Skip to main content

Ring Expansions of Activated Aziridines and Azetidines

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 41))

Abstract

Facile construction of small and normal-sized, or more precisely, four to seven-membered aza-heterocyclic ring systems is always a challenging yet rewarding task for the synthetic organic chemists. Fortunately, activated aziridines and azetidines provide a direct and convenient access to this coveted molecular architectures through several elegant ring-expansion approaches. This chapter presents some of the illustrative and contemporary examples to demonstrate the synthetic diversity and efficiency of the ring-expansion strategies of activated aziridines and azetidines towards a vast array of small to normal-sized aza-heterocyclic moieties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

9-BBN:

9-Borabicyclo[3.3.1]nonyl

Ac:

Acetyl

AIBN:

Azobisisobutyronitrile

anhyd:

Anhydrous

aq:

Aqueous

Ar:

Aryl

BINAP:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

BINOL:

1,1′-Bi-2-naphthol

BIPHEP:

2,2′-Bis(diphenylphosphino)-1,1′-biphenyl

Bn:

Benzyl

Boc:

tert-butyloxycarbonyl

Bts:

Benzothiazole-2-sulfonyl

Bu:

Butyl

Bz:

Benzoyl

cat:

Catalyst

Cbz:

Carboxybenzyl

COD:

Cyclooctadiene

Cp:

Cyclopropyl

c-Pr:

Cyclopropyl

CSA:

Camphorsulfonic acid

Cy:

Cyclohexyl

d:

Day(s)

DABCO:

1,4-Diazabicyclo[2,2,2]octane

dba:

Dibenzylideneacetone

DBU:

1,8-Diazabicyclo [5.4.0]undec-7-ene

DCC:

N,N′-Dicyclohexylcarbodiimide

DCE:

Dichloroethane

DCM:

Dichloromethane

de:

Diastereomeric excess

DEAD:

Diethyl azodicarboxylate

DHP:

2,3-Dihydropyran

DIAD:

Diisopropyl azodicarboxylate

DIBAL:

Diisobutylaluminum

DIPA:

Diisopropyl amine

DIPEA:

N,N-Diisopropylethylamine

DMA:

N,N-Dimethylacetamide

DMAP:

4-(Dimethylamino)pyridine

DME:

1,2-Dimethoxyethane

DMF:

N,N-Dimethylformamide

DMS:

Dimethyl sulfide

DMSO:

Dimethyl sulfoxide

DNP:

3,5-Dinitrophenyl

dppp:

1,3-Bis(diphenylphosphino)propane

dr:

Diastereomeric ratio

DROC:

Domino ring-opening cyclization

EDC:

N-(3-Dimethylaminopropyl)-N′-ethylcarbonate

EDG:

Electron-donating group

ee:

Enantiomeric excess

equiv.:

Equivalent(s)

Et:

Ethyl

EWG:

Electron-withdrawing group

h:

Hour(s)

Hex:

Hexyl

HMDS:

Bis(trimethylsilyl)amine, hexamethyldisilazane

HMPA:

Hexamethylphosphoramide

i-Pr:

Isopropyl

KHMDS:

Potassium hexamethyldisilazide, potassium bis(trimethylsilyl)amide

LA:

Lewis acid

LDA:

Lithium diisopropylamide

LHMDS:

Lithium hexamethyldisilazide, lithium bis(trimethylsilyl)amide

mCPBA:

m-Chloroperbenzoic acid

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl

min:

Minute(s)

mol:

Mole(s)

MS:

Molecular sieves

Mtr:

4-Methoxy-2,3,6-trimethylbenzenesulfonyl

MW:

Microwave irradiation

NBD:

Norbornadiene

NBS:

N-bromosuccinimide

nm:

Nanometer

NMM:

N-Methylmorpholine

NMP:

N-methylpyridine

n-Pr:

n-Propyl

Ns:

(4-Nitrophenyl)sulfonyl

Nu:

Nucleophile

Oct:

Octyl

PG:

Protecting group

Ph:

Phenyl

phen:

1,10-Phenanthroline

Pr:

Propyl

p-Tol:

p-Tolyl

Pv:

Pivaloyl

py:

Pyridine

R:

Alkyl group

Rh2(esp)2 :

Bis[rhodium(α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid)]

rt:

Room temperature

SES:

2-(Trimethylsilyl)ethanesulfonyl

SN1:

Substitution nucleophilic (unimolecular)

SN2:

Substitution nucleophilic (bimolecular)

SPS:

Solid-phase synthesis

TBAF:

Tetrabutylammonium fluoride

TBAHS:

Tetrabutylammonium hydrogen sulfate

TBME:

tert-Butylmethyl ether

TBS/TBDMS:

tert-Butyldimethylsilyl

t-Bu:

tert-Butyl

TEA:

Triethylamine

TEBA:

Triethylbenzylammonium chloride

Tf:

Trifluoromethanesulfonyl (triflyl)

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

TIPS:

Triisopropylsilyl

TMEDA:

Tetramethylethylenediamine

TMM:

Trimethylenemethane

TMS:

Trimethylsilyl

Tp:

Tetrazole

Ts:

Tosyl, 4-toluenesulfonyl

References

  1. Yudin AK (2006) Aziridines and epoxides in organic synthesis. Wiley, Weinheim

    Book  Google Scholar 

  2. Sweeney JB (2002) Aziridines: epoxides’ ugly cousins? Chem Soc Rev 31(5):247–258

    Article  CAS  Google Scholar 

  3. Hu XE (2004) Nucleophilic ring opening of aziridines. Tetrahedron 60(12):2701–2743

    Article  CAS  Google Scholar 

  4. Watson IDG, Yu L, Yudin AK (2006) Advances in nitrogen transfer reactions involving aziridines. Acc Chem Res 39(3):194–206

    Article  CAS  Google Scholar 

  5. Singh GS, D’Hooghe M, De Kimpe N (2007) Synthesis and reactivity of C-heteroatom-substituted aziridines. Chem Rev 107(5):2080–2135

    Article  CAS  Google Scholar 

  6. Stankovic S, D’Hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H-J (2012) Regioselectivity in the ring opening of non-activated aziridines. Chem Soc Rev 41(2):643–665

    Article  CAS  Google Scholar 

  7. Tanner D (1994) Chiral aziridines – their synthesis and use in stereoselective transformations. Angew Chem Int Ed 33(6):599–619

    Article  Google Scholar 

  8. Ibuka T (1998) The aza-Payne rearrangement: a synthetically valuable equilibration. Chem Soc Rev 27(2):145–154

    Article  CAS  Google Scholar 

  9. Li A-H, Dai L-X, Aggarwal VK (1997) Asymmetric ylide reactions: epoxidation, cyclopropanation, aziridination, olefination, and rearrangement. Chem Rev 97(6):2341–2372

    Article  CAS  Google Scholar 

  10. Couty F, Evano G (2009) Azetidines: new tools for the synthesis of nitrogen heterocycles. Synlett 2009(19):3053–3064

    Article  CAS  Google Scholar 

  11. Bergmeier SC, Lapinsky DJ (2009) Three-membered ring systems. In: Gordon WG, John AJ (eds) Progress in heterocyclic chemistry, vol 20, A critical review of the 2007 literature preceded by two chapters on current heterocyclic topics. Elsevier, Amsterdam, pp 47–73

    Google Scholar 

  12. Hassner A (2009) The chemistry of heterocyclic compounds, small ring heterocycles: aziridines, azirines, thiiranes, thiirenes. Wiley, New York

    Google Scholar 

  13. Alcaide B, Almendros P (2013) Four-membered ring systems. In: Gordon WG, John AJ (eds) Progress in heterocyclic chemistry, vol 25. Elsevier, Oxford, pp 71–96

    Google Scholar 

  14. Adams CS, Weatherly CD, Burke EG, Schomaker JM (2014) The conversion of allenes to strained three-membered heterocycles. Chem Soc Rev 43:3136–3163

    Article  CAS  Google Scholar 

  15. Bergmeier SC, Lapinsky DJ (2012) Three-membered ring systems. Prog Heterocycl Chem 24:89–113

    Article  CAS  Google Scholar 

  16. Bisol TB, Sá MM (2007) Recent advances in the preparation of aziridines and their application in organic synthesis. Quim Nova 30:106–115

    Article  CAS  Google Scholar 

  17. Botuha C, Chemla F, Ferreira F, Perez-Luna A (2011) Aziridines in natural product synthesis. Wiley-VCH, Weinheim, pp 3–39

    Google Scholar 

  18. Cardillo G, Gentilucci L, Tolomelli A (2003) Aziridines and oxazolines: valuable intermediates in the synthesis of unusual amino acids. Aldrichim Acta 36(2):39–50

    CAS  Google Scholar 

  19. Cardoso AL, Pinho e Melo TMVD (2012) Aziridines in formal [3 + 2] cycloadditions: synthesis of five-membered heterocycles. Eur J Org Chem 2012:6479–6501

    Article  CAS  Google Scholar 

  20. Dahanukar VH, Zavialov IA (2002) Aziridines and aziridinium ions in the practical synthesis of pharmaceutical intermediates – a perspective. Curr Opin Drug Discov Dev 5(6):918–927

    CAS  Google Scholar 

  21. Degennaro L, Trinchera P, Luisi R (2014) Recent advances in the stereoselective synthesis of aziridines. Chem Rev 114(16):7881–7929

    Article  CAS  Google Scholar 

  22. D’Hooghe M, De Kimpe N (2005) Reactivity of 1-arenesulfonyl- and 1-alkyl-2-(bromomethyl)aziridines towards lithium cuprate reagents. Molecular Diversity Preservation International, pp A016/011–A016/012

    Google Scholar 

  23. Heine HW (1971) Rearrangements of aziridines. Mech Mol Migr 3:145–176

    CAS  Google Scholar 

  24. Ishikawa T (2012) Aziridine-2-carboxylates. Preparation, nucleophilic ring opening, and ring expansion. Heterocycles 85(12):2837–2877

    Article  CAS  Google Scholar 

  25. Lowden PAS (2006) Aziridine natural products – discovery, biological activity and biosynthesis. Wiley-VCH, Weinheim, pp 399–442

    Google Scholar 

  26. Lown JW (1971) Recent developments in aziridine chemistry. Synthetic applications of cycloaddition reactions. Rec Chem Progr 32(2):51–83

    CAS  Google Scholar 

  27. Maerker G (1971) Nitrogen and sulfur analogues of epoxy and hydroxy acids. Top Lipid Chem 2:159–206

    CAS  Google Scholar 

  28. McCoull W, Davis FA (2000) Recent synthetic applications of chiral aziridines. Synthesis 10:1347–1365

    Article  Google Scholar 

  29. Murphree SS, Padwa A (1997) Three-membered ring systems. Prog Heterocycl Chem 9:43–63

    Article  CAS  Google Scholar 

  30. Nikitjuka A, Jirgensons A (2014) Synthesis, chemical and biological properties of aziridine-1-carbaldehyde oximes. Chem Heterocycl Compd 49:1544–1559

    Article  CAS  Google Scholar 

  31. Ohno H (2006) Vinylaziridines in organic synthesis. Wiley-VCH, Weinheim, pp 37–71

    Google Scholar 

  32. Padwa A, Murphree SS (2006) Epoxides and aziridines – a mini review. ARKIVOC 3:6–33

    Google Scholar 

  33. Pearson WH, Lian BW, Bergmeier SC (1996) Aziridines and azirines: monocyclic. Elsevier, Oxford, pp 1–60

    Google Scholar 

  34. Tanner D (1993) Stereocontrolled synthesis via chiral aziridines. Pure Appl Chem 65(6):1319–1328

    Article  CAS  Google Scholar 

  35. Tanner D (1994) Chiral aziridines. Preparation and stereoselective transformations. Angew Chem 106:625–646 (see also Angew Chem Int Ed Engl, 1994, 1933(1996), 1599–1619)

    Article  CAS  Google Scholar 

  36. Tehrani KA, De Kimpe N (2009) Syntheses and transformations of 2-methyleneaziridines and 2-methyleneazetidines. Curr Org Chem 13:854–877

    Article  CAS  Google Scholar 

  37. Vandekerckhove S, D’Hooghe M (2013) Exploration of aziridine- and β-lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry. Bioorg Med Chem 21(13):3643–3647

    Article  CAS  Google Scholar 

  38. Vaultier M, Danion-Bougot R, Danion D, Hamelin J, Carrié R (1973) Reaction d’une aziridine et d’une oxazoline-4 ylures d’azomethine potentiels avec les ylures du soufre, nouvelle methode de synthese d’azetidines. Tetrahedron Lett 14(22):1923–1926

    Article  Google Scholar 

  39. Nadir UK, Koul VK (1981) Reaction of dimethyloxosulphonium methylide with N-arylsulphonyl-2-phenylaziridines: a new synthesis of N-arylsulphonyl-2-phenylazetidines. J Chem Soc Chem Commun 9:417–418

    Article  Google Scholar 

  40. Nadir UK, Sharma RL, Koul VK (1989) Reaction of dimethyloxosulfonium methylide with N-arylsulfonylaziridines. Stereospecific conversion of N-arylsulfonylaziridines to N-arylsulfonylazetidines. Tetrahedron 45:1851–1858

    Article  CAS  Google Scholar 

  41. Malik S, Nadir UK (2008) A facile synthesis of 1-arenesulfonylazetidines through reaction of 1-arenesulfonylaziridines with dimethylsulfoxonium methylide generated under microwave irradiation. Synlett 1:108–110

    Article  CAS  Google Scholar 

  42. Karikomi M, De Kimpe N (2000) A novel synthesis of 3-aminoazetidines by ring transformation of 2-(bromomethyl)aziridines. Tetrahedron Lett 41:10295–10298

    Article  CAS  Google Scholar 

  43. Kenis S, D’Hooghe M, Verniest G, Reybroeck M, Thi TAD, The CP, Pham TT, Toernroos KW, Nguyen VT, De Kimpe N (2013) Nucleophile-directed selective transformation of cis-1-tosyl-2-tosyloxymethyl-3-(trifluoromethyl)aziridine into aziridines, azetidines, and benzo-fused dithianes, oxathianes, dioxanes, and (thio)morpholines. Chem Eur J 19:5966–5971

    Article  CAS  Google Scholar 

  44. Nadir UK, Arora A (1995) Reaction of N-arylsulfonylaziridines with dimethylsulfoniumethoxycarbonyl methylide: regio- and stereo-selective synthesis of 1-arylsulfonyl-2-ethoxycarbonyl azetidines. J Chem Soc Perkin Trans 1:2605–2609

    Article  Google Scholar 

  45. Malik S, Nadir UK, Pandey PS (2010) Microwave-assisted regioselective synthesis of trans-1-arenesulfonyl-2-ethoxycarbonyl-3-phenylazetidines. Synth Commun 40(11):1631–1638

    Article  CAS  Google Scholar 

  46. Kiss L, Mangelinckx S, Fülöp F, De Kimpe N (2007) Convenient synthesis of trans-β-amino carboxylic esters with an azetidine skeleton via rearrangement of β, γ-aziridino α-amino esters. Org Lett 9(21):4399–4402

    Article  CAS  Google Scholar 

  47. Callebaut G, Mangelinckx S, Kiss L, Sillanpaa R, Fulop F, De Kimpe N (2012) Asymmetric synthesis of α, β-diamino acid derivatives with an aziridine-, azetidine- and γ-lactone-skeleton via Mannich-type additions across α-chloro-N-sulfinylimines. Org Biomol Chem 10(11):2326–2338

    Article  CAS  Google Scholar 

  48. Jensen KL, Nielsen DU, Jamison TF (2015) A general strategy for the synthesis of enantiomerically pure azetidines and aziridines through nickel-catalyzed cross-coupling. Chem Eur J 21(20):7379–7383

    Article  CAS  Google Scholar 

  49. Garima, Srivastava VP, Yadav LDS (2010) The first example of ring expansion of N-tosylaziridines to 2-aroyl-N-tosylazetidines with nitrogen ylides in an aqueous medium. Green Chem 12(8):1460–1465

    Article  CAS  Google Scholar 

  50. Breternitz H-J, Schaumann E (1999) Ring-opening of N-tosylaziridines by heterosubstituted allyl anions. Application to the synthesis of azetidines and pyrrolidines. J Chem Soc Perkin Trans 1(14):1927–1932

    Article  Google Scholar 

  51. Ibuka T, Nakai K, Habashita H, Hotta Y, Otaka A, Tamamura H, Fujii N, Mimura N, Miwa Y, Chounan Y, Yamamoto Y (1995) Aza-Payne rearrangement of activated 2-aziridinemethanols and 2,3-epoxy amines under basic conditions. J Org Chem 60(7):2044–2058

    Article  CAS  Google Scholar 

  52. Ohno H, Hamaguchi H, Tanaka T (2001) 2-Ethynylaziridines as chiral carbon nucleophiles: stereoselective synthesis of 1,3-amino alcohols with three stereocenters via allenylindium reagents bearing a protected amino group. J Org Chem 66(5):1867–1875

    Article  CAS  Google Scholar 

  53. Kang SH, Kim M, Ryu DH (2003) A stereoselective synthesis of a key intermediate to 1β-methylcarbapenem via aziridine ring-opening reaction. Synlett 2003(08):1149–1150

    Article  Google Scholar 

  54. Spears GW, Nakanishi K, Ohfune Y (2002) Novel entry to a 3,4-disubstituted 2-azetidinone derivative via palladium-assisted carbonylation of a 2-substituted 3-vinylaziridine. Synlett 1991(02):91–92

    Article  Google Scholar 

  55. Tanner D, Somfai P (1993) Palladium-catalyzed transformation of a chiral vinylaziridine to a β-lactam. An enantioselective route to the carbapenem (+)-PS-5. Bioorg Med Chem Lett 3(11):2415–2418

    Article  CAS  Google Scholar 

  56. Chamchaang W, Pinhas AR (1988) A one-pot conversion of an aziridine to a [small beta]-lactam using nickel tetracarbonyl. J Chem Soc Chem Commun 11:710–711

    Article  Google Scholar 

  57. Chamchaang W, Pinhas AR (1990) The conversion of an aziridine to a β-lactam. J Org Chem 55(9):2943–2950

    Article  CAS  Google Scholar 

  58. Tanner D, Somfai P (1987) An aziridine route to chiral β-lactams a novel entry to (+)-thienamycin. Tetrahedron Lett 28(11):1211–1214

    Article  CAS  Google Scholar 

  59. Tanner D, He HM (1992) Enantioselective routes toward 1β-methylcarbapenems from chiral aziridines. Tetrahedron 48(29):6079–6086

    Article  CAS  Google Scholar 

  60. Fontana F, Tron GC, Barbero N, Ferrini S, Thomas SP, Aggarwal VK (2010) Stereoselective synthesis of trans-β-lactams by palladium-catalysed carbonylation of vinyl aziridines. Chem Commun 46(2):267–269

    Article  CAS  Google Scholar 

  61. Mahadevan V, Getzler YDYL, Coates GW (2002) [Lewis acid]+[Co(CO)4] complexes: a versatile class of catalysts for carbonylative ring expansion of epoxides and aziridines. Angew Chem Int Ed 41(15):2781–2784

    Article  CAS  Google Scholar 

  62. White JD, Furuta T (2009) Regioselective ring expansion of 3,3-dimethylaziridin-2-carboxylate and a photochemical entry to the penem nucleus. Heterocycles 79:347–352

    Article  CAS  Google Scholar 

  63. Gaebert C, Mattay J (1997) [3 + 2] Cycloadditions and nucleophilic additions of aziridines under C–C and C–N bond cleavage. Tetrahedron 53(42):14297–14316

    Article  CAS  Google Scholar 

  64. Nakagawa M, Kawahara M (2000) A concise synthesis of physostigmine from skatole and activated aziridine via alkylative cyclization. Org Lett 2(7):953–955

    Article  CAS  Google Scholar 

  65. Madhushaw RJ, Hu C-C, Liu R-S (2002) A novel stereocontrolled synthesis of cis-fused bicyclic lactams via [3 + 2]-cycloaddition of alkynyltungsten complexes with tethered aziridines. Org Lett 4(23):4151–4153

    Article  CAS  Google Scholar 

  66. Yadav JS, Reddy BVS, Pandey SK, Srihari P, Prathap I (2001) Scandium triflate-catalyzed 1,3-dipolar cycloaddition of aziridines with alkenes. Tetrahedron Lett 42(51):9089–9092

    Article  CAS  Google Scholar 

  67. Wender PA, Strand D (2009) Cyclocarboamination of alkynes with aziridines: synthesis of 2,3-dihydropyrroles by a catalyzed formal [3 + 2] cycloaddition. J Am Chem Soc 131(22):7528–7529

    Article  CAS  Google Scholar 

  68. Kang B, Miller AW, Goyal S, Nguyen ST (2009) Sc(OTf)3-catalyzed condensation of 2-alkyl-N-tosylaziridine with aldehydes or ketones: an efficient synthesis of 5-alkyl-1,3-oxazolidines. Chem Commun 26:3928–3930

    Article  Google Scholar 

  69. Ghorai MK, Ghosh K (2007) Lewis acid mediated nucleophilic ring opening followed by cycloaddition of 2-aryl-N-tosylaziridines with carbonyl compounds: further support towards an SN2-type mechanism. Tetrahedron Lett 48(18):3191–3195

    Article  CAS  Google Scholar 

  70. Vicario JL, Badía D, Carrillo L (2001) Aziridine ring-opening reactions with chiral enolates. Stereocontrolled synthesis of 5-substituted-3-methyl-pyrrolidin-2-ones. J Org Chem 66(17):5801–5807

    Article  CAS  Google Scholar 

  71. Ungureanu I, Klotz P, Mann A (2000) Phenylaziridine as a masked 1,3 dipole in reactions with nonactivated alkenes. Angew Chem Int Ed 39(24):4615–4617

    Article  CAS  Google Scholar 

  72. Ungureanu I, Bologa C, Chayer S, Mann A (1999) Phenylaziridine as a 1,3-dipole. Application to the synthesis of functionalized pyrrolidines. Tetrahedron Lett 40(29):5315–5318

    Article  CAS  Google Scholar 

  73. Ungureanu I, Klotz P, Schoenfelder A, Mann A (2001) The reactivity of N-tosylphenylaziridine versus N-tosylphenylazetidine in heterocyclization reactions. Tetrahedron Lett 42(35):6087–6091

    Article  CAS  Google Scholar 

  74. Lapinsky DJ, Bergmeier SC (2002) Aziridine–allylsilane-mediated synthesis of exocyclic γ-amino olefins and azabicyclo[x.y.1]-systems. Tetrahedron 58(35):7109–7117

    Article  CAS  Google Scholar 

  75. Bergmeier SC, Fundy SL, Seth PP (1999) Synthesis of bicyclic proline analogs using a formal [3 + 2] intramolecular aziridine-allylsilane cycloaddition reaction. Tetrahedron 55(26):8025–8038

    Article  CAS  Google Scholar 

  76. Bergmeier SC, Katz SJ, Huang J, McPherson H, Donoghue PJ, Reed DD (2004) Intramolecular cyclization reactions of aziridines with π-nucleophiles. Tetrahedron Lett 45(26):5011–5014

    Article  CAS  Google Scholar 

  77. Pulipaka AB, Bergmeier SC (2008) A synthesis of 6-azabicyclo[3.2.1]octanes. The role of N-substitution. J Org Chem 73(4):1462–1467

    Article  CAS  Google Scholar 

  78. Kitagawa O, Miyaji S, Yamada Y, Fujiwara H, Taguchi T (2003) Iodine atom transfer [3 + 2] cycloaddition reaction with electron-rich alkenes using N-tosyliodoaziridine derivatives as novel azahomoallyl radical precursors. J Org Chem 68(8):3184–3189

    Article  CAS  Google Scholar 

  79. Schomaker JM, Bhattacharjee S, Yan J, Borhan B (2007) Diastereomerically and enantiomerically pure 2,3-disubstituted pyrrolidines from 2,3-aziridin-1-ols using a sulfoxonium ylide: a one-carbon homologative relay ring expansion. J Am Chem Soc 129(7):1996–2003

    Article  CAS  Google Scholar 

  80. Schomaker JM, Geiser AR, Huang R, Borhan B (2007) Tetrasubstituted pyrrolidines via a tandem Aza-Payne/hydroamination reaction. J Am Chem Soc 129(13):3794–3795

    Article  CAS  Google Scholar 

  81. Kulshrestha A, Schomaker JM, Holmes D, Staples RJ, Jackson JE, Borhan B (2011) Selectivity in the addition reactions of organometallic reagents to aziridine-2-carboxaldehydes: the effects of protecting groups and substitution patterns. Chem Eur J 17(44):12326–12339

    Article  CAS  Google Scholar 

  82. Kulshrestha A, Salehi Marzijarani N, Dilip Ashtekar K, Staples R, Borhan B (2012) 3,4-Dihydroxypyrrolidines via modified tandem Aza-Payne/hydroamination pathway. Org Lett 14(14):3592–3595

    Article  CAS  Google Scholar 

  83. Zhou J, Yeung Y-Y (2014) Diastereoselective synthesis of functionalized pyrrolidines through N-bromosuccinimide-induced aziridine ring expansion cascade of cinnamylaziridine. Org Biomol Chem 12(38):7482–7485

    Article  CAS  Google Scholar 

  84. Lowe MA, Ostovar M, Ferrini S, Chen CC, Lawrence PG, Fontana F, Calabrese AA, Aggarwal VK (2011) Palladium-mediated annulation of vinyl aziridines with Michael acceptors: stereocontrolled synthesis of substituted pyrrolidines and its application in a formal synthesis of (−)-α-kainic acid. Angew Chem Int Ed 50(28):6370–6374

    Article  CAS  Google Scholar 

  85. Li L, Wu X, Zhang J (2011) Lewis acid-catalyzed formal [3 + 2] cycloadditions of N-tosyl aziridines with electron-rich alkenes via selective carbon–carbon bond cleavage. Chem Commun 47(17)

    Google Scholar 

  86. Soeta T, Miyamoto Y, Fujinami S, Ukaji Y (2014) The Lewis acid-catalyzed [3 + 1 + 1] cycloaddition of azomethine ylides with isocyanides. Tetrahedron 70(37):6623–6629

    Article  CAS  Google Scholar 

  87. Rai A, Yadav LDS (2013) An organocatalytic approach to stereoselective synthesis of 2-hydroxyazetidines and 2-hydroxypyrrolidines. Tetrahedron Lett 54(24):3127–3131

    Article  CAS  Google Scholar 

  88. Rai VK, Sharma N, Kumar A (2013) The first I2-promoted efficient aminoacetylation of activated aziridines in ionic liquid. Synlett 24(01):97–101

    Article  CAS  Google Scholar 

  89. Ghosh A, Pandey AK, Banerjee P (2015) Lewis acid catalyzed annulation of donor–acceptor cyclopropane and N-tosylaziridinedicarboxylate: one-step synthesis of functionalized 2H-furo[2,3-c]pyrroles. J Org Chem 80(14):7235–7242

    Article  CAS  Google Scholar 

  90. Yadav VK, Sriramurthy V (2005) Silylmethyl-substituted aziridine and azetidine as masked 1,3- and 1,4-dipoles for formal [3 + 2] and [4 + 2] cycloaddition reactions. J Am Chem Soc 127(47):16366–16367

    Article  CAS  Google Scholar 

  91. Narhe BD, Sriramurthy V, Yadav VK (2012) A smooth rearrangement of N-p-toluenesulfonyl 2-tert-butyldiphenylsilylmethyl-substituted azetidines into N-p-toluenesulfonyl 3-tert-butyldiphenylsilyl-substituted pyrrolidines. Org Biomol Chem 10(22):4390–4399

    Article  CAS  Google Scholar 

  92. Ghorai MK, Tiwari DP (2010) Lewis acid catalyzed highly stereoselective domino-ring-opening cyclization of activated aziridines with enolates: synthesis of functionalized chiral γ-lactams. J Org Chem 75(18):6173–6181

    Article  CAS  Google Scholar 

  93. Ghorai MK, Nanaji Y (2013) Synthetic route to chiral indolines via ring-opening/C-N cyclization of activated 2-haloarylaziridines. J Org Chem 78(8):3867–3878

    Article  CAS  Google Scholar 

  94. Ding C-H, Dai L-X, Hou X-L (2005) A convenient and efficient ring-opening reaction of aziridines with acetylenes and synthesis of dihydropyrroles. Tetrahedron 61(40):9586–9593

    Article  CAS  Google Scholar 

  95. Di Bussolo V, Frau I, Crotti S, Uccello-Barretta G, Balzano F, Pineschi M, Crotti P (2013) Enantiopure cis-2,5-disubstituted 2,5-dihydropyrroles from d-glycal-derived vinyl aziridines. Org Lett 15(23):6026–6029

    Article  CAS  Google Scholar 

  96. Ghorai MK, Tiwari DP (2013) Enantioselective synthesis of 4,5-dihydropyrroles via domino ring-opening cyclization (DROC) of N-activated aziridines with malononitrile. J Org Chem 78(6):2617–2625

    Article  CAS  Google Scholar 

  97. Brichacek M, Lee D, Njardarson JT (2008) Lewis acid catalyzed [1,3]-sigmatropic rearrangement of vinyl aziridines. Org Lett 10(21):5023–5026

    Article  CAS  Google Scholar 

  98. Brichacek M, Navarro Villalobos M, Plichta A, Njardarson JT (2011) Stereospecific ring expansion of chiral vinyl aziridines. Org Lett 13(5):1110–1113

    Article  CAS  Google Scholar 

  99. Fan J, Gao L, Wang Z (2009) Facile construction of highly functionalized 2-pyrrolines via FeCl3-catalyzed reaction of aziridines with arylalkynes. Chem Commun 33:5021–5023

    Article  CAS  Google Scholar 

  100. Davies PW, Martin N (2009) Counterion effects in a gold-catalyzed synthesis of pyrroles from alkynyl aziridines. Org Lett 11(11):2293–2296

    Article  CAS  Google Scholar 

  101. Davies PW, Martin N, Spencer N (2011) Isotopic labelling studies for a gold-catalysed skeletal rearrangement of alkynyl aziridines. Beilstein J Org Chem 7:839–846

    Article  CAS  Google Scholar 

  102. Davies PW, Martin N (2011) An efficient and selective synthesis of 2,5-substituted pyrroles by gold-catalysed ring expansion of alkynyl aziridines. J Organomet Chem 696(1):159–164

    Article  CAS  Google Scholar 

  103. Kern N, Blanc A, Weibel J-M, Pale P (2011) Gold(I)-catalyzed rearrangement of aryl alkynylaziridines to spiro[isochroman-4,2′-pyrrolines]. Chem Commun 47(23):6665–6667

    Article  CAS  Google Scholar 

  104. Chen D-D, Hou X-L, Dai L-X (2009) A facile and regioselective synthesis of 2,5-disubstituted pyrroles via gold-catalyzed cycloisomerization of acetylenylaziridines. Tetrahedron Lett 50(50):6944–6946

    Article  CAS  Google Scholar 

  105. Du X, Xie X, Liu Y (2009) Gold-catalyzed cyclization of alkynylaziridines as an efficient approach toward functionalized N-phth pyrroles. J Org Chem 75(2):510–513

    Article  CAS  Google Scholar 

  106. Huang H, Zhou Y, Liu H (2011) Recent advances in the gold-catalyzed additions to C–C multiple bonds. Beilstein J Org Chem 7:897–936

    Article  CAS  Google Scholar 

  107. Trost BM, Dong G (2006) New class of nucleophiles for palladium-catalyzed asymmetric allylic alkylation. Total synthesis of agelastatin A. J Am Chem Soc 128(18):6054–6055

    Article  CAS  Google Scholar 

  108. Trost BM, Dong G (2009) A stereodivergent strategy to both product enantiomers from the same enantiomer of a stereo-inducing catalyst: agelastatin A. Chem Eur J 15(28):6910–6919

    Article  CAS  Google Scholar 

  109. Wu X, Zhang J (2012) Y(OTf)3-catalyzed diastereoselective [3 + 2] cycloaddition of N-tosylaziridines and imines; efficient synthesis of multisubstituted imidazolidines. Synthesis 44(14):2147–2154

    Article  CAS  Google Scholar 

  110. Jiang Z, Wang J, Lu P, Wang Y (2011) Diasteroselective synthesis of oxazolidines and imidazolidines via the Lewis acid catalyzed C–C cleavage of aziridines. Tetrahedron 67(49):9609–9617

    Article  CAS  Google Scholar 

  111. Hiyama T, Koide H, Fujita S, Nozaki H (1973) Reaction of N-alkoxycarbonylaziridines with nitriles. Tetrahedron 29(20):3137–3139

    Article  CAS  Google Scholar 

  112. Zwanenburg B (1999) Synthetic potential of heteroatomic ring systems. Pure Appl Chem 71(3):423–430

    Article  CAS  Google Scholar 

  113. Bucciarelli M, Forni A, Moretti I, Prati F, Torre G (1995) Regioselectivity of ring-opening reactions of optically active N-acetyl-2-methoxycarbonylaziridine. Tetrahedron Asymmetry 6(8):2073–2080

    Article  CAS  Google Scholar 

  114. Papa C, Tomasini C (2000) Synthesis and ring opening of methyl 2-alkyl-3-(alkyl/aryl)-1-benzoylaziridine-2-carboxylates: synthesis of polysubstituted amino acids. Eur J Org Chem 2000(8):1569–1576

    Article  Google Scholar 

  115. Concellón JM, Riego E, Suárez JR, García-Granda S, Díaz MR (2004) Synthesis of enantiopure imidazolines through a Ritter reaction of 2-(1-aminoalkyl)aziridines with nitriles. Org Lett 6(24):4499–4501

    Article  CAS  Google Scholar 

  116. Prasad BAB, Pandey G, Singh VK (2004) Synthesis of substituted imidazolines via [3 + 2]-cycloaddition of aziridines with nitriles. Tetrahedron Lett 45(6):1137–1141

    Article  CAS  Google Scholar 

  117. Ghorai MK, Das K, Kumar A, Ghosh K (2005) An efficient route to regioselective opening of N-tosylaziridines with zinc(II) halides. Tetrahedron Lett 46(23):4103–4106

    Article  CAS  Google Scholar 

  118. Ghorai MK, Tiwari DP, Kumar A, Das K (2011) SN2-type ring opening of substituted-N-tosylaziridines with zinc (II) halides: control of racemization by quaternary ammonium salt. J Chem Sci 123(6):951–961

    Article  CAS  Google Scholar 

  119. Ghorai MK, Ghosh K, Das K (2006) Copper(II) triflate promoted cycloaddition of α-alkyl or aryl substituted N-tosylaziridines with nitriles: a highly efficient synthesis of substituted imidazolines. Tetrahedron Lett 47(30):5399–5403

    Article  CAS  Google Scholar 

  120. Gandhi S, Bisai A, Prasad BAB, Singh VK (2007) Studies on the reaction of aziridines with nitriles and carbonyls: synthesis of imidazolines and oxazolidines. J Org Chem 72:2133–2142

    Article  CAS  Google Scholar 

  121. Wu J, Sun X, Xia H-G (2006) Sc(OTf)3-catalyzed [3 + 2]-cycloaddition of aziridines with nitriles under solvent-free conditions. Tetrahedron Lett 47(10):1509–1512

    Article  CAS  Google Scholar 

  122. Li X, Yang X, Chang H, Li Y, Ni B, Wei W (2011) A new and efficient procedure for Bi(OTf)3-promoted [3 + 2] cycloaddition of N-tosylaziridines to yield imidazolines. Eur J Org Chem 2011(17):3122–3125

    Article  CAS  Google Scholar 

  123. Yoshiki M, Ishibashi R, Yamada Y, Hanamoto T (2014) TiF4-mediated regioselective cycloaddition of 2-(trifluoromethyl)-N-tosylaziridine to nitriles. Org Lett 16(21):5509–5511

    Article  CAS  Google Scholar 

  124. Colpaert F, Mangelinckx S, Giubellina N, De Kimpe N (2011) Transformations of 3-aryl-2-chloro-2-imidoylaziridines: novel entries to 4-chloro-2,5-diaryl-1H-imidazoles and 2-chloro-2-acylaziridines. Tetrahedron 67(6):1258–1265

    Article  CAS  Google Scholar 

  125. Tomasini C, Vecchione A (1999) Novel synthesis of 4-carboxymethyl 5-alkyl/aryl oxazolidin-2-ones by rearrangement of 2-carboxymethyl 3-alkyl/aryl N-tert-butoxycarbonyl aziridines. Org Lett 1(13):2153–2156

    Article  CAS  Google Scholar 

  126. Cardillo G, Gentilucci L, Gianotti M, Tolomelli A (2000) Influence of Lewis acids on the regioselectivity of N-Boc-aziridine-2-carboxylate microwave-assisted rearrangement. Synlett 2000(09):1309–1311

    Article  Google Scholar 

  127. Wu X, Li L, Zhang J (2011) Nickel(II)-catalyzed diastereoselective [3 + 2] cycloaddition of N-tosyl-aziridines and aldehydes via selective carbon-carbon bond cleavage. Chem Commun 47(27):7824–7826

    Article  CAS  Google Scholar 

  128. Cruz DC, Sanchez-Murcia PA, Jorgensen KA (2012) Formal asymmetric enone aminohydroxylation: organocatalytic one-pot synthesis of 4,5-disubstituted oxazolidinones. Chem Commun 48(49):6112–6114

    Article  CAS  Google Scholar 

  129. Seayad J, Seayad AM, Ng JKP, Chai CLL (2012) N-heterocyclic carbene (NHC) catalyzed cycloaddition of CO2 to N-tosyl aziridines: regio and stereoselective synthesis of oxazolidin-2-ones. ChemCatChem 4(6):774–777

    Article  CAS  Google Scholar 

  130. Phung C, Ulrich RM, Ibrahim M, Tighe NTG, Lieberman DL, Pinhas AR (2011) The solvent-free and catalyst-free conversion of an aziridine to an oxazolidinone using only carbon dioxide. Green Chem 13(11):3224–3229

    Article  CAS  Google Scholar 

  131. Takeda Y, Kawai H, Minakata S (2013) PCy3-catalyzed ring expansion of aziridinofullerenes with CO2 and aryl isocyanates: evidence for a two consecutive nucleophilic substitution pathway on the fullerene cage. Chem Eur J 19(40):13479–13483

    Article  CAS  Google Scholar 

  132. Yang H-T, Xing M-L, Zhu Y-F, Sun X-Q, Cheng J, Miao C-B, Li F-B (2014) BF3 · Et2O-catalyzed formal [3 + 2] reaction of aziridinofullerenes with carbonyl compounds. J Org Chem 79(3):1487–1492

    Article  CAS  Google Scholar 

  133. Thyrum P, Day AR (1965) p-Amino-N-[2-(substituted amino)ethyl]benzamides. Potential antifibrillatory drugs. J Med Chem 8(1):107–111

    Article  CAS  Google Scholar 

  134. Heine HW, Kaplan MS (1967) Aziridines. XVI. Isomerization of some 1-aroyl-aziridines. J Org Chem 32(10):3069–3074

    Article  CAS  Google Scholar 

  135. Lown JW, Itoh T, Ono N (1973) Studies relating to aziridine antitumor antibiotics. Part I. Asymmetric syntheses. Part II. Chiral aziridines and their conversion to α-aminoacids. Can J Chem 51(6):856–869

    Article  CAS  Google Scholar 

  136. Ferraris D, Drury WJ, Cox C, Lectka T (1998) “Orthogonal” Lewis acids: catalyzed ring opening and rearrangement of acylaziridines. J Org Chem 63(14):4568–4569

    Article  CAS  Google Scholar 

  137. Bonini BF, Fochi M, Comes-Franchini M, Ricci A, Thijs L, Zwanenburg B (2003) Synthesis of ferrocenyl-oxazolines by ring expansion of N-ferrocenoyl-aziridine-2-carboxylic esters. Tetrahedron Asymmetry 14(21):3321–3327

    Article  CAS  Google Scholar 

  138. Heine H, Proctor Z (1958) Isomerization of N-p-ethoxybenzolethylenimine. J Org Chem 23(10):1554–1556

    Article  CAS  Google Scholar 

  139. Nishiguchi T, Tochio H, Nabeya A, Iwakura Y (1969) Acid-catalyzed isomerization of 1-acyl- and 1-thioacylaziridines. I. Mechanism of nucleophilic substitution. J Am Chem Soc 91(21):5835–5841

    Article  CAS  Google Scholar 

  140. Nishiguchi T, Tochio H, Nabeya A, Iwakura Y (1969) Acid-catalyzed isomerization of 1-acyl- and 1-thioacylaziridines. II. Orientation of ring opening. J Am Chem Soc 91(21):5841–5846

    Article  CAS  Google Scholar 

  141. Hori K, Nishiguchi T, Nabeya A (1997) A theoretical and experimental study on acid-catalyzed isomerization of 1-acylaziridines to the oxazolines. Reexamination of a possible SNi mechanism by using ab initio molecular orbital calculations. J Org Chem 62(10):3081–3088

    Article  CAS  Google Scholar 

  142. Cardillo G, Gentilucci L, Gianotti M, Tolomelli A (2001) Microwave-assisted ring expansion of N-acetyl 3′-unsubstituted aziridine in the presence of Lewis acids. Tetrahedron 57(14):2807–2812

    Article  CAS  Google Scholar 

  143. Cardillo G, Gentilucci L, Tolomelli A, Tomasini C (1997) Ring expansion of N-acyl aziridine-2-imides to oxazoline-4-imides, useful precursors of pure β-Hydroxy α-aminoacids. Tetrahedron Lett 38(39):6953–6956

    Article  CAS  Google Scholar 

  144. Aggarwal VK, Vasse J-L (2003) Asymmetric sulfur ylide mediated aziridination: application in the synthesis of the side chain of taxol. Org Lett 5(21):3987–3990

    Article  CAS  Google Scholar 

  145. Martin A, Casto K, Morris W, Morgan JB (2011) Phosphine-catalyzed Heine reaction. Org Lett 13(20):5444–5447

    Article  CAS  Google Scholar 

  146. Eastwood FW, Perlmutter P, Yang Q (1994) Preparation of new 24-disubstituted oxazoles. Tetrahedron Lett 35(13):2039–2042

    Article  CAS  Google Scholar 

  147. Eastwood FW, Perlmutter P, Yang Q (1997) Preparation of new 2,4-disubstituted oxazoles from N-acylaziridines. J Chem Soc Perkin Trans 1(1):35–42

    Article  Google Scholar 

  148. D’Hooghe M, De Kimpe N (2006) Synthetic approaches towards 2-iminothiazolidines: an overview. Tetrahedron 62(4):513–535

    Article  CAS  Google Scholar 

  149. Samzadeh-Kermani A (2015) A novel three-component reaction involving terminal alkynes, elemental sulfur, and strained heterocycles. Synlett 26(05):643–645

    Article  CAS  Google Scholar 

  150. Craig RA, O’Connor NR, Goldberg AFG, Stoltz BM (2014) Stereoselective Lewis acid mediated (3 + 2) cycloadditions of N-H- and N-sulfonylaziridines with heterocumulenes. Chem Eur J 20(16):4806–4813

    Article  CAS  Google Scholar 

  151. Sengoden M, Vijay M, Balakumar E, Punniyamurthy T (2014) Efficient pyrrolidine catalyzed cycloaddition of aziridines with isothiocyanates, isoselenocyanates and carbon disulfide “on water”. RSC Adv 4(97):54149–54157

    Article  CAS  Google Scholar 

  152. Wu J-Y, Luo Z-B, Dai L-X, Hou X-L (2008) Tributylphosphine-catalyzed cycloaddition of aziridines with carbon disulfide and isothiocyanate. J Org Chem 73(22):9137–9139

    Article  CAS  Google Scholar 

  153. Minakata S, Hotta T, Oderaotoshi Y, Komatsu M (2006) Ring opening and expansion of aziridines in a silica − water reaction medium. J Org Chem 71(19):7471–7472

    Article  CAS  Google Scholar 

  154. Singh S, Rai VK, Singh P, Yadav LDS (2010) Expeditious synthesis of functionalized piperidines by regioselective ring opening of aziridines by enals catalyzed by an N-heterocyclic carbene. Synthesis 2010(17):2957–2964

    Article  CAS  Google Scholar 

  155. Dureault A, Tranchepain I, Depezay JC (1989) Nucleophilic opening of chiral bis(aziridines): a route to enantiomerically pure.alpha.-amino aldehydes or acids and polysubstituted piperidines. J Org Chem 54(22):5324–5330

    Article  CAS  Google Scholar 

  156. Wang G, Franke J, Ngo CQ, Krische MJ (2015) Diastereo- and enantioselective iridium catalyzed coupling of vinyl aziridines with alcohols: site-selective modification of unprotected diols and synthesis of substituted piperidines. J Am Chem Soc 137(24):7915–7920

    Article  CAS  Google Scholar 

  157. Wang S, Chai Z, Zhou S, Wang S, Zhu X, Wei Y (2013) A novel Lewis acid catalyzed [3 + 3]-annulation strategy for the syntheses of tetrahydro-β-carbolines and tetrahydroisoquinolines. Org Lett 15(11):2628–2631

    Article  CAS  Google Scholar 

  158. Ying Y, Kim H, Hong J (2011) Stereoselective synthesis of 2,6-cis- and 2,6-trans-piperidines through organocatalytic Aza-Michael reactions: a facile synthesis of (+)-myrtine and (−)-epimyrtine. Org Lett 13(4):796–799

    Article  CAS  Google Scholar 

  159. Zhang Z, Shi M (2010) Gold(I)-catalyzed domino reaction of aziridinyl alkynes. Chem Eur J 16(26):7725–7729

    Article  CAS  Google Scholar 

  160. Hedley SJ, Moran WJ, Prenzel AHGP, Price DA, Harrity JPA (2001) Synthesis of functionalised piperidines through a [3 + 3] cycloaddition strategy. Synlett 2001(10):1596–1598

    Article  Google Scholar 

  161. Hedley SJ, Moran WJ, Price DA, Harrity JPA (2003) Development of a [3 + 3] cycloaddition strategy toward functionalized piperidines. J Org Chem 68(11):4286–4292

    Article  CAS  Google Scholar 

  162. Moran WJ, Goodenough KM, Raubo P, Harrity JPA (2003) A concise asymmetric route to nuphar alkaloids. A formal synthesis of (−)-deoxynupharidine. Org Lett 5(19):3427–3429

    Article  CAS  Google Scholar 

  163. Goodenough KM, Moran WJ, Raubo P, Harrity JPA (2005) Development of a flexible approach to Nuphar alkaloids via two enantiospecific piperidine-forming reactions. J Org Chem 70(1):207–213

    Article  CAS  Google Scholar 

  164. Provoost OY, Hazelwood AJ, Harrity JPA (2007) Pd-catalysed [3 + 3] annelations in the stereoselective synthesis of indolizidines. Beilstein J Org Chem 3:8

    Article  CAS  Google Scholar 

  165. Goodenough KM, Raubo P, Harrity JPA (2005) Development of a stepwise [3 + 3] annelation to functionalized piperidines. Org Lett 7(14):2993–2996

    Google Scholar 

  166. Provoost OY, Hedley SJ, Hazelwood AJ, Harrity JPA (2006) Formal synthesis of (±)-perhydrohistrionicotoxin via a stepwise [3 + 3] annelation strategy. Tetrahedron Lett 47(3):331–333

    Google Scholar 

  167. Pattenden LC, Wybrow RAJ, Smith SA, Harrity JPA (2006) A [3 + 3] annelation approach to tetrahydropyridines. Org Lett 8(14):3089–3091

    Google Scholar 

  168. Pattenden LC, Adams H, Smith SA, Harrity JPA (2008) Development of a [3 + 3] approach to tetrahydropyridines and its application in indolizidine alkaloid synthesis. Tetrahedron 64(13):2951–2961

    Article  CAS  Google Scholar 

  169. Mancey NC, Sandon N, Auvinet A-L, Butlin RJ, Czechtizky W, Harrity JPA (2011) Stereoselective approaches to 2,3,6-trisubstituted piperidines. An enantiospecific synthesis of quinolizidine (-)-217A. Chem Commun 47(35):9804–9806

    Article  CAS  Google Scholar 

  170. Smith AB, Kim D-S (2004) Multicomponent linchpin coupling of silyl dithianes employing an N-Ts aziridine as the second electrophile: synthesis of (−)-indolizidine 223AB. Org Lett 6(9):1493–1495

    Article  CAS  Google Scholar 

  171. Smith AB, Kim D-S (2005) Total synthesis of the neotropical poison-frog alkaloid (−)-205B. Org Lett 7(15):3247–3250

    Article  CAS  Google Scholar 

  172. Smith AB, Kim D-S (2006) A general, convergent strategy for the construction of indolizidine alkaloids: total syntheses of (−)-indolizidine 223AB and alkaloid (−)-205B. J Org Chem 71(7):2547–2557

    Article  CAS  Google Scholar 

  173. Smith AB, Han H, Kim W-S (2011) Diversity-oriented synthesis of 2,4,6-trisubstituted piperidines via type II anion relay chemistry. Org Lett 13(13):3328–3331

    Article  CAS  Google Scholar 

  174. Bisai A, Singh VK (2007) An efficient approach to 2-substituted N-tosylpiperdines: asymmetric synthesis of 2-(2-hydroxy substituted)piperidine alkaloids. Tetrahedron Lett 48(11):1907–1910

    Article  CAS  Google Scholar 

  175. Prisyazhnyuk V, Jachan M, Brüdgam I, Zimmer R, Reissig H-U (2009) Addition of lithiated methoxyallene to aziridines – a novel access to enantiopure piperidine and β-amino acid derivatives. Collect Czech Chem Commun 74(7–8):1069–1080

    Article  CAS  Google Scholar 

  176. Takeda Y, Ikeda Y, Kuroda A, Tanaka S, Minakata S (2014) Pd/NHC-catalyzed enantiospecific and regioselective suzuki–miyaura arylation of 2-arylaziridines: synthesis of enantioenriched 2-arylphenethylamine derivatives. J Am Chem Soc 136(24):8544–8547

    Article  CAS  Google Scholar 

  177. Ghorai MK, Nanaji Y, Yadav AK (2011) Ring opening/C-N cyclization of activated aziridines with carbon nucleophiles: highly diastereo- and enantioselective synthesis of tetrahydroquinolines. Org Lett 13(16):4256–4259

    Article  CAS  Google Scholar 

  178. Craig D, Meadows JD, Pécheux M (1998) Heterocyclic synthesis by C-C bond formation. Thionium ion-mediated preparation of substituted pyrrolidines and piperidines. Tetrahedron Lett 39(1–2):147–150

    Article  CAS  Google Scholar 

  179. Craig D, McCague R, Potter GA, Williams MRV (2001) 1,4-Bis(arylsulfonyl)-1,2,3,4-tetrahydropyridines in synthesis. Highly regio- and stereoselective SN1’ and alkylation reactions. Synlett 1998(01):55–57

    Article  Google Scholar 

  180. Craig D, Lu P, Mathie T, Tholen NTH (2010) Directed addition of sulfur-stabilised carbanions to 1,2,3-trisubstituted aziridines. Tetrahedron 66(33):6376–6382

    Article  CAS  Google Scholar 

  181. Carballares S, Craig D, Hyland CJT, Lu P, Mathie T, White AJP (2009) Highly regioselective ring-opening of trisubstituted aziridines by sulfur-stabilised carbanions. Chem Commun 4:451–453

    Article  Google Scholar 

  182. Caldwell JJ, Craig D (2007) Sulfone-mediated total synthesis of (±)-lepadiformine. Angew Chem Int Ed 46(15):2631–2634

    Article  CAS  Google Scholar 

  183. Craig D, Goldberg FW, Pett RW, Tholen NTH, White AJP (2013) Aziridine-based concise synthesis of (+/-)-alstonerine. Chem Commun 49(81):9275–9277

    Article  CAS  Google Scholar 

  184. Balan D, Adolfsson H (2004) Efficient microwave-assisted formation of functionalized 2,5-dihydropyrroles using ruthenium-catalyzed ring-closing metathesis. Tetrahedron Lett 45(15):3089–3092

    Article  CAS  Google Scholar 

  185. Jung ME, Choi YM (1991) New synthesis of 2-azetines and 1-azabutadienes and the use of the latter in Diels-Alder reactions: total synthesis of (. + -.)-.delta.-coniceine. J Org Chem 56(24):6729–6730

    Article  CAS  Google Scholar 

  186. Ungureanu I, Klotz P, Schoenfelder A, Mann A (2001) 2-Phenyl-tosylazetidine as a formal 1,4 dipole precursor. Chem Commun 11:958–959

    Article  CAS  Google Scholar 

  187. Xing S, Ren J, Wang K, Cui H, Li W, Yan H (2015) Lewis acid promoted three-component reactions of aziridines, arenes and aldehydes: an efficient and diastereoselective synthesis of cis-1,4-disubstituted tetrahydroisoquinolines. Tetrahedron. doi:10.1016/j.tet.2015.1006.1013

    Google Scholar 

  188. Wang L, Yang D, Li D, Wang R (2015) Catalytic enantioselective ring-opening and ring-closing reactions of 3-isothiocyanato oxindoles and N-(2-picolinoyl)aziridines. Org Lett 17(12):3004–3007

    Article  CAS  Google Scholar 

  189. Nonn M, Kiss L, Haukka M, Fustero S, Fülöp F (2015) A novel and selective fluoride opening of aziridines by XtalFluor-E. Synthesis of fluorinated diamino acid derivatives. Org Lett 17(5):1074–1077

    Article  CAS  Google Scholar 

  190. Bhanu Prasad BA, Bisai A, Singh VK (2004) 2-aryl-N-tosylazetidines as formal 1,4-dipoles for [4 + 2] cycloaddition reactions with nitriles: an easy access to the tetrahydropyrimidine derivatives. Org Lett 6(26):4829–4831

    Article  CAS  Google Scholar 

  191. Ghorai MK, Das K, Kumar A, Das A (2006) A convenient synthetic route to 2-aryl-N-tosylazetidines and their ZnX2 (X = I, OTf) mediated regioselective nucleophilic ring opening reactions: synthesis of γ-iodoamines and tetrahydropyrimidines. Tetrahedron Lett 47(30):5393–5397

    Article  CAS  Google Scholar 

  192. Ghorai MK, Das K, Kumar A (2009) An efficient synthetic route to substituted tetrahydropyrimidines by Cu(OTf)2-mediated nucleophilic ring-opening followed by the [4 + 2] cycloaddition of N-tosylazetidines with nitriles. Tetrahedron Lett 50(10):1105–1109

    Article  CAS  Google Scholar 

  193. Ottesen LK, Olsen CA, Witt M, Jaroszewski JW, Franzyk H (2009) Selectively N-protected enantiopure 2,5-disubstituted piperazines: avoiding the pitfalls in solid-phase Fukuyama–Mitsunobu cyclizations. Chem Eur J 15(12):2966–2978

    Article  CAS  Google Scholar 

  194. Olsen CA, Christensen C, Nielsen B, Farah MM, Witt M, Clausen RP, Kristensen JL, Franzyk H, Jaroszewski JW (2006) Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids. Org Lett 8(15):3371–3374

    Article  CAS  Google Scholar 

  195. Crestey F, Witt M, Jaroszewski JW, Franzyk H (2009) Expedite protocol for construction of chiral regioselectively N-protected monosubstituted piperazine, 1,4-diazepane, and 1,4-diazocane building blocks. J Org Chem 74(15):5652–5655

    Article  CAS  Google Scholar 

  196. Samanta K, Panda G (2011) Regioselective ring-opening of amino acid-derived chiral aziridines: an easy access to cis-2,5-disubstituted chiral piperazines. Chem Asian J 6(1):189–197

    Article  CAS  Google Scholar 

  197. Letavic MA, Barberia JT, Carty TJ, Hardink JR, Liras J, Lopresti-Morrow LL, Mitchell PG, Noe MC, Reeves LM, Snow SL, Stam EJ, Sweeney FJ, Vaughn ML, Yu CH (2003) Synthesis and biological activity of piperazine-based dual MMP-13 and TNF-α converting enzyme inhibitors. Bioorg Med Chem Lett 13(19):3243–3246

    Article  CAS  Google Scholar 

  198. Ghorai MK, Sahoo AK, Kumar S (2011) Synthetic route to chiral tetrahydroquinoxalines via ring-opening of activated aziridines. Org Lett 13(22):5972–5975

    Article  CAS  Google Scholar 

  199. Mukaiyama T, Ogawa Y, Kuroda K (2004) A new method for the synthesis of β-amino-β′-hydroxy ketones by the samarium(II) iodide-mediated aldol reaction of aldehydes with aryl or alkyl aziridinyl ketones. Chem Lett 33(11):1472–1473

    Article  CAS  Google Scholar 

  200. Ogawa Y, Kuroda K, Mukaiyama T (2005) Highly stereoselective samarium(II) iodide-mediated aldol reactions of acylaziridines with aldehydes. Bull Chem Soc Jpn 78(7):1309–1333

    Article  CAS  Google Scholar 

  201. Ohno H, Hamaguchi H, Tanaka T (2000) Umpolung of chiral 2-ethynylaziridines: indium(I)-mediated stereoselective synthesis of nonracemic 1,3-amino alcohols bearing three chiral centers, catalyzed by palladium(0). Org Lett 2(14):2161–2163

    Article  CAS  Google Scholar 

  202. Anzai M, Yanada R, Fujii N, Ohno H, Ibuka T, Takemoto Y (2002) Asymmetric synthesis of β-2,3-amino acids by InI–Pd(0)-promoted metalation and addition of chiral 2-vinylaziridines. Tetrahedron 58(26):5231–5239

    Article  CAS  Google Scholar 

  203. Inuki S, Iwata A, Oishi S, Fujii N, Ohno H (2011) Enantioselective total synthesis of (+)-lysergic acid, (+)-lysergol, and (+)-isolysergol by palladium-catalyzed domino cyclization of allenes bearing amino and bromoindolyl groups. J Org Chem 76(7):2072–2083

    Article  CAS  Google Scholar 

  204. Ghorai MK, Das K, Kumar A (2007) Lewis acid mediated SN2-type nucleophilic ring opening followed by [4 + 2] cycloaddition of N-tosylazetidines with aldehydes and ketones: synthesis of chiral 1,3-oxazinanes and 1,3-amino alcohols. Tetrahedron Lett 48(25):4373–4377

    Article  CAS  Google Scholar 

  205. Bera M, Roy S (2009) Silver(I)-catalyzed dual activation of propargylic alcohol and aziridine/azetidine: triggering ring-opening and endo-selective ring-closing in a cascade. J Org Chem 74(22):8814–8817

    Article  CAS  Google Scholar 

  206. Rao RK, Naidu AB, Sekar G (2009) Highly efficient copper-catalyzed domino ring opening and Goldberg coupling cyclization for the synthesis of 3,4-dihydro-2H-1,4-benzoxazines. Org Lett 11(9):1923–1926

    Article  CAS  Google Scholar 

  207. Wang L, Liu Q-B, Wang D-S, Li X, Han X-W, Xiao W-J, Zhou Y-G (2009) Tandem ring-opening/closing reactions of N-Ts aziridines and aryl propargyl alcohols promoted by t-BuOK. Org Lett 11(5):1119–1122

    Article  CAS  Google Scholar 

  208. Bhadra S, Adak L, Samanta S, Maidul Islam AKM, Mukherjee M, Ranu BC (2010) Alumina-supported Cu(II), a versatile and recyclable catalyst for regioselective ring opening of aziridines and epoxides and subsequent cyclization to functionalized 1,4-benzoxazines and 1,4-benzodioxanes. J Org Chem 75(24):8533–8541

    Article  CAS  Google Scholar 

  209. Bornholdt J, Felding J, Kristensen JL (2010) Synthesis of enantiopure 3-substituted morpholines. J Org Chem 75(21):7454–7457

    Article  CAS  Google Scholar 

  210. McGhee A, Cochran BM, Stenmark TA, Michael FE (2013) Stereoselective synthesis of 2,5-disubstituted morpholines using a palladium-catalyzed hydroamination reaction. Chem Commun 49(60):6800–6802

    Article  CAS  Google Scholar 

  211. Samanta K, Panda G (2011) One pot synthesis of amino acid derived chiral disubstituted morpholines and 1,4-oxazepanes via tandem aziridine/epoxide ring opening sequences. Org Biomol Chem 9(21):7365–7371

    Article  CAS  Google Scholar 

  212. Bailey T, Seden TP, Turner RW (1969) A new route to 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole, a broad spectrum anthelmintic. J Heterocycl Chem 6(5):751–752

    Article  CAS  Google Scholar 

  213. Koteshwar Rao R, Karthikeyan I, Sekar G (2012) Domino aziridine ring opening and Buchwald–Hartwig type coupling-cyclization by palladium catalyst. Tetrahedron 68(44):9090–9094

    Article  CAS  Google Scholar 

  214. Ghorai MK, Shukla D, Das K (2009) Enantioselective syntheses of morpholines and their homologues via SN2-type ring opening of aziridines and azetidines with haloalcohols. J Org Chem 74(18):7013–7022

    Article  CAS  Google Scholar 

  215. Ghorai MK, Shukla D, Bhattacharyya A (2012) Syntheses of chiral β- and γ-amino ethers, morpholines, and their homologues via nucleophilic ring-opening of chiral activated aziridines and azetidines. J Org Chem 77(8):3740–3753

    Article  CAS  Google Scholar 

  216. Padwa A, Flick AC, Leverett CA, Stengel T (2004) Rhodium(II)-catalyzed aziridination of allyl-substituted sulfonamides and carbamates. J Org Chem 69(19):6377–6386

    Article  CAS  Google Scholar 

  217. Kiefer L, Gorojankina T, Dauban P, Faure H, Ruat M, Dodd RH (2010) Design and synthesis of cyclic sulfonamides and sulfamates as new calcium sensing receptor agonists. Bioorg Med Chem Lett 20(24):7483–7487

    Article  CAS  Google Scholar 

  218. Samzadeh-Kermani A (2014) An efficient one-pot synthesis of 1,4-oxathiane and 1,4-thiomorpholine derivatives. Synlett 25:1839–1842

    Article  CAS  Google Scholar 

  219. Prasad DJC, Sekar G (2009) An efficient copper-catalyzed synthesis of hexahydro-1H- phenothiazines. Org Biomol Chem 7(24):5091–5097

    Article  CAS  Google Scholar 

  220. Zhang J, Cao D, Wang H, Zhao G, Shang Y (2015) Enantioselective desymmetrization of meso-aziridines with aromatic thiols catalyzed by chiral bifunctional quaternary phosphonium salts derived from α-amino acids. Tetrahedron 71(12):1785–1791

    Article  CAS  Google Scholar 

  221. Kogami Y, Okawa K (1987) Synthesis of opically active 3-morpholinecarboxylic acid and tetrahydro-2H-1,4-thiazine-3-carboxylic acid. Bull Chem Soc Jpn 60(8):2963–2965

    Article  CAS  Google Scholar 

  222. Zhou J, Yeung Y-Y (2014) N-bromosuccinimide-induced aminocyclization–aziridine ring-expansion cascade: an asymmetric and highly stereoselective approach toward the synthesis of azepane. Org Lett 16(8):2134–2137

    Article  CAS  Google Scholar 

  223. Feng J-J, Lin T-Y, Wu H-H, Zhang J (2015) Transfer of chirality in the rhodium-catalyzed intramolecular formal hetero-[5 + 2] cycloaddition of vinyl aziridines and alkynes: stereoselective synthesis of fused azepine derivatives. J Am Chem Soc 137(11):3787–3790

    Article  CAS  Google Scholar 

  224. Dolfen J, Kenis S, Van Hecke K, De Kimpe N, D’Hooghe M (2014) Selective synthesis of functionalized trifluoromethylated pyrrolidines, piperidines, and azepanes starting from 1-tosyl-2-(trifluoromethyl)aziridine. Chem Eur J 20(34):10650–10653

    Article  CAS  Google Scholar 

  225. Shintani R, Murakami M, Tsuji T, Tanno H, Hayashi T (2009) Palladium-catalyzed decarboxylative [4 + 3] cyclization of γ-methylidene-δ-valerolactones with 1,1-dicyanocyclopropanes. Org Lett 11(24):5642–5645

    Article  CAS  Google Scholar 

  226. Moore SP, Coote SC, O’Brien P, Gilday J (2006) New route to azaspirocycles via the organolithium-mediated conversion of β-alkoxy aziridines into cyclopentenyl amines. Org Lett 8(22):5145–5148

    Article  CAS  Google Scholar 

  227. Zhang Q-W, Xiang K, Tu Y-Q, Zhang S-Y, Zhang X-M, Zhao Y-M, Zhang T-C (2012) Formal synthesis of (−)-cephalotaxine based on a tandem hydroamination/semipinacol rearrangement reaction. Chem Asian J 7(5):894–898

    Article  CAS  Google Scholar 

  228. Müller EP (1985) Thermal rearrangement of 5,6-epimino-5,6-dihydro-β-ionone and derivatives. Helv Chim Acta 68(5):1107–1113

    Article  Google Scholar 

  229. Müller EP (1986) Photochemical rearrangements of 5,6-epimino-5,6-dihydro-β-ionone and derivatives. Helv Chim Acta 69(3):692–697

    Article  Google Scholar 

  230. Du X, Yang S, Yang J, Liu Y (2011) Regio- and stereoselective construction of highly functionalized 3-benzazepine skeletons through ring-opening cycloamination reactions catalyzed by gold. Chem Eur J 17(18):4981–4985

    Article  CAS  Google Scholar 

  231. Singh AK, Yadav LDS (2012) Rapid synthesis of benzodiazepines by ring expansion of aziridines with anthranilic acids by using a grinding technique. Synthesis 44(04):591–599

    CAS  Google Scholar 

  232. Boralsky LA, Marston D, Grigg RD, Hershberger JC, Schomaker JM (2011) Allene functionalization via bicyclic methylene aziridines. Org Lett 13(8):1924–1927

    Article  CAS  Google Scholar 

  233. Ji F, M-f L, W-b Y, Cai C (2013) Synthesis of 1,4-benzoxazepine derivatives via a novel domino aziridine ring-opening and isocyanide-insertion reaction. Adv Synth Catal 355(17):3401–3406

    Article  CAS  Google Scholar 

  234. Chouhan G, Alper H (2009) Domino ring-opening/carboxamidation reactions of N-tosyl aziridines and 2-halophenols/pyridinol: efficient synthesis of 1,4-benzo- and pyrido-oxazepinones. Org Lett 12(1):192–195

    Article  CAS  Google Scholar 

  235. Zeng F, Alper H (2010) Palladium-catalyzed domino ring-opening/carboxamidation reactions of N-tosyl aziridines and 2-iodothiophenols: a facile and efficient approach to 1,4-benzothiazepin-5-ones. Org Lett 12(23):5567–5569

    Article  CAS  Google Scholar 

  236. Karikomi M, D’Hooghe M, Verniest G, De Kimpe N (2008) Regio- and stereocontrolled synthesis of novel 3-sulfonamido-2,3,4,5-tetrahydro-1,5-benzothiazepines from 2-(bromomethyl)- or 2-(sulfonyloxymethyl)aziridines. Org Biomol Chem 6(11):1902–1904

    Article  CAS  Google Scholar 

  237. Ghorai MK, Sahoo AK, Bhattacharyya A (2014) Syntheses of imidazo-, oxa-, and thiazepine ring systems via ring-opening of aziridines/Cu-catalyzed C–N/C–C bond formation. J Org Chem 79(14):6468–6479

    Article  CAS  Google Scholar 

  238. Shankaran K, Donnelly KL, Shah SK, Caldwell CG, Chen P, Hagmann WK, MacCoss M, Humes JL, Pacholok SG, Kelly TM, Grant SK, Wong KK (2004) Synthesis of analogs of (1,4)-3- and 5-imino oxazepane, thiazepane, and diazepane as inhibitors of nitric oxide synthases. Bioorg Med Chem Lett 14(23):5907–5911

    Article  CAS  Google Scholar 

  239. Ghorai MK, Shahi CK, Bhattacharyya A, Sayyad M, Mal A, Wani IA, Chauhan N (2015) Syntheses of tetrahydrobenzodiazepines via SN2-type ring-opening of activated aziridines with 2-bromobenzylamine followed by Cu-powder mediated C–N bond formation. Asian J Org Chem. doi:10.1002/ajoc.201500224

    Google Scholar 

Download references

Acknowledgments

MKG thanks CSIR, DST, and IIT Kanpur, India, for financial support. AB thanks CSIR, India, and SD and NC thank UGC, India, for research fellowships.

Dedication Dedicated to Prof. JoAnne Stubbe on the occasion of her 69th Birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas K. Ghorai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghorai, M.K., Bhattacharyya, A., Das, S., Chauhan, N. (2015). Ring Expansions of Activated Aziridines and Azetidines. In: D’hooghe, M., Ha, HJ. (eds) Synthesis of 4- to 7-membered Heterocycles by Ring Expansion. Topics in Heterocyclic Chemistry, vol 41. Springer, Cham. https://doi.org/10.1007/7081_2015_159

Download citation

Publish with us

Policies and ethics