Skip to main content

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 44))

Abstract

Due to its global pervasiveness and chronicity, the hepatitis C virus (HCV) is a major health problem that claims around half a million lives annually. In recent years, the pharmaceutical industry has witnessed a surge in the development of new therapies for the treatment of hepatitis C. One such drug, sofosbuvir, marketed by Gilead Sciences, was recently approved for clinical use in several countries. In combination with other antiviral agents, sofosbuvir has shown remarkable efficacy for a broad range of viral genotypes, along with high tolerability. The clinical success of sofosbuvir demands efficient approaches for the synthesis of this pharmaceutical. Marketed as a single isomer, sofosbuvir presents several interesting synthetic challenges, including fluorination chemistry, nucleotide synthesis, and regio- and stereoselective phosphoramidation. This review provides a brief pharmacological background of sofosbuvir including its mode of action, followed by an in-depth analysis of the current synthetic approaches to sofosbuvir and its close analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although it has been stated in some patent literature that deoxofluor can serve as a suitable fluorinating agent, no experimental evidence could be found.

  2. 2.

    Acetal protecting groups were found to be unstable under the reaction conditions.

  3. 3.

    Some mechanistic studies have been performed in the context of phosphate synthesis; see, for example, [68] Liu C-Y, Pawar VD, Kao J-Q, Chen C-T (2010) Adv. Synth. Catal. 352: 188–194, and references therein.

  4. 4.

    Other methods for the separation of impurities disclosed by development chemists of Pharmasset include: a) oiling out from crude sofosbuvir (11.6% overall chemical yield, single diastereomer (S P), purity >99%) and b) silica loading of crude sofosbuvir followed by successive washes with increasingly polar eluents and two final recrystallizations (~12 % overall chemical yield, single diastereomer (S P), purity > 99%).

  5. 5.

    While the patent application (example 3B) shows a structure number which is inconsistent with compound 153 and a IUPAC name which is inconsistent with 1, the experimental conditions (starting material dr and reaction scale) together with the scheme provided lead us to believe that 153 was employed to make 1 as drawn.

Abbreviations

Ac:

Acetyl

AcOH:

Acetic acid

API:

Active pharmaceutical ingredient

aq:

Aqueous

Ar:

Aryl

Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

bp:

Boiling point

Bu:

Butyl

Bz:

Benzoyl

Bz2O:

Benzoic anhydride

CALB:

Candida antarctica lipase B

cat:

Catalyst, catalytic

Cbz:

Benzyloxycarbonyl

conc:

Concentrated

Cyt:

Cytosine

CytBz :

N 4-benzoylcytosine

DAA:

Direct-acting antiviral

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DAST:

(Diethylamino)sulfur trifluoride

DBU:

1,8-Diazabicyclo [5.4.0]undec-7-ene

de:

Diastereomer excess

DIBALH:

Diisobutylaluminum hydride

DIPEA:

N,N-Diisopropylethylamine

DMAP:

4-(Dimethylamino)pyridine

DMF:

Dimethylformamide

DMP:

Dess–Martin periodinane

DMSO:

Dimethyl sulfoxide

dr:

Diastereomer ratio

equiv:

Equivalent(s)

Et:

Ethyl

EWG:

Electron withdrawing group

FDA:

Food and Drug Administration (U.S.A.)

GC:

Gas chromatography

h:

Hour(s)

HATU:

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate

HCV:

Hepatitis C virus

HMDS:

1,1,1,3,3,3-Hexamethyldisilazane

HPLC:

High-performance (pressure) liquid chromatography

IPC:

In-process control

i-Pr:

isopropyl

LC:

Liquid chromatography

LDA:

Lithium diisopropylamide

LG:

Leaving group

M:

Molar

m-CPBA:

m-Chloroperoxybenzoic acid

Me:

Methyl

mol:

Mole(s)

MOM:

Methoxymethyl

MS:

Mass spectrometry

Ms:

Methanesulfonyl (mesyl)

NCS:

N-chlorosuccinimide

NMI:

N-methylimidazole

NMP:

N-methyl-2-pyrrolidone

Nph:

Naphthyl

Nu:

Nucleophile

Nuc:

Nucleoside

PCC:

Pyridinium chlorochromate

PDC:

Pyridinium dichromate

PEG-INF:

Pegylated interferon α

Ph:

Phenyl

Piv:

Pivaloyl

PLG:

Potential leaving group

PMB:

4-Methoxyphenyl

PPA:

Poly(phosphoric acid)

PPTS:

Pyridinium p-toluenesulfonate

Pr:

Propyl

py:

Pyridine

quant:

Quantitative

rac:

Racemic

RBV:

Ribavirin

RdRp:

RNA-dependent RNA polymerase

Red-Al:

Sodium bis(2-methoxyethoxy)aluminumhydride

RNA:

Ribonucleic acid

RP:

Reverse phase

rt:

Room temperature

SFC:

Supercritical fluid chromatography

TASF:

Tris(dimethylamino)sulfonium difluorotrimethylsilicate

TBAF:

Tetrabutylammonium fluoride

TBDMS, TBS:

tert-Butyldimethylsilyl

TBDMSCl:

tert-Butyldimethylsilyl chloride

TBDPS:

tert-Butyldiphenylsilyl

TBDPSCl:

tert-Butyl(chloro)diphenylsilane

TBSOTf:

tert-Butyldimethylsilyl trifluoromethanesulfonate

TCA:

Trichloroacetyl

t-Bu:

tert-Butyl

TEA:

Triethylamine

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, free radical

Tf:

Trifluoromethanesulfonyl (triflyl)

TFA:

Trifluoroacetic acid

TFAA:

Trifluoroacetic anhydride

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

TIPDS:

1,1,3,3-Tetraisopropyldisiloxane- 1,3-diyl

TIPDSCl2 :

1,3-Dichloro-tetraisopropyldisiloxane

TMP:

2,2,6,6-Tetramethylpiperidine

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

XTalFluor E:

(Diethylamino) difluorosulfonium tetrafluoroborate

References

  1. de Clercq E (2012) Acta Pharm Sin 2:535–548

    Article  Google Scholar 

  2. Manns MP, Foster GR, Rockstroh JK, Zeuzem S, Zoulim F, Houghton M (2007) Nat. Rev Drug Disc 6:991–1000

    Article  CAS  Google Scholar 

  3. Sophia MJ (2013) Adv Pharmacol 67:39–73

    Article  Google Scholar 

  4. Rong L, Dahrai H, Ribiero RM, Perelson AS (2010) Sci Transl Med 2:30ra32

    Google Scholar 

  5. Hill A, Khoo S, Fortunak J, Simmons B, Ford N (2014) Clin Infect Dis 58:928–936

    Article  CAS  Google Scholar 

  6. Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF (2014) Chem Rev 114:9154–9218

    Article  CAS  Google Scholar 

  7. Manns MP, von Hanh T (2013) Nat Rev Drug Disc 12:595–610

    Article  CAS  Google Scholar 

  8. Lamarre D, Anderson P, Bailey M, Beaulieu P, Bolger G, Bonneau P, Bös M, Cameron D, Cartier M, Cordingley M, Faucher A, Goudreau N, Kawai S, Kukolj G, Lagacé L, LaPlante S, Narjes H, Poupart M, Rancourt J, Sentjens R, St George R, Simoneau B, Steinmann G, Thibeault D, Tsantrizos Y, Weldon S, Yong C, Llinàs-Brunet M (2003) Nature 426:186–189

    Article  CAS  Google Scholar 

  9. Miller R, Purcell R (1990) Proc Natl Acad Sci USA 87:2057–2061

    Article  CAS  Google Scholar 

  10. Patil VM, Gupta SP, Samanta S, Masand N (2011) Curr Med Chem 18:5564–5597

    Article  CAS  Google Scholar 

  11. Sofia MJ (2011) Antiv Chem Chemother 22:23–49

    Article  CAS  Google Scholar 

  12. Murakami E, Bao H, Ramesh M, McBrayer TR, Whitaker T, Micolochick Steuer HM, Schinazi RF, Stuyver LJ, Obikhod A, Otto MJ, Furman PA (2007) Antimicrob Agents Chemother 51:503–509

    Article  CAS  Google Scholar 

  13. Ma H, Jiang W-R, Robledo N, Leveque V, Ali S, Lara-Jaime T, Masjedizadeh M, Smith DB, Cammack N, Klumpp K, Symons J (2007) J Biol Chem 282:29812–29820

    Article  CAS  Google Scholar 

  14. Murakami E, Niu C, Bao H, Micolochick Steuer HM, T. W, Nachman T, Sofia MJ, Wang P, Otto MJ, Furman PA (2008) Antimicrob Agents Chemother 52:458–464

    Google Scholar 

  15. Mehellou Y, Balzarini J, McGuigan C (2009) ChemMedChem 4:1779–1791

    Article  CAS  Google Scholar 

  16. Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D, Rachakonda S, Reddy PG, Ross BS, Wang P, Zhang H-R, Bansal S, Espiritu C, Keilman M, Lam AM, Micolochick Steuer HM, Niu C, Otto MJ, Furman PA (2010) J Med Chem 53:7202–7218

    Google Scholar 

  17. Koff RS (2014) Aliment Pharmacol Ther 39:478–487

    Article  CAS  Google Scholar 

  18. Wang P, Stec W, Clark J, Chun B-K, Shi J, Du J (2006) Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives. WO Pat Appl 2006012,440 A2

    Google Scholar 

  19. Cedilote M, Cleary TP, Zhang P (2008) Alternate process for preparing 3,5-di-omicron-acyl-2-fluoro-2-C-methyl-D-ribono-gamma-lactone. WO Pat Appl 2008090,046 A1

    Google Scholar 

  20. Chen R, Li Y, Zhao J, Zheng J, Zhu G (2014) Process for the preparation of a fluorolactone derivative. WO Pat Appl 2014108,525 A1

    Google Scholar 

  21. Zhang P, Iding H, Cedilote M, Brunner S, Williamson T, Cleary TP (2009) Tetrahedron Asymmetry 20:305–312

    Article  CAS  Google Scholar 

  22. Wang P, Chun BK, Rachakonda S, Du J, Khan N, Shi J, Stec W, Cleary D, Ross B, Sofia M (2009) J Org Chem 74:6819–6824

    Article  CAS  Google Scholar 

  23. Chun BK, Wang P (2006) Preparation of 2′-fluoro 2-alkyl-substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives. WO Pat Appl 2006031,725 A2

    Google Scholar 

  24. Axt SD, Sarma K, Vitale J, Zhu J, Ross BS, Rachakonda S, Jin Q, Chun B-K (2008) Preparation of nucleosides ribofuranosyl pyrimidines. WO Pat Appl 2008045,419 A1

    Google Scholar 

  25. Gao Y, Sharpless KB (1988) J Am Chem Soc 110:7538–7539

    Article  CAS  Google Scholar 

  26. Peifer M, Berger R, Shurtleff VW, Conrad JC, MacMillan DWC (2014) J Am Chem Soc 136:5900–5903

    Article  CAS  Google Scholar 

  27. Clark JL, Hollecker L, Mason JC, Stuyver LJ, Tharnish PM, Lostia S, McBrayer TR, Schinazi RF, Watanabe KA, Otto MJ, Furman PA, Stec WJ, Patterson SE, Pankiewicz KW (2005) J Med Chem 48:5504–5508

    Article  CAS  Google Scholar 

  28. Clark J (2005) Modified fluorinated nucleoside analogues. WO Pat Appl 2005003,147 A2

    Google Scholar 

  29. Sofia MJ, Du J, Wang P, Nagarathnam D (2008) Nucleoside phosphoramidate prodrugs. WO Pat Appl 2008121,634 A2

    Google Scholar 

  30. Delaney WE, Link JO, Mo H, Oldach DW, Ray AS, Watkins WJ, Yang CY, Zhong W (2013) Methods for treating HCV. US Pat Appl 0,273,005

    Google Scholar 

  31. Bhat V, Ugarkar BG, Sayeed VA, Grimm K, Kosora N, Domenico PA, Stocker E (1989) Nucleos Nucleot 8:179–183

    Article  CAS  Google Scholar 

  32. Matsuda A, Takenuku K, Tanaka M, Sasaki T, Ueda T (1991) J Med Chem 34:812–819

    Article  CAS  Google Scholar 

  33. Appell RB, Duguid RJ (2000) Org Process Res Dev 4:172–174

    Article  CAS  Google Scholar 

  34. Matsuda A, Itoh H, Takenuki K, Sasaki T, Ueda T (1988) Chem Pharm Bull 36:945–953

    Article  CAS  Google Scholar 

  35. Wójtowicz-Rajchel H (2012) J Fluor Chem 143:11–48

    Article  Google Scholar 

  36. Biggadike K, Borthwick AD, Evans D, Exall AM, Kirk BE, Roberts SM, Stephenson L, Youds P (1988) J Chem Soc Perkin Trans 1:549–554

    Article  Google Scholar 

  37. Sofiana ASM, Lee CK (2001) J Carbohydr Chem 20:431–440

    Article  Google Scholar 

  38. Or YS, Ying L, Peng X, Wang C, Qui Y-L (2009) Nucleoside Phosphonate Derivatives. US Pat Appl 0,274,686

    Google Scholar 

  39. Clark JL, Mason JC, Hobbs AJ, Hollecker L, Schinazi RF (2006) J Carbohydr Chem 25:461–470

    Article  CAS  Google Scholar 

  40. Ritzmann G, Klein RS, Hollenberg DH, Fox JJ (1975) Carbohydr Res 39:227–236

    Article  CAS  Google Scholar 

  41. Nomura M, Sato T, Washinosu M, Tanaka M, Asao T, Shuto S, Matsuda A (2002) Tetrahedron 58:1279–1288

    Article  CAS  Google Scholar 

  42. Wolfe MS, Harry-O'kuru RE (1995) Tetrahedron Lett 36:7611–7614

    Article  CAS  Google Scholar 

  43. Harry-O'kuru RE, Smith JM, Wolfe MS (1997) J Org Chem 62:1754–1759

    Article  Google Scholar 

  44. Chun B-K, Du J, Zhang H-R, Chang W, Ross BS, Jiang Y, Bao D, Espiritu CL, Keilman M, Micolochick-Steuer HM, Furman PA, Sofia MJ (2011) Nucleos Nucleot Nucl 30:886–896

    Article  CAS  Google Scholar 

  45. Ross BS, Sofia MJ, Pamulapati GR, Rachakonda S, Zhang H-R, Chun B-K, Wang P (2010) N-[(2′R)-2′-deoxy-2′-fluoro-2′-methyl-P-phenyl-5′-uridylyl]-L-alanine 1-methylethyl ester and process for its production. WO Pat Appl 2010135,569 A1

    Google Scholar 

  46. Cook AF, Moffatt JG (1967) J Am Chem Soc 89:2697–2705

    Article  CAS  Google Scholar 

  47. Hayakawa H, Tanaka H, Itoh N, Nakajima M, Miyasaka T, Yamaguchi K, Iitaka Y (1987) Chem Pharm Bull 35:2605–2608

    Article  CAS  Google Scholar 

  48. Elgemeie GEH, Attia AME, Alkabai SS (2000) Nucleos Nucleot Nucl 19:723–733

    Article  CAS  Google Scholar 

  49. Holý A (1973) Tetrahedron Lett 14:1147–1150

    Article  Google Scholar 

  50. Jenkinson SF, Jones NA, Moussa A, Stewart AJ, Heinz T, Fleet GWJ (2007) Tetrahedron Lett 48:4441–4444

    Article  CAS  Google Scholar 

  51. Hotchkiss DJ, Jenkinson SF, Storer R, Heinz T, Fleet GWJ (2006) Tetrahedron Lett 47:315–318

    Article  CAS  Google Scholar 

  52. Mayes BA, Moussa A (2007) Process for preparing a synthetic intermediate for the preparation of branched nucleosides. WO Pat Appl 2007075,876 A2

    Google Scholar 

  53. Liu J, Du J, Wang P, Nagarathnam D, Espiritu CL, Bao H, Murakami E, Furman PA, Sofia MJ (2012) Nucleos Nucleot Nucl 31:277–285

    Article  Google Scholar 

  54. Clark JL, Mason JC, Hollecker L, Stuyver LJ, Tharnish PM, McBrayer TR, Otto MJ, Furman PA, Schinazi RF, Watanabe KA (2006) Bioorg Med Chem Lett 16:1712–1715

    Article  CAS  Google Scholar 

  55. Roberts CD, Griffith RC, Dyatkina NB, Prhavc M (2006) Nucleoside compounds for treating viral infections. US Pat Appl 0,241,064

    Google Scholar 

  56. Hu W, Yang Q, Wang S, Huang G, Zhang Y, Dong J, Kang J, Song C, Chang J (2013) Nucleos Nucleot Nucl 32:389–395

    Article  CAS  Google Scholar 

  57. Wang G, Beigelman L (2013) Substituted phosphorothioate analogs. WO Pat Appl 2013096,680 A1

    Google Scholar 

  58. Shi J, Du J, Ma T, Pankiewicz KW, Patterson SE, Hassan AE, Tharnish PM, McBrayer TR, Lostia S, Stuyver LJ, Watanabe KA, Chu CK, Schinazi RF, Otto MJ (2005) Nucleos Nucleot Nucl 24:875–879

    Article  CAS  Google Scholar 

  59. Liu LJ, Hong JH (2010) Nucleos Nucleot Nucl 29:216–227

    Article  CAS  Google Scholar 

  60. Li H, Yoo JC, Baik YC, Lee W, Hong JH (2010) Bull Korean Chem Soc 31:2514–2518

    Article  CAS  Google Scholar 

  61. L’Heureux A, Beaulieu F, Bennett C, Bill DR, Clayton S, LaFlamme F, Mirmehrabi M, Tadayon S, Tovell D, Couturier M (2010) J Org Chem 75:3401–3411

    Article  Google Scholar 

  62. Beaulieu F, Beauregard L-P, Courchesne G, Couturier M, LaFlamme F, L’Heureux A (2009) Org Lett 11:5050–5053

    Article  CAS  Google Scholar 

  63. Schöne O, Spitzenstätter H-P, Juen J (2014) Pat Appl, filed June 2014

    Google Scholar 

  64. Le Corre SS, Berchel M, Couthon-Gourves H, Haelters J-P, Jaffres P-A (2014) Beilstein J Org Chem 10:1166–1196

    Article  Google Scholar 

  65. Uchiyama M, Aso Y, Noyori R, Hayakawa Y (1993) J Org Chem 58:373–379

    Article  CAS  Google Scholar 

  66. McGuigan C, Pathirana RN, Mahmood N, Devine KG, Hay AJ (1992) Antiviral Res 17:311–321

    Article  CAS  Google Scholar 

  67. Lehsten DM, Baehr DN, Lobl TJ, Vaino AR (2002) Org Process Res Dev 6:819–822

    Article  CAS  Google Scholar 

  68. Liu C-Y, Pawar VD, Kao J-Q, Chen C-T (2010) Adv Synth Catal 352:188–194

    Article  CAS  Google Scholar 

  69. Rose PJ, Jung YC, Blight CM, Ibrahim S, Anzalone L, Miller DB, Van Alsten J, Curran TT (2014) Methods of stereoselective synthesis of substituted nucleoside analogs. WO Pat Appl 2014164,533 A1

    Google Scholar 

  70. Ross BS, Sofia MJ, Pamulapati GR, Rachakonda S, Zhang H-R, Chun B-K, Wang P (2010) A process for the preparation and diastereomeric resolution of N-[(2′R)-2′-deoxy-2′-fluoro-2′-methyl-P-phenyl-5′-uridylyl]-L-alanine 1-methylethyl ester. WO Pat Appl 2010135,569 A1

    Google Scholar 

  71. Ross BS, Ganapati Reddy P, Zhang H-R, Rachakonda S, Sofia MJ (2011) J Org Chem 76:8311–8319

    Article  CAS  Google Scholar 

  72. Howes PD, Slater MJ, Wareing K (2003) Nucleos Nucleot Nucl 22:687–689

    Article  CAS  Google Scholar 

  73. Perrone P, Luoni GM, Kelleher MR, Daverio F, Angell A, Mulready S, Congiatu C, Rajyaguru S, Martin JA, Leveque V, Le Pogam S, Najera I, Klumpp K, Smith DB, McGuigan C (2007) J Med Chem 50:1840–1849

    Article  CAS  Google Scholar 

  74. Cho A, Wolckenhauer SA (2012) Methods for the preparation of diasteromerically pure nucleoside phosphoramidate prodrugs as antiviral agents. WO Pat Appl 2012012,465 A1

    Google Scholar 

  75. Tran K, Eastgate MD, Janey J, Chen K, Rosso VW (2014) Process for preparing diastereomerically enriched nucleoside phosphoramidates for potential treatment of viral infections. WO Pat Appl 2014008,236 A1

    Google Scholar 

  76. Tran K, Beutner GL, Schmidt M, Janey J, Chen K, Rosso V, Eastgate MD (2015) J Org Chem 80:4994–5003

    Article  CAS  Google Scholar 

  77. Schmidt M, Silverman S, Eastgate MD (2014) Process for preparing phosphoramidate derivatives of nucleoside compounds for treatment of viral infections. WO Pat Appl 2014047,117 A1

    Google Scholar 

  78. Pertusati F, McGuigan C (2015) Chem Commun 51:8070–8073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Schöne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barth, R., Rose, C.A., Schöne, O. (2015). Synthetic Routes to Sofosbuvir. In: Časar, Z. (eds) Synthesis of Heterocycles in Contemporary Medicinal Chemistry. Topics in Heterocyclic Chemistry, vol 44. Springer, Cham. https://doi.org/10.1007/7081_2015_183

Download citation

Publish with us

Policies and ethics