

Personalised recommendations