Skip to main content

Development of Efficient Routes to Access C-Glycosides as SGLT-2 Inhibitors for the Treatment of Type 2 Diabetes

  • Chapter
  • First Online:
Synthesis of Heterocycles in Contemporary Medicinal Chemistry

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 44))

Abstract

C-Glycosides represent an attractive class of compounds for the medicinal chemist because they are more resistant to enzymatic hydrolysis than O-glycosides and therefore are considered as potential drug candidates. The potential was confirmed by the emergence of a new family of C-glycosides known as the SGLT-2 inhibitors leading to the development of new drugs for the treatment of type 2 diabetes. In this chapter, chemical processes to access new active pharmaceutical ingredients (API) will be described focusing on the key C-glycosylation step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

acac:

Acetylacetonate

API:

Active pharmaceutical ingredient

Ar:

Aryl

Bn:

Benzyl

Bz:

Benzoyl

d:

Day(s)

DBE:

Di-n-butyl ether

DIBAL-H:

Diisobutylaluminum hydride

DMAP:

4-(Dimethylamino)pyridine

DMP:

Dess–Martin periodinane

DMSO:

Dimethyl sulfoxide

equiv:

Equivalent(s)

Et:

Ethyl

Et3SiH:

Triethylsilane

h:

Hour(s)

i-Pr:

Isopropyl

LG:

Leaving group

L-PGA:

l-Pyroglutamic acid

Me:

Methyl

MSA:

Methanesulfonic acid

MTBE:

Methyl tert-butyl ether

n-Bu:

Butyl

n-Hex:

n-Hexane

Nu:

Nucleophile

PG:

Protecting group

Ph:

Phenyl

Piv:

Pivaloyl

PMB:

4-Methoxyphenyl

PNB:

4-Nitrobenzoyl

py:

Pyridine

R:

Alkyl

rt:

Room temperature

s-Bu:

sec-Butyl

TBAF:

Tetrabutylammonium fluoride

TBDPS:

tert-Butyldiphenylsilyl

t-Bu:

tert-Butyl

TEA:

Triethylamine

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TMEDA:

N,N,N',N'-Tetramethyl-1,2-ethylenediamine

TMS:

Trimethylsilyl

Tol:

Toluene, 4-methylphenyl

References

  1. Štambaský J, Hocek M, Kočovský P (2009) C-Nucleosides: Synthetic strategies and biological applications. Chem Rev 129:6729–6764

    Google Scholar 

  2. Isaji M (2007) Sodium-glucose cotransporter inhibitors for diabetes. Curr Opin Invest Drugs 8:285–292

    CAS  Google Scholar 

  3. World Health Organization (2011) Diabete: Facts Sheet N0. 312. Geneva. http://www.who.int/mediacenter/factsheets/fs312/en

  4. Lewis M, Cha J, Kishi Y (1982) Highly stereoselective approaches to α- and β-C-glycopyranosides. J Am Chem Soc 104:4976–4978

    Google Scholar 

  5. Kraus G, Molina M (1988) A direct synthesis of C-glycosyl compounds. J Org Chem 53:752–753

    Article  CAS  Google Scholar 

  6. Czernecki S, Ville G (1989) C-Glycosides. 7. stereospecific C-glycosylation of aromatic and heterocyclic rings. J Org Chem 54:610–612

    Google Scholar 

  7. Meng W, Ellsworth B, Nirschl A, McCann P, Patel M, Girotra R, Wu G, Sher P, Morrison E, Biller S, Zahler R, Deshpande P, Pullockaran A, Hagan D, Morgan N, Taylor J, Obermeier M, Humphreys W, Khanna A, Discenza L, Robertson J, Wang A, Han S, Wetterau J, Janovitz E, Flint O, Whaley J, Washburn W (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 51:1145–1149

    Article  CAS  Google Scholar 

  8. Nomura S, Sakamaki S, Hongu M, Kawanishi E, Koga Y, Sakamoto T, Yamamoto Y, Ueta K, Kimata H, Nakayama K, Tsuda-Tsukimoto M (2010) Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem 53:6355–6360

    Article  CAS  Google Scholar 

  9. Bernhardson D, Brandt T, Hulford C, Lehner R, Preston B, Price K, Sagal J, St. Pierre M, Thompson P, Thuma B (2014) Development of an early-phase bulk enabling route to sodium-dependent glucose cotransporter 2 inhibitor ertugliflozin. Org Process Res Dev 18:57–65

    Google Scholar 

  10. Eckhardt M, Himmelsbach F, Wang X, Sun X, Zhang L, Tang W, Krishnamurthy D, Senanayake C, Han Z (2006) Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates therein. WO Pat. Appl. 2006120,208, 7 Sept 2007

    Google Scholar 

  11. Imamura M, Nakanishi K, Suzuki T, Ikegai K, Shiraki R, Ogiyama T, Murakami T, Kurosaki E, Noda A, Kobayashi Y, Yokota M, Koide T, Kosakai K, Ohkura Y, Takeuchi M, Tomiyama H, Ohta M (2012) Discovery of ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. Bioorg Med Chem 20:3263–3279

    Article  CAS  Google Scholar 

  12. Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu S, Ahn K, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012) Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 55:7828–7840

    Article  CAS  Google Scholar 

  13. Liu Y, Fu T, Ou C, Fan W, Peng G (2013) Improved preparation of (1S,3′R,4′S,5′S,6′R)-5-chloro-6-[(4-(ethylpheny)methyl]-3′,4′,5′,6′-tetrahydro-6′-(hydroxymethyl)-spiro[isobenzofuran-1(3H),2′-[2H]pyran-3′,4′,5′-triol. Chin Chem Lett 24:131–133

    Article  CAS  Google Scholar 

  14. Kakinuma H, Oi T, Hashimoto-Tsuchiya Y, Arai M, Kawakita Y, Fukasawa Y, Iida I, Hagima N, Takeuchi H, Chino Y, Asami J, Okumura-Kitajima L, Io F, Yamamoto D, Miyata N, Takahashi T, Uchida S, Yamamoto K (2010) (1S)-1,5-Anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]1-thio-D-glucitol (TS-071) is a potent, selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for type 2 diabetes treatment. J Med Chem 53:3247–3261

    Article  CAS  Google Scholar 

  15. Ellsworth B, Doyle A, Patel M, Caceres-Cortes J, Mend W, Deshpande P, Pullockaran A, Washburn W (2003) C-Arylglucoside synthesis: triisopropyl silane as a selective reagent for the reduction of an anomeric C-phenyl ketal. Tetrahedron Asymmetry 14:3243–3247

    Article  CAS  Google Scholar 

  16. Deshpande P, Ellsworth B, Buono F, Pullockaran A, Singh J, Kissick T, Huand M-H, Lobinger H, Denzel T, Mueller R (2007) Remarkable β-selectivity in the synthesis of β-1-C-arylglucosides: stereoselective reduction of acetyl-protected methyl 1-C-arylglucosides without acetoxy-group participation. J Org Chem 72:9746–9749

    Google Scholar 

  17. Ellsworth B, Washburn W, Sher P, Wu G, Meng W (2002) C-Aryl glucoside SGLT2 inhibitors and method. US Pat. Appl. 6,414,126, 2 July 2002

    Google Scholar 

  18. Wang X-J, Zhang L, Byrne D, Nummy L, Weber D, Krishnamurthy D, Yee N, Senanayake C (2014) Efficient synthesis of empagliflozin, an inhibitor of SGLT-2, utilizing an AlCl3-promoted silane reduction of a β-glycopyranoside. Org Lett 16:4090–4093

    Google Scholar 

  19. Filliers W, Broeckx R, Nieste P, Hatsuda M, Yoshinaga M, Yada M (2010) Process for the preparation of compounds useful as inhibitor of SGLT. WO Pat. Appl. 2010043,682, 22 Apr 2010

    Google Scholar 

  20. Bowles P, Brenek J, Caron S, Do N, Drexler M, Duan S, Dubé P, Hansen E, Jones B, Jones K, Ljubicic T, Makowski T, Mustakis J, Nelson J, Olivier M, Peng Z, Perfect H, Place D, Ragan J, Salisbury J, Stanchina C, Vanderplas B, Webster M, Weekly R (2014) Commercial route research and development for SGLT2 inhibitor candidate ertugliflozin. Org Process Res Dev 18:66–81

    Google Scholar 

  21. De Paul S, Perlberg A, Zhao M (2010) Solid forms of (2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol and methods of their use. WO Pat. Appl. 2010009,197, 21 Jan 2010

    Google Scholar 

  22. Gong H, Andrews RS, Zuccarello JL, Lee SJ, Gagné MR (2009) Sn-Free Ni-catalyzed reductive coupling of glycosyl bromides with activated alkenes. Org Lett 11:879–882

    Article  CAS  Google Scholar 

  23. Gong H, Gagné MR (2008) Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J Am Chem Soc 130:12177–12183

    Article  CAS  Google Scholar 

  24. Gong H, Sinisi R, Gagné MR (2007) A room temperature Negishi cross-coupling approach to C-alkyl glycosides. J Am Chem Soc 129:1908–1909

    Article  CAS  Google Scholar 

  25. Nicholas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J (2012) Diastereoselective metal-catalyzed synthesis of C-aryl and C-vinyl glycosides. Angew Chem Int Ed 51:11101–11104

    Article  Google Scholar 

  26. Nicolas L, Izquierdo E, Angibaud P, Stansfield I, Meerpoel L, Reymond S, Cossy J (2013) Cobalt-catalyzed diastereoselective synthesis of C-furanosides. total synthesis of (−)-isoaltholactone. J Org Chem 78:11807–11814

    Article  CAS  Google Scholar 

  27. Lemaire S, Houpis IN, Xiao T, Li J, Digard E, Gozlan C, Liu R, Gavryushin A, Diene C, Wang Y, Farina V, Knochel P (2012) Stereoselective C-glycosylation reactions with arylzinc reagents. Org Lett 14:1480–1483

    Article  CAS  Google Scholar 

  28. Henschke JP, Wu P-Y, Lin C-W, Chen S-F, Chiang P-C, Hsiao C-N (2105) β-Selective C-arylation of silyl protected 1,6-anhydroglucose with arylalanes: the synthesis of SGLT2 inhibitors. J Org Chem 80:2295–2309

    Google Scholar 

  29. Henschke JP, Lin C-W, Wu P-Y, Tsao W-S, Liao J-H, Chiang P-H (2015) β-Selective C-arylation of diisobutylaluminum hydride modified 1,6-anhydroglucose: synthesis of canagliflozin without recourse to conventional protecting groups. J Org Chem (80):5189–5195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Lemaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lemaire, S., Schils, D. (2015). Development of Efficient Routes to Access C-Glycosides as SGLT-2 Inhibitors for the Treatment of Type 2 Diabetes. In: Časar, Z. (eds) Synthesis of Heterocycles in Contemporary Medicinal Chemistry. Topics in Heterocyclic Chemistry, vol 44. Springer, Cham. https://doi.org/10.1007/7081_2015_166

Download citation

Publish with us

Policies and ethics