Azepinone-Constrained Amino Acids in Peptide and Peptidomimetic Design

  • Steven Ballet
  • Karel Guillemyn
  • Olivier Van der Poorten
  • Ben Schurgers
  • Guido Verniest
  • Dirk Tourwé
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 48)


Side chain topography of amino acids that are part of a peptide’s pharmacophore represents a crucial structural feature in peptidomimetic design. Constraining the side chain dihedral angles (χ angles) may limit the number of low energy conformations and lead to more potent, receptor subtype selective and enzymatically stable peptide ligands. The current chapter describes this strategy for aromatic amino acids such as Phe, Tyr, Trp, and His. The side chains of these residues are incorporated in or mimicked by amino-arylazepinones. A selection of synthetic pathways that were used and developed by our laboratory is described for obtaining conformationally constrained 4-amino-(7-hydroxy)-2-benzazepinones [Aba (or Hba)] and the corresponding amino-indolo- and amino-triazoloazepinones (Aia and Ata, respectively). These azepinone mimics were synthesized from amino acid educts and have been used in various biological applications. Moreover, other heterocyclic amino-azepinones were prepared based on ring-closing metathesis and post-cyclization modifications. Further elaboration of the substitution patterns in these azepinones has rendered them highly versatile building blocks for use in peptidomimetic design. The selected biological applications illustrate their potential for the development of novel peptide-based pharmacological probes and drug candidates.


4-Amino-2-arylazepinones Angiotensin IV Bradykinin Conformationally constrained amino acids Melanocortin Opioid peptides Somatostatin 


  1. 1.
    Kessler H (1982) Conformation and biological activity of cyclic peptides. Angew Chem Int Ed 21(7):512–523CrossRefGoogle Scholar
  2. 2.
    Kazmierski W, Hruby VJ (1988) A new approach to receptor ligand design: synthesis and conformation of a new class of potent and highly selective μ opioid antagonists utilizing tetrahydroisoquinoline carboxylic acid. Tetrahedron 44(3):697–710CrossRefGoogle Scholar
  3. 3.
    Bryant SD, Jinsmaa Y, Salvadori S et al (2003) Dmt and opioid peptides: a potent alliance. Biopolymers 71(2):86–102CrossRefGoogle Scholar
  4. 4.
    Tourwe D, Verschueren K, Frycia A et al (1996) Conformational restriction of Tyr and Phe side-chain in opioid peptides: information about preferred and bioactive side-chain topology. Biopolymers 38:1–12CrossRefGoogle Scholar
  5. 5.
    Wu H, Wacker D, Mileni M et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332CrossRefGoogle Scholar
  6. 6.
    Schiller PW, Nguyen TM, Weltrowska G et al (1992) Differential stereochemical requirements of mu vs. delta opioid receptors for ligand binding and signal transduction: development of a class of potent and highly delta-selective peptide antagonists. Proc Natl Acad Sci 89(24):11871–11875CrossRefGoogle Scholar
  7. 7.
    Freidinger RM, Veber DF, Perlow DS et al (1980) Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Science 210(4470):656–658CrossRefGoogle Scholar
  8. 8.
    Perdih A, Kikelj D (2006) The application of Freidinger lactams and their analogs in the design of conformationally constrained peptidomimetics. Curr Med Chem 13(13):1525–1556CrossRefGoogle Scholar
  9. 9.
    Flynn GA, Beight DW (1989) Novel antihypertensive agent. European Patent 0249224Google Scholar
  10. 10.
    de Laszlo SE, Bush BL, Doyle JJ et al (1992) Synthesis and use of 3-amino-4-phenyl-2-piperidones and 4-amino-2-benzazepin-3-ones as conformationally restricted phenylalanine isosteres in renin inhibitors. J Med Chem 35(5):833–846CrossRefGoogle Scholar
  11. 11.
    Casimir JR, Guichard G, Briand J-P (2002) Methyl 2-((succinimidooxy)carbonyl)benzoate (MSB): a new, efficient reagent for N-phthaloylation of amino acid and peptide derivatives. J Org Chem 67(11):3764–3768CrossRefGoogle Scholar
  12. 12.
    Ilisz I, Ballet S, Van Rompaey K et al (2007) High-performance liquid chromatographic separation of stereoisomers of N-phthaloyl-protected amino acids and dipeptidomimetics. J Sep Sci 30(12):1881–1887CrossRefGoogle Scholar
  13. 13.
    Severino B, Fiorino F, Esposito A et al (2009) Efficient microwave-assisted synthesis of 4-amino-2-benzazepin-3-ones as conformationally restricted dipeptide mimetics. Tetrahedron 65(1):206–211CrossRefGoogle Scholar
  14. 14.
    Ballet S, Frycia A, Piron J et al (2005) Synthesis and biological evaluation of constrained analogues of the opioid peptide H-Tyr-D-Ala-Phe-Gly-NH2 using 4-amino-2-benzazepin-3-one scaffold. J Pept Res 66:222–230CrossRefGoogle Scholar
  15. 15.
    Tourwe D, Verschueren K, Van Binst G et al (1992) Dermorphin sequence with high delta-affinity by fixing the Phe side-chain to trans at alpha-1. Bioorg Med Chem Lett 2:1305–1308CrossRefGoogle Scholar
  16. 16.
    De Wachter R, de Graaf C, Keresztes A et al (2011) Synthesis, biological evaluation, and automated docking of constrained analogues of the opioid peptide H-Dmt-D-Ala-Phe-Gly-NH2 using the 4- or 5-methyl substituted 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one scaffold. J Med Chem 54(19):6538–6547CrossRefGoogle Scholar
  17. 17.
    Casimir JR, Tourwé D, Iterbeke K et al (2000) Efficient synthesis of (S)-4-phthalimido-1,3,4,5- tetrahydro-8-(2,6-dichlorobenzyloxy)-3-oxo-2H-2-benzazepin-2-acetic acid (Pht-Hba(2,6-Cl2-Bn)-Gly-OH). J Org Chem 65(20):6487–6492CrossRefGoogle Scholar
  18. 18.
    Ruzza P, Calderan A, Donella-Deana A et al (2003) Conformational constraints of tyrosine in protein tyrosine kinase substrates: information about preferred bioactive side-chain orientation. Biopolymers 71(4):478–488CrossRefGoogle Scholar
  19. 19.
    Flynn GA, Burkholder TP, Huber EW et al (1991) An acyliminium ion route to Cis and Trans “Anti” Phe-Gly dipeptide mimetics. Bioorg Med Chem Lett 1(6):309–312CrossRefGoogle Scholar
  20. 20.
    Rabi-Barakay A, Ben-Ishai D (1994) Intramolecular amidoalkylation of aromatics III. Synthesis of conformationally restricted bridged peptide analogues of Phe-Gly. Tetrahedron 50(36):10771–10782CrossRefGoogle Scholar
  21. 21.
    Katritzky AR, Manju K, Singh SK et al (2005) Benzotriazole mediated amino-, amido-, alkoxy- and alkylthio-alkylation. Tetrahedron 61(10):2555–2581CrossRefGoogle Scholar
  22. 22.
    Ballet S, Urbanczyk-Lipkowska Z, Tourwé D (2005) Synthesis of substituted 4-amino-2-benzezepin-3-ones via N-acyliminium ion cycliations. Synlett 18:2791–2795Google Scholar
  23. 23.
    Ballet S, De Wachter R, Maes BUW et al (2007) Derivatization of 1-phenyl substituted 4-amino-2-benzazepin-3-ones: evaluation of Pd-catalyzed coupling reactions. Tetrahedron 63(18):3718–3727CrossRefGoogle Scholar
  24. 24.
    Warshawsky AM, Flynn GA, Koehl JR et al (1996) The synthesis of aminobenzazepinones as anti-phenylalanine dipeptide mimics and their use in NEP inhibition. Bioorg Med Chem Lett 6(8):957–962CrossRefGoogle Scholar
  25. 25.
    Van Rompaey K, Van den Eynde I, De Kimpe N et al (2003) A versatile synthesis of 2-substituted 4-amino-1,2,4,5-tetrahydro-2-benzazepine-3-ones. Tetrahedron 59(24):4421–4432CrossRefGoogle Scholar
  26. 26.
    Van den Eynde I, Van Rompaey K, Lazzaro F et al (2004) Solid-supported solution-phase synthesis of 4-amino-1,2,4,5-tetrahydro-2-benzazepine-3-ones. J Comb Chem 6(4):468–473CrossRefGoogle Scholar
  27. 27.
    Guillemyn K, Kleczkowska P, Lesniak A et al (2015) Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – neurokinin-1 antagonist peptidomimetics. Eur J Med Chem 92:64–77CrossRefGoogle Scholar
  28. 28.
    Robl JA, Sun CQ (2001) Processes and intermediates for preparing benzo-fused azepinone and piperidinone compounds useful in the inhibition of ACE and NEP. US Patent 6,6235,922Google Scholar
  29. 29.
    Sedighi M, Çalimsiz S, Lipton MA (2006) An improved method for the protection of carboxylic acids as 1,1-dimethylallyl esters. J Org Chem 71(25):9517–9518CrossRefGoogle Scholar
  30. 30.
    De Wachter R, Brans L, Ballet S et al (2009) Influence of ring substitution on the conformation and β-turn mimicry of 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one peptide mimetics. Tetrahedron 65(11):2266–2278CrossRefGoogle Scholar
  31. 31.
    Vandormael B, De Wachter R, Martins JC et al (2011) Asymmetric synthesis and conformational analysis by NMR spectroscopy and MD of Aba- and alpha-MeAba-containing dermorphin analogues. ChemMedChem 6(11):2035–2047CrossRefGoogle Scholar
  32. 32.
    Vandormael B (2011) Ph.D. thesis, Vrije Universiteit Brussel, BrusselsGoogle Scholar
  33. 33.
    Tömböly C, Ballet S, Feytens D et al (2008) Endomorphin-2 with a β-turn backbone constraint retains the potent μ-opioid receptor agonist properties. J Med Chem 51(1):173–177CrossRefGoogle Scholar
  34. 34.
    Van Rompaey K, Ballet S, Tömböly C et al (2006) Synthesis and evaluation of the β-turn properties of 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-ones and of their spirocyclic derivative. Eur J Med Chem 2006(13):2899–2911Google Scholar
  35. 35.
    Feytens D (2009) Ph.D. thesis, Vrije Universiteit Brussel, BrusselsGoogle Scholar
  36. 36.
    Podlech J (2002) In: Goodman M, Felix A, Moroder L, Toniolo C (eds) Methods of organic chemistry (Houben-Weyl): synthesis of peptides and peptidomimetics. George Thieme Verlag, Stuttgart/New York, p 141Google Scholar
  37. 37.
    Pulka K, Feytens D, Van den Eynde I et al (2007) Synthesis of 4-amino-3-oxo-tetrahydroazepino[3,4-b]indoles: new conformationally constrained Trp analogs. Tetrahedron 63(6):1459–1466CrossRefGoogle Scholar
  38. 38.
    Feytens D, De Vlaeminck M, Tourwe D (2009) A novel solid phase approach to Aia-containing peptides. J Pept Sci 15(1):16–22CrossRefGoogle Scholar
  39. 39.
    Jida M, Betti C, Urbanczyk-Lipkowska Z et al (2013) Highly diastereoselective synthesis of 1-carbamoyl-4-aminoindoloazepinone derivatives via the Ugi reaction. Org Lett 15(22):5866–5869CrossRefGoogle Scholar
  40. 40.
    Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89CrossRefGoogle Scholar
  41. 41.
    Koopmanschap G, Ruijter E, Orru RV (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598CrossRefGoogle Scholar
  42. 42.
    Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev 36(10):1674–1689CrossRefGoogle Scholar
  43. 43.
    Pedersen DS, Abell A (2011) 1,2,3-Triazoles in peptidomimetic chemistry. Eur J Org Chem 2011(13):2399–2411CrossRefGoogle Scholar
  44. 44.
    Buysse K, Farard J, Nikolaou A et al (2011) Amino triazolo diazepines (Ata) as constrained histidine mimics. Org Lett 13(24):6468–6471CrossRefGoogle Scholar
  45. 45.
    Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60(11):2447–2467CrossRefGoogle Scholar
  46. 46.
    Snieckus V, Singh SP (2014) Synthesis of aminotriazoloazepinone-containing di- and tripeptides. Synfacts 10(11):1132–1132CrossRefGoogle Scholar
  47. 47.
    Hulme C, Gore V (2003) “Multi-component reactions: emerging chemistry in drug discovery” ‘from xylocain to crixivan’. Curr Med Chem 10(1):51–80CrossRefGoogle Scholar
  48. 48.
    Barlow TMA, Jida M, Tourwe D et al (2014) Efficient synthesis of conformationally constrained, amino-triazoloazepinone-containing di- and tripeptides via a one-pot Ugi-Huisgen tandem reaction. Org Biomol Chem 12(36):6986–6989CrossRefGoogle Scholar
  49. 49.
    Schurgers B, Brigou B, Urbanczyk-Lipkowska Z et al (2014) Synthesis of fused 3-aminoazepinones via trapping of a new class of cyclic seven-membered allenamides with furan. Org Lett 16(14):3712–3715CrossRefGoogle Scholar
  50. 50.
    De Matteis V, van Delft FL, de Gelder R et al (2004) Fluorinated (hetero)cycles via ring-closing metathesis of fluoride- and trifluoromethyl-functionalized olefins. Tetrahedron Lett 45(5):959–963CrossRefGoogle Scholar
  51. 51.
    Chao W, Weinreb SM (2003) The first examples of ring-closing olefin metathesis of vinyl chlorides. Org Lett 5(14):2505–2507CrossRefGoogle Scholar
  52. 52.
    Kirkland TA, Grubbs RH (1997) Effects of olefin substitution on the ring-closing metathesis of dienes. J Org Chem 62(21):7310–7318CrossRefGoogle Scholar
  53. 53.
    Paone DV, Shaw AW, Nguyen DN et al (2007) Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-[(3R,6S)-6-(2,3-Difluorophenyl)-2-oxo-1- (2,2,2-trifluoroethyl)azepan-3-yl]-4- (2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin- 1-yl)piperidine-1-carboxamide (MK-0974). J Med Chem 50(23):5564–5567CrossRefGoogle Scholar
  54. 54.
    Schurgers B, Van Lommen G, Verniest G (2015) Synthesis and selective N, O-functionalization of pyrazolone-fused 3-aminoazepinones. Eur J Org Chem 2015(16):3572–3576CrossRefGoogle Scholar
  55. 55.
    Tanaka H, Kameyama Y, Sumida S-I et al (1991) A new short cut route to 3-norcephalosporins. Synlett 1991(12):888–890CrossRefGoogle Scholar
  56. 56.
    Farina V, Kant J (1992) A new strategy for the conversion of penams into cephems via allene chemistry. Tetrahedron Lett 33(25):3559–3562CrossRefGoogle Scholar
  57. 57.
    Piperno A, Rescifina A, Corsaro A et al (2007) A novel class of modified nucleosides: synthesis of alkylidene isoxazolidinyl nucleosides containing thymine. Eur J Org Chem 2007(9):1517–1521CrossRefGoogle Scholar
  58. 58.
    Cheng G, Hu Y (2007) One-pot synthesis of furocoumarins through cascade addition-cyclization-oxidation. Chem Commun 31:3285–3287CrossRefGoogle Scholar
  59. 59.
    Zimmermann D, Krogsgaard-Larsen P, Ehrhardt J-D et al (1998) Unambiguous synthesis of 1-methyl-3-hydroxypyrazoles. Tetrahedron 54(32):9393–9400CrossRefGoogle Scholar
  60. 60.
    Cottineau B, Toto P, Marot C et al (2002) Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg Med Chem Lett 12(16):2105–2108CrossRefGoogle Scholar
  61. 61.
    Holzer W, Kautsch C, Laggner C et al (2004) On the tautomerism of pyrazolones: the geminal 2J[pyrazole C-4, H-3(5)] spin coupling constant as a diagnostic tool. Tetrahedron 60(32):6791–6805CrossRefGoogle Scholar
  62. 62.
    Patel MV, Bell R, Majest S et al (2004) Synthesis of 4,5-diaryl-1H-pyrazole-3-ol derivatives as potential COX-2 inhibitors. J Org Chem 69(21):7058–7065CrossRefGoogle Scholar
  63. 63.
    Zhang Y, Benmohamed R, Huang H et al (2013) Arylazanylpyrazolone derivatives as inhibitors of mutant superoxide dismutase 1 dependent protein aggregation for the treatment of amyotrophic lateral sclerosis. J Med Chem 56(6):2665–2675CrossRefGoogle Scholar
  64. 64.
    Piscopio AD, Miller JF, Koch K (1999) Ring closing metathesis in organic synthesis: evolution of a high speed, solid phase method for the preparation of β-turn mimetics. Tetrahedron 55(27):8189–8198CrossRefGoogle Scholar
  65. 65.
    Hoffmann T, Waibel R, Gmeiner P (2003) A general approach to dehydro-Freidinger lactams: ex-chiral pool synthesis and spectroscopic evaluation as potential reverse turn inducers. J Org Chem 68(1):62–69CrossRefGoogle Scholar
  66. 66.
    Flynn GA, Giroux EL, Dage RC (1987) An acyl-iminium ion cyclization route to a novel conformationally restricted dipeptide mimic: applications to angiotensin-converting enzyme inhibition. J Am Chem Soc 109(25):7914–7915CrossRefGoogle Scholar
  67. 67.
    Thaisrivongs S, Pals DT, Harris DW et al (1986) Design and synthesis of a potent and specific renin inhibitor with a prolonged duration of action in vivo. J Med Chem 29(10):2088–2093CrossRefGoogle Scholar
  68. 68.
    Montecucchi PC, de Castiglione R, Piani S et al (1981) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17(3):275–283CrossRefGoogle Scholar
  69. 69.
    Melchiorri P, Negri L (1996) The dermorphin peptide family. Gen Pharmacol 27:1099–1107CrossRefGoogle Scholar
  70. 70.
    Ballet S, Misicka A, Kosson P et al (2008) Blood-brain barrier penetration by two dermorphin tetrapeptide analogues: role of lipophilicity vs structural flexibility. J Med Chem 51(8):2571–2574CrossRefGoogle Scholar
  71. 71.
    Vandormael B, Fourla D-D, Gramowski-Voß A et al (2011) Superpotent [Dmt1]Dermorphin tetrapeptides containing the 4-aminotetrahydro-2-benzazepin-3-one scaffold with mixed μ/δ opioid receptor agonistic properties. J Med Chem 54(22):7848–7859CrossRefGoogle Scholar
  72. 72.
    Novoa A, Van Dorpe S, Wynendaele E et al (2012) Variation of the net charge, lipophilicity, and side chain flexibility in Dmt1-DALDA: effect on opioid activity and biodistribution. J Med Chem 55(22):9549–9561CrossRefGoogle Scholar
  73. 73.
    Misicka A, Lipkowski AW, Horvath R et al (1992) Topographical requirements for delta opioid ligands: common structural features of dermenkephalin and deltorphin. Life Sci 51(13):1025–1032CrossRefGoogle Scholar
  74. 74.
    Schiller PW, Fundytus ME, Merovitz L et al (1999) The opioid μ agonist/δ antagonist DIPP-NH2[Ψ] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats. J Med Chem 42(18):3520–3526CrossRefGoogle Scholar
  75. 75.
    Okada Y, Tsuda Y, Fujita Y et al (2003) Unique high-affinity synthetic μ-opioid receptor agonists with central- and systemic-mediated analgesia. J Med Chem 46(15):3201–3209CrossRefGoogle Scholar
  76. 76.
    Hansen D, Stapelfeld A, Savage M et al (1992) Systemic analgesic activity and delta-opioid selectivity in [2,6-dimethyl-Tyr1, D-Pen2, D-Pen5]enkephalin. J Med Chem 35:684–687CrossRefGoogle Scholar
  77. 77.
    Schiller P, Nguyen T, Berezowska I et al (2000) Synthesis and in vitro opioid activity profiles of DALDA analogues. Eur J Med Chem 35:895–901CrossRefGoogle Scholar
  78. 78.
    Szeto HH, Lovelace JL, Fridland G et al (2001) In vivo pharmacokinetics of selective mu-opioid peptide agonists. J Pharmacol Exp Ther 298(1):57–61Google Scholar
  79. 79.
    Guillemyn K, Kleczkowska P, Novoa A et al (2012) In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist - neurokinin 1 receptor antagonist chimera. Mol Brain 5(1):4CrossRefGoogle Scholar
  80. 80.
    Zadina JE, Hackler L, Ge L-J et al (1997) A potent and selective endogenous agonist for the μ-opiate receptor. Nature 386(6624):499–502CrossRefGoogle Scholar
  81. 81.
    Wilkes BC, Nguyen TM, Weltrowska G et al (1998) The receptor-bound conformation of H-Tyr-Tic-(Phe-Phe)-OH-related δ-opioid antagonists contains all trans peptide bonds. J Pept Res 51(5):386–394CrossRefGoogle Scholar
  82. 82.
    Lazarus LH, Bryant SD, Cooper PS et al (1998) Design of δ-opioid peptide antagonists for emerging drug applications. Drug Discov Today 3(6):284–294CrossRefGoogle Scholar
  83. 83.
    Salvadori S, Attila M, Balboni G et al (1995) Delta opioidmimetic antagonists: prototypes for designing a new generation of ultraselective opioid peptides. Mol Med 1(6):678–689Google Scholar
  84. 84.
    Van den Eynde I, Laus G, Schiller PW et al (2005) A new structural motif for μ-opioid antagonists. J Med Chem 48(10):3644–3648CrossRefGoogle Scholar
  85. 85.
    Ballet S, Feytens D, Wachter RD et al (2009) Conformationally constrained opioid ligands: the Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold. Bioorg Med Chem Lett 19(2):433–437CrossRefGoogle Scholar
  86. 86.
    Ballet S, Marczak ED, Feytens D et al (2010) Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds. Bioorg Med Chem Lett 20(5):1610–1613CrossRefGoogle Scholar
  87. 87.
    King T, Gardell L, Wang R et al (2005) Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain 116:276–288CrossRefGoogle Scholar
  88. 88.
    Yamamoto T, Nair P, Jacobsen N et al (2010) Biological and conformational evaluation of bifunctional compounds for opioid receptor agonists and neurokinin 1 receptor antagonists possessing two penicillamines. J Med Chem 53:5491–5501CrossRefGoogle Scholar
  89. 89.
    Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543CrossRefGoogle Scholar
  90. 90.
    Morphy R, Rankovic Z (2010) Design of multitarget ligands. In: Lead generation approaches in drug discovery. Wiley, Hoboken, pp 141–164CrossRefGoogle Scholar
  91. 91.
    Fujii H (2011) Twin and triplet drugs in opioid research. Top Curr Chem 299:239–275CrossRefGoogle Scholar
  92. 92.
    Kleczkowska P, Lipkowski AW, Tourwe D et al (2013) Hybrid opioid/non-opioid ligands in pain research. Curr Pharm Des 19(42):7435–7450CrossRefGoogle Scholar
  93. 93.
    Lipkowski AW (1987) Cooperative reinforcement of opioid pharmacophores. Pol J Pharmacol Pharm 39:585–596Google Scholar
  94. 94.
    Lipkowski AW, Carr DB, Misicka A et al (1994) Biological activities of a peptide containing both casomorphin-like and substance P antagonist structural characteristics. In: Brantl V, Teschemacher H (eds) B-casomorphins and related peptides: recent developments. VCH, Weinheim, pp 113–118Google Scholar
  95. 95.
    Bonney IM, Foran SE, Marchand JE et al (2004) Spinal antinociceptive effects of AA501, a novel chimeric peptide with opioid receptor agonist and tachykinin receptor antagonist moieties. Eur J Pharmacol 488(1–3):91–99CrossRefGoogle Scholar
  96. 96.
    Foran SE, Carr DB, Lipkowski AW et al (2000) A substance P-opioid chimeric peptide as a unique nontolerance-forming analgesic. Proc Natl Acad Sci 97(13):7621–7626CrossRefGoogle Scholar
  97. 97.
    Yamamoto T, Nair P, Davis P et al (2007) Design, synthesis, and biological evaluation of novel bifunctional C-terminal-modified peptides for δ/μ opioid receptor agonists and neurokinin-1 receptor antagonists. J Med Chem 50(12):2779–2786CrossRefGoogle Scholar
  98. 98.
    Yamamoto T, Nair P, Vagner J et al (2008) A structure–activity relationship study and combinatorial synthetic approach of C-terminal modified bifunctional peptides that are δ/μ opioid receptor agonists and neurokinin 1 receptor antagonists. J Med Chem 51(5):1369–1376CrossRefGoogle Scholar
  99. 99.
    Costantino L, Barlocco D (2012) Designed multiple ligands: basic research vs clinical outcomes. Curr Med Chem 19(20):3353–3387CrossRefGoogle Scholar
  100. 100.
    Gentilucci L (2004) New trends in the development of opioid peptide analogues as advanced remedies for pain relief. Curr Top Med Chem 4:19–38CrossRefGoogle Scholar
  101. 101.
    Ballet S, Feytens D, Buysse K et al (2011) Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist. J Med Chem 54:2467–2476CrossRefGoogle Scholar
  102. 102.
    Armour DR, Aston NM, Morriss KML et al (1997) 1,4-Benzodiazepin-2-one derived neurokinin-1 receptor antagonists. Bioorg Med Chem Lett 7(15):2037–2042CrossRefGoogle Scholar
  103. 103.
    Reissmann S, Pineda F, Vietinghoff G et al (2000) Structure activity relationships for bradykinin antagonists on the inhibition of cytokine release and the release of histamine. Peptides 21(4):527–533CrossRefGoogle Scholar
  104. 104.
    Bock MG, Longmore J (2000) Bradykinin antagonists: new opportunities. Curr Opin Chem Biol 4(4):401–406CrossRefGoogle Scholar
  105. 105.
    Martorana PA, Kettenbach B, Breipohl G et al (1990) Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. Eur J Pharmacol 182(2):395–396CrossRefGoogle Scholar
  106. 106.
    Amblard M, Daffix I, Bedos P et al (1999) Design and synthesis of potent bradykinin agonists containing a benzothiazepine moiety. J Med Chem 42(20):4185–4192CrossRefGoogle Scholar
  107. 107.
    Amblard M, Daffix I, Bergé G et al (1999) Synthesis and characterization of bradykinin B2 receptor agonists containing constrained dipeptide mimics. J Med Chem 42(20):4193–4201CrossRefGoogle Scholar
  108. 108.
    Amblard M, Raynal N, Averlant-Petit M-C et al (2005) Structural elucidation of the β-turn inducing (S)-[3-amino-4-oxo-2,3-dihydro-5H-benzo[b][1,4]thiazepin-5-yl] acetic acid (DBT) motif. Tetrahedron Lett 46(21):3733–3735CrossRefGoogle Scholar
  109. 109.
    Ballet S, De Wachter R, Van Rompaey K et al (2007) Bradykinin analogs containing the 4-amino-2-benzazepin-3-one scaffold at the C-terminus. J Pept Sci 13(3):164–170CrossRefGoogle Scholar
  110. 110.
    Janecka A, Zubrzycka M, Janecki T (2001) Somatostatin analogs. J Pept Res 58(2):91–107CrossRefGoogle Scholar
  111. 111.
    Rohrer SP, Birzin ET, Mosley RT et al (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282(5389):737–740CrossRefGoogle Scholar
  112. 112.
    Yang L, Berk SC, Rohrer SP et al (1998) Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci 95(18):10836–10841CrossRefGoogle Scholar
  113. 113.
    Moore SB, Grant M, Rew Y et al (2005) Synthesis and biologic activity of conformationally constrained analogs of L-363,301. J Pept Res 66(6):404–422CrossRefGoogle Scholar
  114. 114.
    Feytens D, Cescato R, Reubi JC et al (2007) New sst4/5-selective somatostatin peptidomimetics based on a constrained tryptophan scaffold. J Med Chem 50(14):3397–3401CrossRefGoogle Scholar
  115. 115.
    Feytens D, De Vlaeminck M, Cescato R et al (2009) Highly potent 4-amino-indolo[2,3-c]azepin-3-one-containing somatostatin mimetics with a range of sst receptor selectivities. J Med Chem 52(1):95–104CrossRefGoogle Scholar
  116. 116.
    Chai SY, Fernando R, Peck G et al (2004) The angiotensin IV/AT4 receptor. Cell Mol Life Sci 61(21):2728–2737CrossRefGoogle Scholar
  117. 117.
    Lukaszuk A, Demaegdt H, Szemenyei E et al (2008) Beta-homo-amino acid scan of angiotensin IV. J Med Chem 51(7):2291–2296CrossRefGoogle Scholar
  118. 118.
    Lukaszuk A, Demaegdt H, Feytens D et al (2009) The replacement of His(4) in angiotensin IV by conformationally constrained residues provides highly potent and selective analogues. J Med Chem 52(18):5612–5618CrossRefGoogle Scholar
  119. 119.
    Nikolaou A, Van den Eynde I, Tourwe D et al (2013) [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 702(1-3):93–102CrossRefGoogle Scholar
  120. 120.
    Hruby VJ, Wilkes BC, Cody WL et al (1984) Melanotropins: structural, conformational and biological considerations in the development of superpotent and superprolonged analogues. Pept Protein Rev 3:1–64Google Scholar
  121. 121.
    Cone RD, Lu D, Koppula S et al (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–317Google Scholar
  122. 122.
    Fan W, Boston BA, Kesterson RA et al (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385(6612):165–168CrossRefGoogle Scholar
  123. 123.
    Huszar D, Lynch CA, Fairchild-Huntress V et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141CrossRefGoogle Scholar
  124. 124.
    Al-Obeidi F, Castrucci AM, Hadley ME et al (1989) Potent and prolonged acting cyclic lactam analogues of alpha-melanotropin: design based on molecular dynamics. J Med Chem 32(12):2555–2561CrossRefGoogle Scholar
  125. 125.
    Al-Obeidi F, Hadley ME, Pettitt BM et al (1989) Design of a new class of superpotent cyclic alpha-melanotropins based on quenched dynamic simulations. J Am Chem Soc 111(9):3413–3416CrossRefGoogle Scholar
  126. 126.
    Ballet S, Mayorov AV, Cai M et al (2007) Novel selective human melanocortin-3 receptor ligands: use of the 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffold. Bioorg Med Chem Lett 17(9):2492–2498CrossRefGoogle Scholar
  127. 127.
    Proneth B, Pogozheva ID, Portillo FP et al (2008) Melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 modified at the para position of the benzyl side chain (DPhe): importance for mouse melanocortin-3 receptor agonist versus antagonist activity. J Med Chem 51(18):5585–5593CrossRefGoogle Scholar
  128. 128.
    Holder JR, Bauzo RM, Xiang Z et al (2002) Structure−activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors: part 2 modifications at the Phe position. J Med Chem 45(14):3073–3081CrossRefGoogle Scholar
  129. 129.
    Van der Poorten O, Feher K, Buysse K et al (2015) Azepinone-containing tetrapeptide analogues of melanotropin lead to selective hMC4R agonists and hMC5R antagonist (2015) ACS Med Chem Lett 6(2):192–197Google Scholar
  130. 130.
    Pogozheva ID, Chai BX, Lomize AL et al (2005) Interactions of human melanocortin 4 receptor with nonpeptide and peptide agonists. Biochemistry 44(34):11329–11341CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Steven Ballet
    • 1
  • Karel Guillemyn
    • 1
  • Olivier Van der Poorten
    • 1
  • Ben Schurgers
    • 1
  • Guido Verniest
    • 1
  • Dirk Tourwé
    • 1
  1. 1.Research Group of Organic Chemistry, Faculty of Science and Bio-Engineering SciencesVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations