Skip to main content

Oligooxopiperazines as Topographical Helix Mimetics

  • Chapter
  • First Online:
Peptidomimetics II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 49))

Abstract

Protein–protein interactions are often mediated by amino acid side chain functionality organized on secondary structures. Small molecule scaffolds that reproduce the array of protein-like functionality at interfaces offer an attractive approach to target therapeutically important interactions. Here, we describe the design, synthesis, and the biological potential of small molecule helix mimetics derived from an oxopiperazine scaffold to target protein complexes in which binding is largely dictated by one face of the interfacial helix. The oxopiperazine helix mimetics can be assembled from α-amino acids using standard solid-phase peptide synthesis methodology, enabling rapid diversification of the scaffold and discovery of ligands for protein targets. We have evaluated the biological potential of the oxopiperazine mimetics in cell-free, cell culture, and in vivo models. Our results support the hypothesis that the scaffold offers an attractive platform for the development of novel inhibitors of protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules. Nat Chem 5(3):161–173

    Article  CAS  Google Scholar 

  2. Jayatunga MKP, Thompson S, Hamilton AD (2014) α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 24(3):717–724

    Article  CAS  Google Scholar 

  3. London N, Raveh B, Schueler-Furman O (2013) Druggable protein–protein interactions – from hot spots to hot segments. Curr Opin Chem Biol 17(6):952–959

    Article  CAS  Google Scholar 

  4. Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C (2014) Modulators of protein–protein interactions. Chem Rev 114(9):4695–4748

    Article  CAS  Google Scholar 

  5. Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288

    Article  CAS  Google Scholar 

  6. Jochim AL, Arora PS (2009) Assessment of helical interfaces in protein–protein interactions. Mol Biosyst 5:924–926

    Article  CAS  Google Scholar 

  7. Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5(10):919–923

    Article  CAS  Google Scholar 

  8. Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci U S A 93(1):13–20

    Article  CAS  Google Scholar 

  9. Bullock BN, Jochim AL, Arora PS (2011) Assessing helical protein interfaces for inhibitor design. J Am Chem Soc 133(36):14220–14223

    Article  CAS  Google Scholar 

  10. Ko E, Liu J, Burgess K (2011) Minimalist and universal peptidomimetics. Chem Soc Rev 40:4411–4421

    Article  CAS  Google Scholar 

  11. Ko E, Liu J, Perez LM, Lu G, Schaefer A, Burgess K (2010) Universal peptidomimetics. J Am Chem Soc 133(3):462–477

    Article  CAS  Google Scholar 

  12. Orner BP, Ernst JT, Hamilton AD (2001) Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. J Am Chem Soc 123(22):5382–5383

    Article  CAS  Google Scholar 

  13. Chen L, Yin H, Farooqi B, Sebti S, Hamilton AD, Chen J (2005) p53 alpha-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 4(6):1019–1025

    Article  CAS  Google Scholar 

  14. Ernst JT, Kutzki O, Debnath AK, Jiang S, Lu H, Hamilton AD (2002) Design of a protein surface antagonist based on alpha-helix mimicry: inhibition of gp41 assembly and viral fusion. Angew Chem Int Ed Engl 41(2):278–281

    Article  CAS  Google Scholar 

  15. Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124(40):11838–11839

    Article  CAS  Google Scholar 

  16. Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK (2009) Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol 4(5):335–344

    Article  CAS  Google Scholar 

  17. Lee JH, Zhang Q, Jo S, Chai SC, Oh M, Im W, Lu H, Lim HS (2011) Novel pyrrolopyrimidine-based alpha-helix mimetics: cell-permeable inhibitors of protein–protein interactions. J Am Chem Soc 133(4):676–679

    Article  CAS  Google Scholar 

  18. Maity P, Konig B (2008) Synthesis and structure of 1,4-dipiperazino benzenes: chiral terphenyl-type peptide helix mimetics. Org Lett 10(7):1473–1476

    Article  CAS  Google Scholar 

  19. Marimganti S, Cheemala MN, Ahn JM (2009) Novel amphiphilic alpha-helix mimetics based on a bis-benzamide scaffold. Org Lett 11(19):4418–4421

    Article  CAS  Google Scholar 

  20. Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ (2009) Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein–protein interaction. Chem Commun 34:5091–5093

    Article  CAS  Google Scholar 

  21. Restorp P, Rebek J Jr (2008) Synthesis of alpha-helix mimetics with four side-chains. Bioorg Med Chem Lett 18(22):5909–5911

    Article  CAS  Google Scholar 

  22. Rodriguez JM, Nevola L, Ross NT, Lee GI, Hamilton AD (2009) Synthetic inhibitors of extended helix-protein interactions based on a biphenyl 4,4′-dicarboxamide scaffold. Chembiochem 10(5):829–833

    Article  CAS  Google Scholar 

  23. Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein–protein interactions. J Am Chem Soc 131(15):5564–5572

    Article  CAS  Google Scholar 

  24. Tosovska P, Arora PS (2010) Oligooxopiperazines as nonpeptidic alpha-helix mimetics. Org Lett 12:1588–1591

    Article  CAS  Google Scholar 

  25. Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed 44(27):4130–4163

    Article  CAS  Google Scholar 

  26. Yin H, Lee G-i, Sedey KA, Rodriguez JM, Wang H-G, Sebti SM, Hamilton AD (2005) Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-xL/Bak interaction. J Am Chem Soc 127(15):5463–5468

    Article  CAS  Google Scholar 

  27. Burslem GM, Kyle HF, Breeze AL, Edwards TA, Nelson A, Warriner SL, Wilson AJ (2014) Small-molecule proteomimetic inhibitors of the HIF-1α–p300 protein–protein interaction. Chembiochem. doi:10.1002/cbic.201400009

    Google Scholar 

  28. Cao X, Yap JL, Newell-Rogers MK, Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung KY, Tubin RP, Yu W, Vanommeslaeghe K, Wilder PT, MacKerell AD Jr, Fletcher S, Smythe RW (2013) The novel BH3 alpha-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein–protein interactions with Bak. Mol Cancer 12(1):42

    Article  CAS  Google Scholar 

  29. Lao BB, Grishagin I, Mesallati H, Brewer TF, Olenyuk BZ, Arora PS (2014) In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics. Proc Natl Acad Sci U S A 111(21):7531–7536

    Article  CAS  Google Scholar 

  30. Oh M, Lee JH, Wang W, Lee HS, Lee WS, Burlak C, Im W, Hoang QQ, Lim H-S (2014) Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein. Proc Natl Acad Sci 111(30):11007–11012

    Article  CAS  Google Scholar 

  31. Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, Hsieh JT, Ahn JM, Raj GV (2013) Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 4:1923

    Article  CAS  Google Scholar 

  32. Gante J (1994) Peptidomimetics – tailored enzyme-inhibitors. Angew Chem Int Ed Engl 33(17):1699–1720

    Article  Google Scholar 

  33. Patchett AA, Nargund RP (2000) Privileged structures - an update. Annu Rep Med Chem 35:289–298

    Article  CAS  Google Scholar 

  34. Giannis A, Kolter T (1993) Peptidomimetics for receptor ligands discovery, development, and medical perspectives. Angew Chem Int Ed 32(9):1244–1267

    Article  Google Scholar 

  35. Hansen TK, Schlienger N, Hansen BS, Andersen PH, Bryce MR (1999) Synthesis of piperazinones and their application in constrained mimetics of the growth hormone secretagogue NN703. Tetrahedron Lett 40(18):3651–3654

    Article  CAS  Google Scholar 

  36. Tian X, Mishra RK, Switzer AG, Hu XE, Kim N, Mazur AW, Ebetino FH, Wos JA, Crossdoersen D, Pinney BB, Farmer JA, Sheldon RJ (2006) Design and synthesis of potent and selective 1,3,4-trisubstituted-2-oxopiperazine based melanocortin-4 receptor agonists. Bioorg Med Chem Lett 16(17):4668–4673

    Article  CAS  Google Scholar 

  37. Macromodel (2011) Macromodel. Version 9.9. Schrodinger Inc., New York

    Google Scholar 

  38. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) Macromodel - an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467

    Article  CAS  Google Scholar 

  39. Bhatt U, Mohamed N, Just G, Roberts E (1997) Derivatized oxopiperazine rings from amino acids. Tetrahedron Lett 38(21):3679–3682

    Article  CAS  Google Scholar 

  40. Franceschini N, Sonnet P, Guillaume D (2005) Simple, versatile and highly diastereoselective synthesis of 1,3,4-trisubstituted-2-oxopiperazine-containing peptidomimetic precursors. Org Biomol Chem 3(5):787–793

    Article  CAS  Google Scholar 

  41. Sugihara H, Fukushi H, Miyawaki T, Imai Y, Terashita Z, Kawamura M, Fujisawa Y, Kita S (1998) Novel non-peptide fibrinogen receptor antagonists. 1. Synthesis and glycoprotein IIb-IIIa antagonistic activities of 1,3,4-trisubstituted 2-oxopiperazine derivatives incorporating side-chain functions of the RGDF peptide. J Med Chem 41(4):489–502

    Article  CAS  Google Scholar 

  42. Tong YS, Fobian YM, Wu MY, Boyd ND, Moeller KD (2000) Conformationally constrained substance P analogues: the total synthesis of a constrained peptidomimetic for the Phe(7)-Phe(8) region. J Org Chem 65(8):2484–2493

    Article  CAS  Google Scholar 

  43. Bergey CM, Watkins AM, Arora PS (2013) HippDB: a database of readily targeted helical protein–protein interactions. Bioinformatics 29(21):2806–2807

    Article  CAS  Google Scholar 

  44. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 2004(219):pl2

    Google Scholar 

  45. Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582

    Article  CAS  Google Scholar 

  46. Soussi T, Ishioka C, Claustres M, Beroud C (2006) Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6(1):83–90

    Article  CAS  Google Scholar 

  47. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299

    Article  CAS  Google Scholar 

  48. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27

    Article  CAS  Google Scholar 

  49. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303

    Article  CAS  Google Scholar 

  50. Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18(1):22–27

    Article  CAS  Google Scholar 

  51. Chene P (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3(2):102–109

    Article  CAS  Google Scholar 

  52. Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8(1):25–37

    Article  CAS  Google Scholar 

  53. Shangary S, Wang S (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14(17):5318–5324

    Article  CAS  Google Scholar 

  54. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7(12):979–987

    Article  CAS  Google Scholar 

  55. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    Article  CAS  Google Scholar 

  56. Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9(9):2523–2529

    CAS  Google Scholar 

  57. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457

    Article  CAS  Google Scholar 

  58. Brown ZZ, Akula K, Arzumanyan A, Alleva J, Jackson M, Bichenkov E, Sheffield JB, Feitelson MA, Schafmeister CE (2012) A spiroligomer α-helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. PLoS One 7(10):e45948

    Article  CAS  Google Scholar 

  59. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To K-H, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 110(36):E3445–E3454

    Article  CAS  Google Scholar 

  60. Henchey LK, Porter JR, Ghosh I, Arora PS (2010) High specificity in protein recognition by hydrogen-bond-surrogate alpha-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 11(15):2104–2107

    Article  CAS  Google Scholar 

  61. Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) Helical β-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 126(31):9468–9469

    Article  CAS  Google Scholar 

  62. Murray JK, Gellman SH (2007) Targeting protein–protein interactions: lessons from p53/MDM2. Biopolymers 88(5):657–686

    Article  CAS  Google Scholar 

  63. Popowicz GM, Dömling A, Holak TA (2011) The structure-based design of Mdm2/Mdmx–p53 inhibitors gets serious. Angew Chem Int Ed 50(12):2680–2688

    Article  CAS  Google Scholar 

  64. Sakurai K, Chung HS, Kahne D (2004) Use of a retroinverso p53 peptide as an inhibitor of MDM2. J Am Chem Soc 126(50):16288–16289

    Article  CAS  Google Scholar 

  65. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143

    Article  CAS  Google Scholar 

  66. Böttger A, Böttger V, Garcia-Echeverria C, Chène P, Hochkeppel H-K, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) Molecular characterization of the hdm2-p53 interaction. J Mol Biol 269(5):744–756

    Article  Google Scholar 

  67. Lao BB, Drew K, Guarracino DA, Brewer TF, Heindel DW, Bonneau R, Arora PS (2014) Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions. J Am Chem Soc 136(22):7877–7888

    Article  CAS  Google Scholar 

  68. Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK (2002) A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein–protein interaction. Anal Biochem 300(2):230–236

    Article  CAS  Google Scholar 

  69. Butterfoss GL, Kuhlman B (2006) Computer-based design of novel protein structures. Ann Rev Biophys Biomol Struct 35:49–65

    Article  CAS  Google Scholar 

  70. Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391

    Article  CAS  Google Scholar 

  71. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368

    Article  CAS  Google Scholar 

  72. Drew K, Renfrew PD, Craven TW, Butterfoss GL, Chou F-C, Lyskov S, Bullock BN, Watkins A, Labonte JW, Pacella M, Kilambi KP, Leaver-Fay A, Kuhlman B, Gray JJ, Bradley P, Kirshenbaum K, Arora PS, Das R, Bonneau R (2013) Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design. PLoS One 8(7):e67051

    Article  CAS  Google Scholar 

  73. Xin D, Ko E, Perez LM, Ioerger TR, Burgess K (2013) Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS). Org Biomol Chem 11(44):7789–7801

    Article  CAS  Google Scholar 

  74. Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308(5723):857–860

    Article  CAS  Google Scholar 

  75. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441(7093):656–659

    Article  CAS  Google Scholar 

  76. Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278(5335):82–87

    Article  CAS  Google Scholar 

  77. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch E-M, Wilson IA, Baker D (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332(6031):816–821

    Article  CAS  Google Scholar 

  78. Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS (1998) High-resolution protein design with backbone freedom. Science 282(5393):1462–1467

    Article  CAS  Google Scholar 

  79. Joachimiak LA, Kortemme T, Stoddard BL, Baker D (2006) Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein–protein interface. J Mol Biol 361:195–208

    Article  CAS  Google Scholar 

  80. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195

    Article  CAS  Google Scholar 

  81. Shifman JM, Mayo SL (2003) Exploring the origins of binding specificity through the computational redesign of calmodulin. Proc Natl Acad Sci U S A 100(23):13274–13279

    Article  CAS  Google Scholar 

  82. Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R (2009) A preliminary survey of the peptoid folding landscape. J Am Chem Soc 131(46):16798–16807

    Article  CAS  Google Scholar 

  83. Lyskov S, Chou F-C, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R (2013) Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One 8(5):e63906

    Article  Google Scholar 

  84. Renfrew PD, Choi EJ, Bonneau R, Kuhlman B (2012) Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design. PLoS One 7(3):e32637

    Article  CAS  Google Scholar 

  85. Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2(10):803–811

    Article  CAS  Google Scholar 

  86. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  Google Scholar 

  87. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354

    Article  CAS  Google Scholar 

  88. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26

    Article  Google Scholar 

  89. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    Article  CAS  Google Scholar 

  90. Orourke JF, Pugh CW, Bartlett SM, Ratcliffe PJ (1996) Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR – role of hypoxia-inducible factor-1. Eur J Biochem 241(2):403–410

    Article  CAS  Google Scholar 

  91. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A 99(8):5271–5276

    Article  CAS  Google Scholar 

  92. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ (2002) Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A 99(8):5367–5372

    Article  CAS  Google Scholar 

  93. Kushal S, Lao BB, Henchey LK, Dubey R, Mesallati H, Traaseth NJ, Olenyuk BZ, Arora PS (2013) Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc Natl Acad Sci U S A 110(39):15602–15607

    Article  CAS  Google Scholar 

  94. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of GLUT1 mRNA by hypoxia-inducible factor-1. J Biol Chem 276(12):9519–9525

    Article  CAS  Google Scholar 

  95. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226

    Article  CAS  Google Scholar 

  96. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer. Circ Res 77(3):638–643

    Article  CAS  Google Scholar 

  97. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015

    Article  CAS  Google Scholar 

  98. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361

    Article  Google Scholar 

  99. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317

    Article  CAS  Google Scholar 

  100. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262

    Article  CAS  Google Scholar 

  101. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009

    Article  CAS  Google Scholar 

  102. Heeres JT, Hergenrother PJ (2011) High-throughput screening for modulators of protein–protein interactions: use of photonic crystal biosensors and complementary technologies. Chem Soc Rev 40(8):4398–4410

    Article  CAS  Google Scholar 

  103. Stockwell BR (2000) Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1(2):116–125

    Article  CAS  Google Scholar 

  104. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432(7019):846–854

    Article  CAS  Google Scholar 

  105. Tan DS (2005) Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1(2):74–84

    Article  CAS  Google Scholar 

  106. Clackson T, Wells JA (1995) A hot-spot of binding-energy in a hormone-receptor interface. Science 267(5196):383–386

    Article  CAS  Google Scholar 

  107. Raj M, Bullock BN, Arora PS (2013) Plucking the high hanging fruit: a systematic approach for targeting protein–protein interactions. Bioorg Med Chem 21(14):4051–4057

    Article  CAS  Google Scholar 

  108. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680

    Article  CAS  Google Scholar 

  109. Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103(2):273–282

    Article  CAS  Google Scholar 

  110. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219

    Article  CAS  Google Scholar 

  111. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1(3):187–192

    Article  CAS  Google Scholar 

  112. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed 51(25):6140–6143

    Article  CAS  Google Scholar 

  113. Chapman RN, Dimartino G, Arora PS (2004) A highly stable short alpha-helix constrained by a main-chain hydrogen-bond surrogate. J Am Chem Soc 126(39):12252–12253

    Article  CAS  Google Scholar 

  114. Patgiri A, Jochim AL, Arora PS (2008) A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 41(10):1289–1300

    Article  CAS  Google Scholar 

  115. Patgiri A, Yadav KK, Arora PS, Bar-Sagi D (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7(9):585–587

    Article  CAS  Google Scholar 

  116. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114

    Article  CAS  Google Scholar 

  117. Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33

    Article  CAS  Google Scholar 

  118. Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted AC (2003) Binding of small molecules to an adaptive protein–protein interface. Proc Natl Acad Sci U S A 100(4):1603–1608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE-1151554) for financial support of this work. The Rosetta computational analyses were performed by Kevin Drew and Richard Bonneau (NYU), while the effects of the designed compounds on the hypoxia-inducible signaling pathway were analyzed in collaboration with Ivan Grishagin and Bogdan Olenyuk (USC). We thank these long-term collaborators for their insights on these projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit S. Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lao, B.B., Arora, P.S. (2016). Oligooxopiperazines as Topographical Helix Mimetics. In: Lubell, W. (eds) Peptidomimetics II. Topics in Heterocyclic Chemistry, vol 49. Springer, Cham. https://doi.org/10.1007/7081_2015_195

Download citation

Publish with us

Policies and ethics