Skip to main content

Thermal Rearrangements and Transformations of 1,2,3-Triazoles

  • Chapter
  • First Online:
Chemistry of 1,2,3-triazoles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 40))

Abstract

This chapter concentrates on the thermal rearrangements and transformations of 1,2,3-triazoles. It also contains data on the ring-chain tautomerism of 1,2,3-triazoles and the substituent effect on the position of the equilibrium between diazoimines and 1,2,3-triazoles. The main part of this review has been devoted to transition-metal-catalyzed denitrogenative transformation of 1,2,3-triazoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(R)-{NTV}4 :

αR-α-(isopropyl)-1,3-dioxo-2H-benz[de]isoquinoline-2-acetato

(S)-{NTTL}4 :

αS-α-(tert-butyl)-1,3-dioxo-2H-benz[de]isoquinoline-2-acetato

1,2-DCE:

1,2-Dichloroethane

Alk:

Alkyl

BDPP:

(2R 4R) or (2S, 4S)bis(diphenylphosphino)pentane

Boc:

Benzyloxycarbonyl

CuAAC:

Copper(I)-catalyzed azide–alkyne cycloaddition

DBU:

1,8-Diazabicycloundec-7-ene

DFT:

Density Functional Theory

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

dr:

Diastereomer ratio

E:

Ester group

ee :

Enantiomer excess

FVP:

Flash Vacuum Pyrolysis

h:

Hour(s)

IR:

Infra-Red

Me:

Methyl

Ms:

Mesyl

MW:

Microwave

n-Bu:

Normal butyl

Ni(cod)2 :

Bis(cyclooctadiene)nickel(0)

NMR:

Nuclear Magnetic Resonance

P(n-Bu)Ad2 :

Di(1-adamantyl)-n-butylphosphine

Ph:

Phenyl

Rh2(esp)2 :

Bis[rhodium(α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid)]

Rh2(oct)4 :

Rhodium tetra octanoate

Rh2(piv)4 :

Rhodium pivalate

Rh2(S-DOSP)4 :

Tetrakis[(S)-(-)-N-(p-dodecylphenylsulfonyl)prolinato]dirhodium (II)

Rh2(S-PTAD)4 :

Tetrakis[(S)-(+)-(1-adamantyl)-(N-phthalimido)acetato]dirhodium(II)

rt:

Room temperature

TBDMSO:

tert-Butyldimethylsilyloxy

Tf:

Trifluoromethanesulfonyl (triflyl)

Tf2O:

Triflic anhydride

Tpm*,Br :

Tris(3,5-dimethyl-4-bromopyrazolyl)methane]

Ts:

Tosyl 4-toluenesulfonyl

References

  1. Taylor EC, Turchi IJ (1979) 1,5-Dipolar cyclizations. Chem Rev 79:182–231

    Article  Google Scholar 

  2. Bakulev VA, Kappe CO, Padwa A (1996) Application of the 1,5-electrocyclic reaction in heterocyclic synthesis. In: Hudlicky T (ed) Organic synthesis: theory and applications, vol 3. JAI Press, Greenwich, pp 149–229

    Google Scholar 

  3. Haron RE, Stanley JF, Gupta SK et al (1970) N,N-Dialkylamino-1,2,3-triazole-.alpha.-diazoamidine tautomers from substituted benzenesulfonyl azides and ynamines. J Org Chem 35:3444–3448

    Article  Google Scholar 

  4. Hermes ME, Marsh FD (1967) 1-Cyano-1,2,3-triazole-α-diazo-N-cyanoimine tautomers from cyanogen azide and acetylenes. J Am Chem Soc 89:4760–4764

    Article  CAS  Google Scholar 

  5. Birney DM, Ham S, Unruh GR (1997) Pericyclic and pseudopericyclic thermal cheletropic decarbonylations: when can a pericyclic reaction have a planar, pseudopericyclic transition state? J Am Chem Soc 119:4509–4517

    Article  CAS  Google Scholar 

  6. Fabian WMF, Bakulev VA, Kappe CO (1998) Pericyclic versus pseudopericyclic 1,5-electrocyclization of iminodiazomethanes. An ab initio and density functional theory study. J Org Chem 63:5801–5805

    Article  CAS  Google Scholar 

  7. Dimroth O (1904) Uber desmotrope Verbindungen. Ann Chem 335:1–35

    Article  Google Scholar 

  8. Morzherin YY, Kolobov MY, Mokrushin VS et al (2000) Heterocyclization of compounds containing diazo and cyano groups. 6. Theoretical and experimental investigations of cyclization of 2-cyano-2-diazoacetamides to 5-hydroxy-1,2,3-triazole-4-carbonitriles. Chem Heterocycl Compds 36:22–36

    Article  CAS  Google Scholar 

  9. Morzherin YY, Subbotina YO, Nein YI et al (2004) Synthesis and heteroelectrocyclization of unsymmetrically substituted diazomalonamides. Russ Chem Bull 53:1305–1310

    Article  CAS  Google Scholar 

  10. Alkorta I, Blanco F, Elguero J et al (2010) The azido-tetrazole and diazo-1,2,3-triazole tautomerism in six-membered heteroaromatic rings and their relationships with aromaticity: azines and perimidine. Tetrahedron 66:2863–2868

    Article  CAS  Google Scholar 

  11. L’abbé G (1984) Molecular rearrangements of five-membered ring heteromonocycles. J Heterocycl Chem 21:627–638

    Article  Google Scholar 

  12. Wamhoff H (1984) 1,2,3-Triazoles and their benzo derivarives. In: Katritzky AR, Rees SW, Potts KT(eds) Comprehensive heterocyclic chemistry I, vol 4.11. Pergamon, Oxford, pp 670–732

    Google Scholar 

  13. Fan W-Q, Katritzky AR (1996) 1,2,3-Triazoles. In: Katritzky AR, Rees SW, Scriven EFV, Storr RC (eds) Comprehensive heterocyclic chemistry II, vol 4.01. Pergamon, Oxford, pp 1–126

    Chapter  Google Scholar 

  14. L'abbé G (1990) Molecular rearrangements of 1,2,3-triazoles and 1,2,3-thiadiazoles. Bull Soc Chim Belg 99:281–291

    Article  Google Scholar 

  15. Morzherin YY, Pospelova TA, Gluhareva TV et al (2004) The Dimroth rearrangement of 1,2,3-triazoles in the synthesis of anion receptors based on calix[4]arenes. ARKIVOC 11:31–35

    Article  Google Scholar 

  16. Uher M, Knopova V, Martvin A (1979) Dimroth rearrangement in the thiadiazole-triazole system. Chem Zvesty 10:514–520

    Google Scholar 

  17. Bakulev VA, Dehaen W (2004) The chemistry of 1,2,3-thiadiazoles. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  18. L'abbé G, Bruynseels R, Delbeke P et al (1990) Molecular rearrangements of 4-iminomethyl-1,2,3-triazoles. Replacement of 1-aryl substituents in 1H-1,2,3-triazole-4-carbaldehydes. J Heterocycl Chem 27:2021–2027

    Article  Google Scholar 

  19. L'abbé G, Vandendriessche A (1989) Ring-degenerate rearrangement of 5-amino-4-iminomethyl-1, 2, 3-triazoles. J Heterocycl Chem 26:701–703

    Article  Google Scholar 

  20. L'Abbé G, Van Essche G, Delbeke P et al (1990) Rearrangements of 1-phenyl-1,2,3-triazoles bearing a hydrazine or oxime function at the 4-position. Bull Soc Chim Belg 99:833–834

    Article  Google Scholar 

  21. Dehaen W, Becher J (1993) Ring opening of five-membered heteroaromatic azides and nitrenes. Acta Chem Scand 47:244–254

    Article  CAS  Google Scholar 

  22. Bakulev VA, Lebedev AT, Dankova EF et al (1989) Two directions of cyclization of α-diazo-β-dithioamides. New rearrangements of 1,2,3,-triazole-4-carbothiamides. Tetrahedron 45:7329–7340

    Article  CAS  Google Scholar 

  23. Katritzky AR, Ji FB, Fan WQ et al (1992) Novel Dimroth rearrangements of the benzotriazole system: 4-amino-1-(arylsulfonyl)benzotriazoles to 4-[(arylsulfonyl)amino]benzotriazoles. J Org Chem 57:191–195

    Google Scholar 

  24. Temple DH, Smith JA, Montgomery JA (1972) Preparation and properties isomeric v-triazolopyridines. 1- and 3-Deaza-8-azapurines. J Org Chem 37:3784–3788

    Article  Google Scholar 

  25. L'abbé G, Dehaen W (1988) Synthesis and thermal rearrangement of 5-diazomethyl-1,2,3-triazoles. Tetrahedron 44:461–469

    Article  Google Scholar 

  26. L'abbé G, Dehaen W (1987) Synthesis and thermolysis of 4-methoxycarbonyl-5-(α-methoxycarbonyldiazomethyl)-1,2,3-triazoles. Bull Soc Chim Belg 96:823–824

    Article  Google Scholar 

  27. L'abbé G, Van Stappen P, Toppet S (1985) Molecular rearrangements of 5-azido substituted 1,2,3-triazoles. Tetrahedron 41:4621–4631

    Article  Google Scholar 

  28. L'abbé G, Beenaerts L (1989) Thermal rearrangement of 1-substituted 5-azido-4-cyano-1H-1,2,3-triazoles. Bull Soc Chim Belg 98:421–422

    Article  Google Scholar 

  29. L'abbé G, Vandendriessche A, Toppet S (1988) Synthesis and thermolysis of 4-substituted 5-azido-1-phenyl-1,2,3-triazoles. Tetrahedron 44:3617–3626

    Article  Google Scholar 

  30. L'abbé G, Beenaerts L (1989) Influence of electron-withdrawing N-1 substituents of the thermal behavior of 5-azido-1,2,3-triazoles. Tetrahedron 45:749–756

    Article  Google Scholar 

  31. L'abbé G, Vercauteren K, Dehaen W (1994) Thermolysis of 4-heteroaryl substituted 5-azido-1H-1,2,3-triazoles: competition between rearrangement and decomposition. Bull Soc Chim Belg 103:321–327

    Article  Google Scholar 

  32. Moderhack D, Beissner A (1997) Conversion of N-(1,2,3-triazolyl)hydrazonoyl bromides into functionalized 1,2,4-triazoles. J Prakt Chem Chem Zeit 339:582–586

    Article  CAS  Google Scholar 

  33. Gilchrist TL, Gymer GE, Rees CW (1975) Reactive intermediates. Part XXIV. 1H-Azirine intermediates in the pyrolysis of 1H-1,2,3-triazole. J Chem Soc PerkinTrans 1:1–8

    Article  Google Scholar 

  34. Gilchrist TL, Gymer GE, Rees CWJ (1971) Mechanism of the pyrolysis of 1,2,3-triazoles. 1H-Azirines as intermediates. Chem Soc D Chem Commun 1519–1520

    Google Scholar 

  35. Mitchell G, Rees CW (1987) Photolysis of 1-aryl -1,2,3-triazoles; rearrangement via 1H-azirines. J Chem Soc Perkin Trans 1:413–422

    Article  Google Scholar 

  36. Gilchrist TL, Gymer GE, Rees CWJ (1973) Reactive intermediates. Part XXIII. Pyrolysis of 1-phthalimido-1,2,3-triazoles: formation and thermal reactions of 2H-azirines. Chem Soc Perkin Trans 1:555–561

    Article  Google Scholar 

  37. Meza-Avina ME, Patel MK, Croatt MP (2013) Exploring the reactivity of 1,5-disubstituted sulfonyl-triazoles: thermolysis and Rh(II)-catalyzed synthesis of α-sulfonyl nitriles. Tetrahedron 69:7840–7846

    Article  CAS  Google Scholar 

  38. Fullon BE, Wentrup C (1996) Imidoylketene-oxoketenimine interconversion. Rearrangement of a carbomethoxyketenimine to a methoxyimidoylketene and 2-methoxy-4-quinolone. J Org Chem 61:1363–1368

    Article  Google Scholar 

  39. Clarke D, Mares RW, McNab H (1993) A novel entry to the imidoylketene-oxoketenimine energy surface. J Chem Soc Chem Commun 1026–1027

    Google Scholar 

  40. Rao VVR, Wentrup C (1998) Synthesis of aminoquinolones from triazoles via carboxamidoketenimine and amidodinoketene intermediate. J Chem Soc Perkin Trans 1:2583–2586

    Article  Google Scholar 

  41. Rachwal S, Katritzky AR (2008) 1,2,3-Triazoles. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (eds) Comprehensive heterocyclic chemistry III, vol 5.01. Pergamon, Oxford, pp 1–158

    Chapter  Google Scholar 

  42. Lucero PL, Pelaez WJ, Riedl Z et al (2012) Flash vacuum pyrolysis of azolylacroleins and azolylbutadienes. Tetrahedron 68:1299–1305

    Article  CAS  Google Scholar 

  43. Rees CW, Yue T-Y (2001) Conversion of enamines, enamides and triazoles by trithiazyl trichloride into 1,2,5-thiadiazole. J Chem Soc Perkin Trans 1:662–667

    Article  Google Scholar 

  44. Alford JS, Davies HML (2012) Expanding the scope of donor/acceptor carbenes to N-phthalimido donor groups: diastereoselective synthesis of 1-cyclopropane α-amino acids. Organic Lett 14:6020–6023

    Article  CAS  Google Scholar 

  45. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  CAS  Google Scholar 

  46. Rostovtsev VV, Green LG, Fokin VV et al (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  47. Chattopadhyay B, Gevorgyan V (2012) Transition-metal-catalyzed denitrogenative transannulation: converting triazoles into other heterocyclic systems. Angew Chem Int Ed 51:862–872

    Article  CAS  Google Scholar 

  48. Gulevich AV, Gevorgyan V (2013) Versatile reactivity of rhodium-iminocarbenes derived from N-sulfonyl triazoles. Angew Chem Int Ed 52:1371–1373

    Article  CAS  Google Scholar 

  49. Miura T, Yamauchi M, Murakami M (2009) Nickel-catalysed denitrogenative alkyne insertion reactions of N-sulfonyl-1,2,3-triazoles. RCS Chem Commun 1470–1471

    Google Scholar 

  50. Chattopadhyay B, Gevorgyan V (2011) Rh-Catalyzed transannulation of N-tosyl-1,2,3-triazoles with terminal alkynes. Organic Lett 13:3746–3749

    Article  CAS  Google Scholar 

  51. Miura T, Hiraga K, Biyajima T et al (2013) Regiocontrolled synthesis of polysubstituted pyrroles starting from terminal alkynes, sulfonyl azides and allenes. Organic Lett 15:3298–3301

    Article  CAS  Google Scholar 

  52. Parr BT, Green SA, Davies HML (2013) Rhodium-catalyzed conversion of furans to highly functionalized pyrroles. J Am Chem Soc 135:4716–4718

    Article  CAS  Google Scholar 

  53. Chuprakov S, Hwang FW, Gevorgyan V (2007) Rh-Catalyzed transannulation of pyridotriazoles with alkynes and nitriles. Angew Chem Int Ed 46:4757–4759

    Article  CAS  Google Scholar 

  54. Nakamura I, Nemoto T, Shiraiwa N et al (2009) Palladium-catalyzed indolization of N-aroylbenzotriazoles with disubstituted alkynes. Organic Lett 11:1055–1058

    Article  CAS  Google Scholar 

  55. Schultz EE, Sarpong R (2013) Application of in situ-generated Rh-bound trimethylenemethane variants to the synthesis of 3,4-fused pyrroles. J Am Chem Soc 135:4696–4699

    Article  CAS  Google Scholar 

  56. Shi Y, Gevorgyan V (2013) Intramolecular transannulation of alkynyl triazoles via alkyne-carbene metathesis step: access to fused pyrroles. Organic Lett 15:5394–5396

    Article  CAS  Google Scholar 

  57. Spangler JE, Davies HML (2013) Catalytic asymmetric synthesis of pyrroloindolines via a rhodium(II)-catalyzed annulation of indoles. J Am Chem Soc 135:6802–6805

    Article  CAS  Google Scholar 

  58. Alford JS, Spangler JE, Davies HML (2013) Conversion of cyclic ketones to 2,3-fused pyrroles and substituted indoles. J Am Chem Soc 135:11712–11715

    Article  CAS  Google Scholar 

  59. Miura T, Tanaka T, Hiraga K et al (2013) Stereoselective synthesis of 2,3-dihydropyrroles from terminal alkynes, azides and α, β-unsaturated aldehydes via N-sulfonyl-1,2,3-triazoles. J Am Chem Soc 135:13652–13655

    Google Scholar 

  60. Horneff T, Chuprakov S, Chernyak N et al (2008) Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J Am Chem Soc 130:4972–14974

    Article  Google Scholar 

  61. Zibinsky M, Fokin VV (2013) Sulfonyl-1,2,3-triazoles: convenient synthones for heterocyclic compounds. Angew Chem Int Ed 52:1507–1510

    Article  CAS  Google Scholar 

  62. Chuprakov S, Kwok SW, Fokin VV (2013) Transannulation of 1-sulfonyl-1,2,3-triazoles with heterocumulenes. J Am Chem Soc 135:4652–4655

    Article  CAS  Google Scholar 

  63. Zibinsky M, Fokin VV (2011) Reactivity of N-(1,2,4-triazolyl)-substituted 1,2,3-triazoles. Organic Lett 13:4870–4872

    Article  CAS  Google Scholar 

  64. Cano I, Álvarez EM, Nicasio MC et al (2011) Regioselective formation of 2,5-disubstituted oxazoles via copper(I)-catalyzed cycloaddition of acyl azides and 1-alkynes. J Am Chem Soc 133:191–193

    Google Scholar 

  65. Chuprakov S, Gevorgyan V (2007) Regiodivergent metal-catalyzed rearrangement of 3-iminocyclopropenes into N-fused heterocycles. Organic Lett 9:4463–4466

    Article  CAS  Google Scholar 

  66. Chuprakov S, Kwok SW, Zhang L et al (2009) Rhodium-catalyzed enantioselective cyclopropanation of olefins with N-sulfonyl 1,2,3-triazoles. J Am Chem Soc 131:18034–18035

    Article  CAS  Google Scholar 

  67. Culhane JC, Fokin VV (2011) Synthesis and reactivity of sulfamoyl azides and 1-sulfamoyl-1,2,3-triazoles. Organic Lett 13:4578–4480

    Article  CAS  Google Scholar 

  68. Grimster N, Zhang L, Fokin VV (2010) Synthesis and reactivity of rhodium(II) N-triflyl azavinyl carbenes. J Am Chem Soc 132:2510–2511

    Article  CAS  Google Scholar 

  69. Selander N, Worrell BT, Chuprakov S et al (2012) Arylation of rhodium(II) azavinyl carbenes with boronic acids. J Am Chem Soc 134:14670–14673

    Article  CAS  Google Scholar 

  70. Miura T, Funakoshi Y, Morimoto M et al (2012) Synthesis of enaminones by rhodium-catalyzed denitrogenative rearrangement of 1-(N-sulfonyl-1,2,3-triazol-4-yl)alkanols. J Am Chem Soc 134:17440–17443

    Article  CAS  Google Scholar 

  71. Selander N, Worrell BT, Fokin VV (2012) Ring expansion and rearrangements of rhodium(II) azavinyl carbenes. Angew Chem Int Ed 51:13054–13057

    Article  CAS  Google Scholar 

  72. Liu R, Zhang M, Winston-McPherson G et al (2013) Ring expansion of alkynyl cyclopropanes to highly substituted cyclobutenes via a N-sulfonyl-1,2,3-triazole intermediate. RSC Chem Comm 49:4376–4378

    Google Scholar 

  73. Miura T, Biyajima T, Fujii T et al (2012) Synthesis of α-amino ketones from terminal alkynes via rhodium-catalyzed denitrogenative hydration of N-sulfonyl-1,2,3-triazoles. J Am Chem Soc 134:194–196

    Article  CAS  Google Scholar 

  74. Miura T, Tanaka T, Biyajima T et al (2013) One-pot procedure for the introduction of three different bonds onto terminal alkynes through N-sulfonyl-1,2,3-triazole intermediates. Angew Chem Int Ed 52:3883–3886

    Article  CAS  Google Scholar 

  75. Parr BT, Davies HML (2013) Rhodium-catalyzed tandem cyclopropanation/cope rearrangement of 4-alkenyl-1-sulfonyl-1,2,3-triazoles with dienes. Angew Chem Int Ed 52:10044–10047

    Article  CAS  Google Scholar 

  76. Miura T, Funahoshi Y, Murakami M (2014) Intramolecular dearomatizing [3+2] annulation of α-imino carbenoids with aryl ring furnishing 3,4-fused indole skeletons. J Am Chem Soc 136:2272–2275

    Google Scholar 

  77. Chuprakov S, Worrell BT, Selander N et al (2014) Stereoselective 1,3-insertions of rhodium(II) azavinyl carbenes. J Am Chem Soc 136:195–202

    Article  CAS  Google Scholar 

  78. Xing Y, Sheng G, Wang J (2014) Preparation of triazoloindoles via tandem copper catalysis and their utility as α-imino rhodium carbene precursors. Organic Lett 16:1244–1247

    Article  CAS  Google Scholar 

  79. Yao B, Shen C, Liang Z (2014) Copper-catalyzed reaction of ketenimine and in situ generated immonium ion: access to α, β-unsaturated amidines. J Org Chem 79:936–942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Vasiliy Bakulev and Tetyana Beryozkina thank Russian Foundation for Basic Research (14-03-01033) and State task of Ministry Education No 4.1626.2014/K. Wim Dehaen thanks the FWO-Vlaanderen and the University of Leuven for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliy Bakulev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakulev, V., Dehaen, W., Beryozkina, T. (2014). Thermal Rearrangements and Transformations of 1,2,3-Triazoles. In: Dehaen, W., Bakulev, V. (eds) Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, vol 40. Springer, Cham. https://doi.org/10.1007/7081_2014_131

Download citation

Publish with us

Policies and ethics