Skip to main content

Optical Anisotropy of Thin and Ultrathin Porphyrin Layers

  • Chapter
  • First Online:
Applications of Porphyrinoids

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 34))

Abstract

The use of porphyrins as the sensing elements in technical applications (e.g. electronic nose and electronic tongue) has anticipated the real comprehension of the mechanisms determining at the microscopic level the interaction between the analyte molecules and the layer itself. A huge bulk of phenomenological data has been accumulated, showing the high efficiency of these organic materials versus specific gaseous particles. It has been also reported that the sensitivity to gas is higher for highly disordered layers, probably due to the enhanced surface area of the resulting assembly. A better comprehension of the microscopic behavior would definitely allow a deeper exploitation of the properties of the layer in view of the most efficient electronic devices . Consequently, recently there has been an effort to gain a higher level of accuracy in characterizing the electronic properties and the morphology of the thin (sometimes ultrathin) layers deposited.

In this chapter, I will present and discuss the most significant results obtained by studying the optical anisotropy of thin and ultrathin porphyrin films. In particular, I will mostly limit to data obtained by using a powerful optical technique (originally developed in traditional surface science), namely, reflectance anisotropy spectroscopy (RAS). I will show how the measured spectral features in RAS spectra have their origin in the structure of the layer and can be connected to the interaction existing between molecules in the layer. I will briefly describe the technique, giving some details about the experimental setup and explaining how experimental data can be interpreted. A review of results will follow, from the very early applications on Langmuir–Blodgett and Langmuir–Schaefer films to the more recent study of ultrathin layers evaporated in ultrahigh vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To extend the investigated photon energy range, a different choice of the light source is sometimes necessary: in UV, for example, a deuterium lamp, or a photoemission beamline to couple with the RAS apparatus.

References

  1. Kadish KM, Smith KM, Guilard R (eds) (2010) Handbook of porphyrin science, vol 12, Applications. World Scientific, Singapore

    Google Scholar 

  2. Harvey PD (2003) Recent advances in free and metalated multi-porphyrin assemblies and arrays; a photophysical behavior and energy transfer perspective. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrins and phthalocyanines. Elsevier, Amsterdam, pp 63–249, Chapt. 113

    Chapter  Google Scholar 

  3. Pemble ME, Turner AR, Shukla N, Bitzer T, Frederick BG, Kitching KJ, Richardson NV (1995) J Chem Soc Faraday Trans 91:3627

    Article  CAS  Google Scholar 

  4. Chiaradia P, Del Sole R (1999) Differential-reflectance spectroscopy and reflectance-anisotropy spectroscopy on semiconductor surfaces. Surf Rev Lett 6:517–552

    Article  CAS  Google Scholar 

  5. Forrest SR (1997) Chem Rev 97:1793

    Article  CAS  Google Scholar 

  6. Forrest R, Burrows PE, Haskal EI, So FF (1994) Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin films. II. Experiment. Phys Rev B 49:11309

    Article  Google Scholar 

  7. Azzam RMA, Bashara NM (1977) Ellipsometry and polarized light. North Holland, Amsterdam

    Google Scholar 

  8. Pickering C (1998) Thin Solid Films 313–314, 406–415

    Google Scholar 

  9. Kampen TU, Paraian AM, Rossow U, Park S, Salvan G, Wagner TH, Friedrich M, Zahn DT (2001) Phys Status Solidi A 188:1307

    Article  CAS  Google Scholar 

  10. Tsankov D, Hinrichs K, Roseler A, Korte EH (2001) Phys Status Solidi A 188:1319

    Article  CAS  Google Scholar 

  11. Pop DS, Kate SP, Rappich J, Hinrichs K (2014) Tunable optical constants of thermally grown thin porphyrin films on silicon for photovoltaic applications, Solar energy materials and solar cells 127: 169–173

    Google Scholar 

  12. LoSurdo M, Hingerl K (eds) (2013) Ellipsometry at the nanoscale. Springer, Berlin

    Google Scholar 

  13. Selci S, Ciccacci F, Chiarotti G, Chiaradia P, Cricenti A (1987) Surface differential reflectivity spectroscopy of semiconductor surfaces. J Vac Sci Technol A 5:327

    Article  CAS  Google Scholar 

  14. Selci S, Cricenti A, Felici AC, Ferrari L, Goletti C, Chiarotti G (1991) Oxygen chemisorption on cleaved InP(110) surfaces studied with surface differential reflectivity. Phys Rev B 43:6757

    Article  CAS  Google Scholar 

  15. Wooten F (1972) Optical properties of solids. Academic Press, New York

    Google Scholar 

  16. Proehl H, Dienel T, Nitsche R, Fritz T (2004) Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks. Phys Rev Lett 93:097403

    Article  Google Scholar 

  17. Forker R, Dienel T, Fritz T, Müllen K (2006) Optical evidence for substrate-induced growth of ultrathin hexa-peri-hexabenzocoronene films on highly oriented pyrolytic graphite. Phys Rev B 74:165410

    Article  Google Scholar 

  18. Weightman P, Martin DS, Cole RJ, Farrell T (2005) Reflection anisotropy spectroscopy. Rep Prog Phys 68:1251

    Article  CAS  Google Scholar 

  19. Goletti C, Bussetti G, Chiaradia P, Sassella A, Borghesi A (2004) In situ optical investigation of oligothiophene layers grown by organic molecular beam epitaxy. J Phys Condens Matter 16:S4393–S4402

    Article  CAS  Google Scholar 

  20. Bussetti G, Goletti C, Chiaradia P, Derry T (2007) Optical gap between dangling-bond states of a single-domain diamond C (111)-2× 1 by reflectance anisotropy spectroscopy. Europhys Lett 79:57002

    Article  Google Scholar 

  21. Bussetti G, Goletti C, Violante A, Chiaradia P, Derry T (2009) The 2× 1-reconstructed cleavage surface of diamond: a challenging test for experiment and theory. Superlattices Microstruct 46:227–233

    Article  CAS  Google Scholar 

  22. Mantese L, Bell KA, Rossow U, Aspnes DE (1997) J Vac Sci Technol B 15:1196

    Article  CAS  Google Scholar 

  23. Bell KA, Mantese L, Rossow U, Aspnes DE (1997) J Vac Sci Technol B 15:1205

    Article  CAS  Google Scholar 

  24. Sassella A, Borghesi A, Wagner TH, Hilfiker J (2001) J Appl Phys 90:3838

    Google Scholar 

  25. Goletti C, Bussetti G, Chiaradia P, Sassella A, Borghesi A (2003) Appl Phys Lett 83:4146–4148

    Article  CAS  Google Scholar 

  26. Sassella A, Campione M, Moret M, Borghesi A, Goletti C, Bussetti G, Chiaradia P (2005) Phys Rev B 71:201311–1

    Article  Google Scholar 

  27. Laicini M, Spearman P, Tavazzi S, Borghesi A (2005) Phys Rev B 71:045212

    Google Scholar 

  28. Aspnes DE, Harbison JP, Studna AA, Florez LT (1987) Phys Rev Lett 59:1687

    Article  CAS  Google Scholar 

  29. Berkovits VI, Kiselev VA, Safarov VI (1989) Surf Sci 211–212:489

    Article  Google Scholar 

  30. Salvati A, Chiaradia P (2000) Appl Opt 39:5820

    Article  CAS  Google Scholar 

  31. Goletti C, Bussetti G, Chiaradia P, Sassella A, Borghesi A (2004) The application of reflectance anisotropy spectroscopy to organics deposition. Org Electron 5:73–81

    Article  CAS  Google Scholar 

  32. Di Natale C, Goletti C, Paolesse R, Della SF, Drago M, Chiaradia P (2000) Optical anisotropy of Langmuir–Blodgett sapphyrin films. Appl Phys Lett 77(20):3164–3166

    Article  Google Scholar 

  33. Kemp JC (1969) J Opt Soc Am 59:950, http://www.hindspem.com

    Google Scholar 

  34. Roberts G (ed) (1990) Langmuir-Blodgett films. Plenum, New York

    Google Scholar 

  35. Ulman A (1991) An introduction to ultrathin, organic films—From Langmuir–Blodgett to self-assembly. Academic, New York

    Google Scholar 

  36. Bussetti G, Campione M, Riva M, Picone A, Raimondo L, Ferraro L, Hogan C, Palummo M, Brambilla A, Finazzi M, Duò L, Sassella A, Ciccacci F (2014) Stable alignment of tautomers at room temperature in porphyrin 2D layers. Adv Funct Mat 24:957

    Article  Google Scholar 

  37. McIntyre JDE, Aspnes DE (1971) Surf Sci 6:4370

    Google Scholar 

  38. Goletti C, Bussetti G, Arciprete F, Chiaradia P, Chiarotti G (2002) Infrared surface absorption in Si(111)2×1 observed with reflectance anisotropy spectroscopy. Phys Rev B 66:153307

    Google Scholar 

  39. Harrison P, Farrell T, Maunder A, Smith CI, Weightman P (2001) A rapid reflectance anisotropy spectrometer. Meas Sci Technol 12:2185–2191

    Article  CAS  Google Scholar 

  40. Richter W (1993) Philos Trans R Soc Lond A 344:453

    Article  CAS  Google Scholar 

  41. Mansley CP, Farrell T, Smith CI, Harrison P, Bowfield A, Weightman P (2009) A new UV reflection anisotropy spectrometer and its application to the Au(1 1 0)/electrolyte surface. J Phys D Appl Phys 42:115303 (5pp)

    Article  Google Scholar 

  42. Johnson RL, Barth J, Cardona M, Fuchs D, Bradshaw AM (1989) Spectroscopic ellipsometry with synchrotron radiation. Rev Sci Instrum 60:2209

    Article  CAS  Google Scholar 

  43. Wethkamp T, Wilmers K, Esser N, Richter W, Ambacher O, Angerer H, Jungk G, Johnson RL, Cardona M (1998) Thin Solid Films 313:745

    Article  Google Scholar 

  44. Hogan C, Ferraro E, McAlinden N, McGilp JF (2013) Phys Rev Lett 111:087401

    Article  Google Scholar 

  45. Fazi L, Hogan C, Persichetti L, Goletti C, Palummo M, Sgarlata A, Balzarotti A (2013) Intermixing and buried interfacial structure in strained Ge/Si(105) facets. Phys Rev B 88:195312

    Article  Google Scholar 

  46. Riefer A, Rauls E, Schmidt WG, Eberhard J, Stoll I, Mattay J (2012) 2-Aminopyrimidine-silver(I) based organic semiconductors: Electronic structure and optical response. Phys Rev B 85:165202

    Article  Google Scholar 

  47. Palik ED (1998) Handbook of optical constants of solids. Academic, USA

    Google Scholar 

  48. Esser N, Schmidt WG, Cobet C, Fleischer K, Shkrebtii AI, Richter W (2001) Atomic structure and optical anisotropy of III-V(001) surfaces. J Vac Sci Technol B 19:1756

    Article  CAS  Google Scholar 

  49. Goletti C, Arciprete F, Almaviva S, Chiaradia P, Esser N, Richter W (2001) Analysis of InAs(001) surfaces by reflectance anisotropy spectroscopy. Phys Rev B 64:193301

    Article  Google Scholar 

  50. Frederick BG, Power JR, Cole RJ, Perry CC, Chen Q, Haq S, Bertrams T, Richardson NV, Weightman P (1998) Adsorbate azimuthal orientation from reflectance anisotropy spectroscopy. Phys Rev Lett 80:4490–4493

    Article  CAS  Google Scholar 

  51. Goletti C, Sgarlata A, Motta N, Chiaradia P, Paolesse R, Angelaccio A, Drago M, Di Natale C, D’Amico A, Cocco M, Troitsky V (1999) Kelvin probe and scanning tunneling microscope characterization of Langmuir–Blodgett sapphyrin films. Appl Phys Lett 75:1237–1239

    Article  CAS  Google Scholar 

  52. Goletti C, Bussetti G, Chiaradia P, Paolesse R, Di Natale C, Mazzone E, D’Amico A (2001) A reflectance anisotropy spectroscopy investigation of porphyrin langmuir-blodgett films. Phys Status Solidi A 188:1339–1344

    Article  CAS  Google Scholar 

  53. Goletti C, Paolesse R, Di Natale C, Bussetti G, Chiaradia P, Froiio A, Valli L, D’Amico A (2002) Optical anisotropy of porphyrin Langmuir–Blodgett films. Surf Sci 501:31–36

    Article  CAS  Google Scholar 

  54. Schick GA, Schreiman IC, Wagner RW, Lindsey JS, Bocian DF (1989) J Am Chem Soc 111:1344

    Article  CAS  Google Scholar 

  55. Huang X, Nakanishi K, Berova N (2000) Chirality 12:237

    Article  CAS  Google Scholar 

  56. Hunter CA, Sanders JMK, Stone A (1989) Chem Phys 133:395

    Article  CAS  Google Scholar 

  57. van Esch JH, Feiters MC, Peters AM, Nolte RJM (1994) J Phys Chem 98:5541

    Article  Google Scholar 

  58. Johnson PB, Christy RW (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  59. Goletti C, Paolesse R, Dalcanale E, Berzina T, Di Natale C, Bussetti G, Chiaradia P, Froiio A, Cristofolini L, Costa M, D’Amico A (2002) Thickness dependence of the optical anisotropy for porphyrin octaester Langmuir-Schaefer films. Langmuir 18:6881–6886

    Article  CAS  Google Scholar 

  60. Miller EK, Hingerl K, Brabec CJ, Heeger AJ, Sariciftici NS (2000) J Chem Phys 113:789

    Article  CAS  Google Scholar 

  61. Facci P, Fontana MP, Dalcanale E, Costa M, Sacchelli T (2000) Langmuir 16:7726

    Article  CAS  Google Scholar 

  62. Cristofolini L, Arisi S, Fontana MP (2000) Phys Rev Lett 85:4912

    Article  CAS  Google Scholar 

  63. Della SF, Widany J, Frauenheim T (2000) Phys Status Solidi B 217:565

    Article  Google Scholar 

  64. DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF (1997) Phys Rev Lett 78:1524

    Article  CAS  Google Scholar 

  65. Fukao K, Miyamoto Y (2000) Phys Rev E 61:1743

    Article  CAS  Google Scholar 

  66. Paganuzzi V, Guatteri P, Riccard P, Sacchelli T, Barbera J, Costa M, Dalcanale E (1999) Eur J Org Chem 1527

    Google Scholar 

  67. Mendoza BS, Vázquez-Nava RA (2005) Model for reflectance anisotropy spectra of molecular layered systems. Phys Rev B 72:035411

    Article  Google Scholar 

  68. Arzate N, Mendoza BS, Vázquez-Nava RA (2004) J Phys Condens Matter 16:S4259

    Article  CAS  Google Scholar 

  69. Scarselli M, Ercolani G, Castrucci P, Monti D, Bussetti G, Russo M, Goletti C, Chiaradia P, Paolesse R, De Crescenzi M (2007) A combined scanning tunneling microscopy and reflectance anisotropy spectroscopy investigation of tetraphenylporphyrin deposited on graphite. Surf Sci 601:2607–2610

    Article  CAS  Google Scholar 

  70. Zou Z-Q, Wei L, Chen F, Liu Z, Thamyongkit P, Loewe RS, Lindsey JS, Mohideen U, Bocian DFJ (2005) Porphyrins Phthalocyanines 9:387

    Article  CAS  Google Scholar 

  71. Khairutdinov RF, Serpone N (1999) J Phys Chem B 103:761

    Article  CAS  Google Scholar 

  72. Scarselli M, Castrucci P, Monti D, De Crescenzi M (2007) Studies of the adsorption of tetraphenylporphyrin molecules on graphite. Surf Sci 601:5526–5532

    Article  CAS  Google Scholar 

  73. Bussetti G, Campione M, Ferraro L, Raimondo L, Bonanni B, Goletti C, Palummo M, Hogan C, Duò L, Finazzi M, Sassella A (2014) Probing two-dimensional vs three-dimensional molecular aggregation in metal-free tetraphenylporphyrin thin films by optical anisotropy. J Phys Chem C 118:15649–15655

    Article  CAS  Google Scholar 

  74. De Luca G, Treossi E, Liscio A, Mativetsky JM, Monsù SL, Palermo V, Samorì P (2010) Solvent vapour annealing of organic thin films: controlling the self-assembly of functional systems across multiple length scales. J Mater Chem 20:2493–2498

    Article  Google Scholar 

  75. Bassiouk M, Álvarez-Zauco E, Basiuk VA (2011) J Nanosci Nanotechnol 11:5457

    Article  CAS  Google Scholar 

  76. Sadegh Hassani S, Kim Y-G, Borguet E (2011) Langmuir 27:14828

    Article  CAS  Google Scholar 

  77. Teugels LG, Avila-Bront LG, Sibener SJ (2011) J Phys Chem C 115:2826

    Article  CAS  Google Scholar 

  78. Friesen BA, Wiggins B, McHale JL, Mazur U, Hipps KW (2010) J Am Chem Soc 132:8554

    Article  CAS  Google Scholar 

  79. Onsager L (1944) Phys Rev 65:117

    Article  CAS  Google Scholar 

  80. Gouterman M (1978) The Porphyrins, vol 3. Academic, New York

    Google Scholar 

  81. Bussetti G, Campione M, Raimondo L, Yivlialin R, Finazzi M, Ciccacci F, Sassella A, Duò L (2014) Unconventional post-deposition chemical treatment on ultra-thin H2TPP film grown on graphite. Cryst Res Tech, doi: 10.1002/crat.201300406

  82. De Luca G, Romeo A, Monsù Scolaro R, Ricciardi G, Rosa A (2007) Evidence of tetraphenylporphyrin monoacids. Inorg Chem 46:5979–5988

    Article  Google Scholar 

  83. Palummo M et al (2009) Ab initio electronic and optical spectra of free-base porphyrins: the role of electronic correlation. J Chem Phys 131:084102(1)–084102(7)

    Article  Google Scholar 

  84. Bussetti G, Corradini C, Goletti C, Chiaradia P, Russo M, Paolesse R, Di Natale C, D’Amico A, Valli L (2005) Phys Status Solidi B 242:2714

    Article  CAS  Google Scholar 

  85. Richardson TH, Dooling CM, Worsfold O, Jones LT, Kato K, Shinbo K, Kaneko F, Tregonning R, Vysotsky MO, Hunter CA (2002) Colloids Surf A 198:843

    Article  Google Scholar 

  86. Bussetti G, Cirilli S, Violante A, Chiaradia P, Goletti C, Tortora L, Paolesse R, Martinelli E, D’Amico A, Di Natale C, Giancane G, Valli L (2009) Optical anisotropy readout in solid-state porphyrins for the detection of volatile compounds. Appl Phys Lett 95:091906

    Article  Google Scholar 

  87. Paolesse R, Di Natale C, Macagnano A, Sagone F, Boschi T, Scarsell M, Chiaradia P, Troitsky VI, Berzina TS, D’Amico A (1999) Langmuir 15:1268

    Article  CAS  Google Scholar 

  88. Bussetti G, Violante A, Yivlialin R, Cirilli S, Bonanni B, Chiaradia P, Goletti C, Tortora L, Paolesse R, Martinelli E, D’Amico A, Di Natale C, Giancane G, Valli L (2011) Site-sensitive gas sensing and analyte discrimination in Langmuir− Blodgett porphyrin films. J Phys Chem C 115(16):8189–8194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

After the overview of about 15 years of investigations on the optical anisotropy of thin and ultrathin layers of porphyrins, since the very early tests on samples taken from the laboratory of R. Paolesse, I wish to acknowledge the collaboration with several colleagues and students, with whom I have shared ideas, discussions, experiments, enthusiasm, and – sometimes – delusion. A special thanks to M. Drago, G. Bussetti, A. Violante, R. Paolesse, C. Di Natale, P. Chiaradia, and A. Sassella. Finally, my sincere gratitude to G. Chiarotti, from whom I learned how to be an honest and (hopefully) decent experimentalist.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goletti, C. (2014). Optical Anisotropy of Thin and Ultrathin Porphyrin Layers. In: Paolesse, R. (eds) Applications of Porphyrinoids. Topics in Heterocyclic Chemistry, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2014_135

Download citation

Publish with us

Policies and ethics