Skip to main content

Degradation Pathways for Porphyrinoids

  • Chapter
  • First Online:
Synthesis and Modifications of Porphyrinoids

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 33))

Abstract

Porphyrin, a tetrapyrrolic aromatic macrocycle, is relatively resistant to degradation. However, certain strong oxidants (e.g. chromic acid) cause its decomposition to monopyrrolic units. More often, ring opening caused by attack of oxidant on a meso-position has been observed. Such degradation by metal salts (thallium(III), cerium(IV)), nitric acid, and other reagents has been studied. Light-driven macrocycle opening by dioxygen has also been noted. Coupled oxidation of metalloporphyrins has been investigated mainly as a mimics of heme degradation observed in vivo.

Modifications of parent porphyrin macrocycle can cause a prominent change of its reactivity toward oxidants. In particular, inversion of one of the pyrrole rings (in N-confused porphyrin) or removal of one of the methine bridges (in corrole) increases macrocycle susceptibility to oxidative ring opening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAN:

Cerium(IV) ammonium nitrate

DDQ:

2,3-Dichloro-5,6-dicyanobenzoquinone

FCC:

Fluorescent chlorophyll catabolite

HO:

Heme oxygenase

NBS:

N-Bromosuccinimide

NCC:

Nonfluorescent chlorophyll catabolite

OEBH3 :

2,3,7,8,12,13,17,18-Octaethylbilindione

OEPH2 :

2,3,7,8,12,13,17,18-Octaethylporphyrin

OEPOH3 :

2,3,7,8,12,13,17,18-Octaethyloxophlorin (2,3,7,8,12,13,17,18-octaethyl- 5-hydroxyporphyrin)

PDT:

Photodynamic therapy

TPPH2 :

5,10,15,20-Tetraphenylporphyrin

TTFA:

Thallium(III) trifluoroacetate

TTN:

Thallium(III) nitrate

References

  1. Adams KR, Bonnett R, Burke PJ, Salgado A, Vallés MA (1993) The 2,3-secochlorin-2, 3-dione system. J Chem Soc Chem Commun 1860–1861

    Google Scholar 

  2. Brückner C, Rettig SJ, Dolphin D (1998) Formation of a meso-tetraphenylsecochlorin and a homoporphyrin with a twist. J Org Chem 63:2094–2098

    Google Scholar 

  3. Sessler JL, Shevchuk SV, Callaway W, Lynch V (2001) A one-step synthesis of a free base secochlorin from a 2,3-dimethoxy porphyrin. Chem Commun 968–969

    Google Scholar 

  4. Pacholska E, Latos-Grażyński L, Ciunik Z (2002) A direct link between annulene and porphyrin chemistry − 21-vacataporphyrin. Chem Eur J 8:5403–5406

    CAS  Google Scholar 

  5. Pacholska-Dudziak E, Szterenberg L, Latos-Grażyński L (2011) A flexible porphyrin–annulene hybrid: a nonporphyrin conformation for meso-tetraaryldivacataporphyrin. Chem Eur J 17:3500–3511

    CAS  Google Scholar 

  6. Mizutani T, Yagi S, Honmaru A, Murakami S, Furusyo M, Takagishi T, Ogoshi H (1998) Helical chirality induction in zinc bilindiones by amino acid esters and amines. J Org Chem 63:8769–8784

    CAS  Google Scholar 

  7. Mizutani T, Sakai N, Yagi S, Takagishi T, Kitagawa S, Ogoshi H (2000) Allosteric chirality amplification in zinc bilinone dimer. J Am Chem Soc 122:748–749

    CAS  Google Scholar 

  8. Hamakubo K, Yagi S, Nakazumi H, Mizutani T, Kitagawa S (2006) Homohelicity induction of propylene-linked zinc bilinone dimers by complexation with chiral amine and α-amino esters. Preorganization of structurally coupled homohelical subunits. Tetrahedron 62:3619–3628

    CAS  Google Scholar 

  9. Koerner R, Olmstead MM, Ozarowski A, Phillips S, Van Calcar PM, Winkler K, Balch AL (1998) Possible intermediates in biological metalloporphyrin oxidative degradation. Nickel, copper and cobalt complexes of octaethylformybiliverdin and their conversion to a verdoheme. J Am Chem Soc 120:1274–1284

    CAS  Google Scholar 

  10. Mizutani T, Yagi S (2004) Linear tetrapyrroles as functional pigments in chemistry and biology. J Porphyr Phthalocyanines 8:226–237

    CAS  Google Scholar 

  11. Bröring M (2010) Beyond dipyrrins: coordination interactions and templated macrocyclizations of open-chain oligopyrroles. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering biology and medicine, vol 8. World Scientific, Singapore, pp 343–501 (Chapter 41)

    Google Scholar 

  12. Koerner R, Olmstead MM, Ozarowski A, Balch AL (1999) A linear tetrapyrrole as a binucleating ligand with copper(II). Coordination beyond the usual M–N4 bonding. Inorg Chem 38:3262–3263

    CAS  Google Scholar 

  13. Lord P, Olmstead MM, Balch AL (1999) Tetrapyrroles as π donors: a Pd2 2+ unit sandwiched between two helical bilindione–palladium moieties. Angew Chem Int Ed 38:2761–2763

    CAS  Google Scholar 

  14. Phillips S, Noll BC, Olmstead MM, Balch AL (2001) Oxidation of copper(II) hydroxyporphyrin (oxophlorin); oxidative ring opening and formation of an ester-linked dinuclear copper complex. Can J Chem 79:922–929

    CAS  Google Scholar 

  15. Fuhrhop J-H (1975) Irreversible reactions at the porphyrin periphery (excluding photochemistry). In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 625–666 (Chapter 15)

    Google Scholar 

  16. Nicolaus RA, Mangoni L, Caglioti L (1956) Pyrrole acids in the oxidation of the porphyrins. Ann Chim (Rome) 46:793–805

    CAS  Google Scholar 

  17. Gray CH, Nicholson DC, Nicolaus RA (1958) The IX-alpha structure of the common bile pigments. Nature 181:183–185

    CAS  Google Scholar 

  18. Battersby AR, Cardwell KS, Leeper FJ (1986) Stereochemical studies on porphyrin a: assignment of the absolute configuration of a model porphyrin by degradation. J Chem Soc Perkin Trans 1 1565–1580

    Google Scholar 

  19. Chapman RA, Roomi MW, Morton TC, Krajcarski DT, MacDonald SF (1971) The analytical reduction of porphyrins to pyrroles. Can J Chem 49:3544–3564

    CAS  Google Scholar 

  20. Ficken GE, Johns RB, Linstead RP (1956) Chlorophyll and related compounds. Part IV. The position of the extra hydrogens in chlorophyll. The oxidation of pyrophœophorbide-a. J Chem Soc 2272–2280

    Google Scholar 

  21. Morley HV, Holt AS (1961) Studies on chlorobium chlorophylls. II. The resolution of oxidation products of chlorobium pheophorbide (660) by gas–liquid partition chromatography. Can J Chem 39:755–760

    CAS  Google Scholar 

  22. Purdie JW, Holt AS (1965) Structures of chlorobium chlorophylls (650). Can J Chem 43:3347–3353

    CAS  Google Scholar 

  23. Ellsworth RK, Aronoff S (1968) Investigations on the biogenesis of chlorophyll a. I. Purification and mass spectra of maleimides from the oxidation of chlorophyll and related compounds. Arch Biochem Biophys 124:358–364

    CAS  Google Scholar 

  24. Rüdiger W (1969) Chromsäure- und Chromatabbau von Gallenfarbstoffen. Z Physiol Chem 350:1291–1300

    Google Scholar 

  25. Bonnett R, McDonagh AF (1969) Methylvinylmaleimide (nitrite body) from chromic acid oxidation of tetrapyrrolic pigments. Chem Ind 107–108

    Google Scholar 

  26. Ellsworth RK (1970) Gas chromatographic determination of some maleimides produced by the oxidation of heme and chlorophyll a. J Chromatogr A 50:131–134

    CAS  Google Scholar 

  27. Martin J, Quirke E, Shaw GJ, Soper PD, Maxwell JR (1980) Petroporphyrins—II. The presence of porphyrins with extended alkyl substituents. Tetrahedron 36:3261–3267

    CAS  Google Scholar 

  28. Gauler R, Hesse U, Risch N (1995) Derivatives of natural tetrapyrroles for photodynamic therapy, 3. Oxidative degradation studies on porphyrins with chromic acid. Liebigs Ann 2227–2230

    Google Scholar 

  29. Risch N, Hesse U, Josephs A, Gauler R (1996) Derivatives of natural tetrapyrroles for photodynamic therapy, 4. Oxidative degradation studies: direct analysis and determination of ether and ester linkages in porphyrin dimers and oligomers of hematoporphyrin derivative (HPD). Liebigs Ann 1871–1874

    Google Scholar 

  30. Satoh Y, Nomoto S, Hama T (2012) Comprehensive determination of chlorophyll derivatives by chromic acid oxidation. Chem Lett 41:571–573

    CAS  Google Scholar 

  31. Byrn MP, Curtis CJ, Hsiou Y, Khan SI, Sawin PA, Tendick SK, Terzis A, Strouse CE (1993) Porphyrin sponges: conservation of host structure in over 200 porphyrin-based lattice clathrates. J Am Chem Soc 115:9480–9497

    CAS  Google Scholar 

  32. Hayes JM, Freeman KH, Popp BN, Hoham CH (1990) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org Geochem 16:1115–1128

    CAS  Google Scholar 

  33. Yu Z, Sheng G, Fu J, Peng P (2000) Determination of porphyrin carbon isotopic composition using gas chromatography–isotope ratio monitoring mass spectrometry. J Chromatogr A 903:183–191

    CAS  Google Scholar 

  34. Van Berkel GJ, Glish GL, McLuckey SA, Tuinman AA (1989) Mechanism of porphyrin reduction and decomposition in a high-pressure chemical ionization plasma. J Am Chem Soc 111:6027–6035

    Google Scholar 

  35. Niemevz F, Buldain GY (2004) Phenyl biliverdin isomers obtained by chemical oxidation of iron(III) complex of 5-phenyl protoporphyrin IX. J Porphyr Phthalocyanines 8:989–995

    CAS  Google Scholar 

  36. Świder P, Nowak-Król A, Voloshchuk R, Lewtak JP, Gryko DT, Danikiewicz W (2010) Mass spectrometry studies on meso-substituted corroles and their photochemical decomposition products. J Mass Spectrom 45:1443–1451

    Google Scholar 

  37. Wu D, Xu G, Qu S, Xue R, Gu C, Zhang F (1989) Standard enthalpies of combustion and formation of porphyrin derivatives. Thermochim Acta 154:233–245

    CAS  Google Scholar 

  38. Patiño R, Campos M, Torres LA (2007) Strength of the Zn–N coordination bond in zinc porphyrins on the basis of experimental thermochemistry. Inorg Chem 46:9332–9336

    Google Scholar 

  39. Gamboa M, Campos M, Torres LA (2010) Study of the stability of 5,10,15,20-tetraphenylporphine (TPP) and metalloporphyrins NiTPP, CoTPP, CuTPP, and ZnTPP by differential scanning calorimetry and thermogravimetry. J Chem Thermodyn 42:666–674

    CAS  Google Scholar 

  40. Antina EV, Balantseva EV, Berezin MB (2011) Oxidative degradation of porphyrins and metalloporphyrins under polythermal conditions. Russ J Gen Chem 81:1222–1230

    CAS  Google Scholar 

  41. Gokakakar SD, Salker AV (2010) Thermal studies of cobalt, iron and tin metalloporphyrins. J Therm Anal Calorim 101:809–813

    CAS  Google Scholar 

  42. Bonnett R, Stephenson GF (1965) The meso reactivity of porphyrins and related compounds. I. Nitration. J Org Chem 30:2791–2798

    CAS  Google Scholar 

  43. Bonnett R, Dimsdale MJ (1968) The meso-hydroxylation and meso-benzoxylation of pyridine octaethylhaemochrome. Tetrahedron Lett 9:731–733

    Google Scholar 

  44. Bonnett R, Dimsdale MJ, Stephenson GF (1969) The meso-reactivity of porphyrins and related compounds. Part IV. Introduction of oxygen functions. J Chem Soc (C) 564–570

    Google Scholar 

  45. Bonnett R, Dimsdale MJ (1972) The meso-reactivity of porphyrins and related compounds. Part V. The meso-oxidation of metalloporphyrins. J Chem Soc Perkin Trans 1 2540–2548

    Google Scholar 

  46. Bonnett R, Cornell P, McDonagh AF (1976) The meso-reactivity of porphyrins and related compounds. Part VII. Benzoyloxylation of phenylpyrroles and of octaethylporphyrin. J Chem Soc Perkin Trans 1 794–800

    Google Scholar 

  47. Smith KM (1971) Reactions of porphyrins with thallium(III) trifluoroacetate. Chem Commun 540–541

    Google Scholar 

  48. Cavaleiro JAS, Smith KM (1971) Reactions of trans-octaethylchlorin with thallium(III) trifluoroacetate. Chem Commun 1384–1385

    Google Scholar 

  49. McCombie SW, Smith KM (1972) Oxophlorin (oxyporphyrin) synthesis. Tetrahedron Lett 13:2463–2464

    Google Scholar 

  50. Barnett GH, Hudson MF, McCombie SW, Smith KM (1973) Synthesis of oxophlorins (oxyporphyrins) from magnesium and zinc porphyrin chelates. J Chem Soc Perkin Trans 1 691–696

    Google Scholar 

  51. Evans B, Smith KM, Cavaleiro JAS (1976) Ring cleavage of meso-tetraphenylporphyrin. Tetrahedron Lett 17:4863–4866

    Google Scholar 

  52. Evans B, Smith KM, Cavaleiro JAS (1978) Bile pigment studies. Part 4. Some novel reactions of metalloporphyrins with thallium(III) and cerium(IV) salts. Ring cleavage of meso-tetraphenylporphyrin. J Chem Soc Perkin Trans 1 768–773

    Google Scholar 

  53. Huster MS, Smith KM (1988) Ring cleavage of chlorophyll derivatives: isolation of oxochlorin intermediates and ring opening via a two oxygen molecule mechanism. Tetrahedron Lett 29:5707–5710

    CAS  Google Scholar 

  54. Kalish HR, Latos-Grażyński L, Balch AL (2000) Heme/hydrogen peroxide reactivity: formation of paramagnetic iron oxophlorin isomers by treatment of iron porphyrins with hydrogen peroxide. J Am Chem Soc 122:12478–12486

    CAS  Google Scholar 

  55. Kalish H, Camp JE, Stępień M, Latos-Grażyński L, Balch AL (2001) Reactivity of mono-meso-substituted iron(II) octaethylporphyrin complexes with hydrogen peroxide in the absence of dioxygen. Evidence for nucleophilic attack on the heme. J Am Chem Soc 123:11719–11727

    CAS  Google Scholar 

  56. Wojaczyński J, Latos-Grażyński L, Chmielewski PJ, Van Calcar P, Balch AL (1999) 1H NMR investigations of triphenylporphyrin metal complexes and electronic interactions in iron(III) complexes of mesomeso-linked 5,5′-bis(10,15,20-triphenylporphyrin). Inorg Chem 38:3040–3050

    Google Scholar 

  57. Osuka A, Shimidzu H (1997) meso, meso-Linked porphyrin arrays. Angew Chem Int Ed Engl 36:135–137

    CAS  Google Scholar 

  58. Yoshida N, Shimidzu K, Osuka A (1998) meso-meso Linked diporphyrins from 5,10,15-trisubstituted porphyrins. Chem Lett 27:55–56

    Google Scholar 

  59. Yoshida N, Aratani N, Osuka A (2000) Poly(zinc(II)-5,15-porphyrinylene) from silver(I)-promoted oxidation of zinc(II)-5,15-diarylporphyrins. Chem Commun 197–198

    Google Scholar 

  60. Catalano MM, Crossley MJ, Harding MM, King LG (1984) Control of reactivity at the porphyrin periphery by metal ion co-ordination: a general method for specific nitration at the β-pyrrolic position of 5,10,15,20-tetraarylporphyrins. J Chem Soc Chem Commun 1535–1536

    Google Scholar 

  61. Shine HJ, Padilla AG, Wu S-M (1979) Ion radicals. 45. Reactions of zinc tetraphenylporphyrin cation radical perchlorate with nucleophiles. J Org Chem 44:4069–4075

    CAS  Google Scholar 

  62. Abhilash GJ, Bhuyan J, Singh P, Maji S, Pal K, Sarkar S (2009) NO2-mediated meso-hydroxylation of iron(III) porphyrin. Inorg Chem 48:1790–1792

    CAS  Google Scholar 

  63. Bhuyan J, Sarkar S (2010) Oxidative degradation of zinc porphyrin in comparison with its iron analogue. Chem Eur J 16:10649–10652

    CAS  Google Scholar 

  64. Ongayi O, Fronczek FR, Vicente MGH (2003) Benzoylbiliverdins from chemical oxidation of dodeca-substituted porphyrins. Chem Commun 2298–2299

    Google Scholar 

  65. Ongayi O, Vicente MGH, Ou Z, Kadish KM, Kumar MR, Fronczek FR, Smith KM (2006) Synthesis and electrochemistry of undeca-substituted metallo-benzoylbiliverdins. Inorg Chem 45:1463–1470

    CAS  Google Scholar 

  66. Ongayi O, Vicente MGH, Ghosh B, Fronczek FR, Smith KM (2010) Bilitrienones from the chemical oxidation of dodecasubstituted porphyrins. Tetrahedron 66:63–67

    CAS  Google Scholar 

  67. Ponomarev GV, Morozova YV, Yashunsky DV (2001) Chemistry of oximes of meso-formylporphyrins. Opening of the porphyrin macrocycle into tripyrrolylisoxazoles. The revised structure of “isophlorins”. Chem Heterocycl Compd 37:253–255

    CAS  Google Scholar 

  68. Morozova YV, Nesterov VV, Yashunsky DV, Antipin MY, Ponomarev GV (2005) Porphyrins. 40. Chemistry of oximes of metal complexes of meso-formyloctaalkylporphyrins. Synthesis, molecular and crystal structure of nickel complexes of “tripyrrolylisoxazoles”. Chem Heterocycl Compd 41:598–605

    CAS  Google Scholar 

  69. Kalish H, Lee HM, Olmstead MM, Latos-Grażyński L, Rath SP, Balch AL (2003) Heme cleavage with remarkable ease: paramagnetic intermediates formed by aerobic oxidation of a meso-amino-substituted iron porphyrin. J Am Chem Soc 125:4674–4675

    CAS  Google Scholar 

  70. Rath SP, Kalish H, Latos-Grażyński L, Olmstead MM, Balch AL (2004) Facile ring opening of iron(III) and iron(II) complexes of meso-amino-octaethylporphyrin by dioxygen. J Am Chem Soc 126:646–654

    CAS  Google Scholar 

  71. Sprutta N, Rath SP, Olmstead MM, Balch AL (2005) Metal complexes of meso-amino-octaethylporphyrin and the oxidation of NiII(meso-amino-octaethylporphyrin). Inorg Chem 44:1452–1459

    CAS  Google Scholar 

  72. Chang CK, Avilés G, Bag N (1994) Verdoheme-like oxaporphyrin formation by oxygenation of a Co(II) porphyrinyl naphthoic acid. A new model of heme degradation. J Am Chem Soc 116:12127–12128

    CAS  Google Scholar 

  73. Yamanishi K, Miyazawa M, Yairi T, Sakai S, Nishina N, Kobori Y, Kondo M, Uchida F (2011) Conversion of cobalt(II) porphyrin into a helical cobalt(III) complex of acyclic pentapyrrole. Angew Chem Int Ed 50:6583–6586

    CAS  Google Scholar 

  74. Liu C, Shen D-M, Chen Q-Y (2006) Unexpected bromination ring-opening of tetraarylporphyrins. Chem Commun 770–772

    Google Scholar 

  75. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    CAS  Google Scholar 

  76. Che C-M, Huang J-S (2009) Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis. Chem Commun 3996–4015

    Google Scholar 

  77. Lu H, Zhang XP (2011) Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem Soc Rev 40:1899–1909

    CAS  Google Scholar 

  78. Mansuy D (2007) A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. C R Chim 10:392–413

    CAS  Google Scholar 

  79. Traylor PS, Dolphin D, Traylor TG (1984) Sterically protected hemins with electronegative substituents: efficient catalysts for hydroxylation and epoxidation. J Chem Soc Chem Commun 279–280

    Google Scholar 

  80. Banfi S, Montanari F, Quici S (1988) New manganese tetrakis(halogenoaryl)porphyrins featuring sterically hindering electronegative substituents: synthesis of highly stable catalysts in olefin epoxidation. J Org Chem 53:2863–2866

    CAS  Google Scholar 

  81. Moore KT, Horváth IT, Therien MJ (1997) High-pressure NMR studies of (porphinato)iron-catalyzed isobutane oxidation utilizing dioxygen as the stoichiometric oxidant. J Am Chem Soc 119:1791–1792

    CAS  Google Scholar 

  82. Leanord DR, Lindsay Smith JR (1991) Model systems for cytochrome P450 dependent monooxygenases. Part 8. A study of the epoxidation of (Z)-cyclooctene by iodosylbenzene catalysed by cationic iron(III) tetra(N-methylpyridyl)porphyrins adsorbed on Dowex MSC1. J Chem Soc Perkin Trans 2 25–30

    Google Scholar 

  83. Nappa MJ, Tolman CA (1985) Steric and electronic control of iron porphyrin catalyzed hydrocarbon oxidations. Inorg Chem 24:4711–4719

    CAS  Google Scholar 

  84. Pietzyk B, Fröhlich L, Göber B (1995) Characterization and stability of synthetic porphyrins. Pharmazie 50:747–750

    CAS  Google Scholar 

  85. Pietzyk B, Fröhlich L, Göber B (1996) Stability of synthetic Mn- and Fe-tetraphenylporphyrins in biomimetic systems of aromatic hydroxylation. Pharmazie 51:654–660

    CAS  Google Scholar 

  86. Stephenson NA, Bell AT (2005) A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(III) tetrakispentafluorophenyl porphyrin. J Am Chem Soc 127:8635–8643

    CAS  Google Scholar 

  87. Stephenson NA, Bell AT (2007) Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: factors controlling activity and selectivity. J Mol Catal A Chem 275:54–62

    CAS  Google Scholar 

  88. Cunningham ID, Danks TN, O’Connell KTA, Scott PW (1999) Kinetics and mechanism of the hydrogen peroxide oxidation of a pentafluorophenyl-substituted iron(III) porphyrin. J Chem Soc Perkin Trans 2 2133–2139

    Google Scholar 

  89. Cunningham ID, Danks TN, Hay JN, Hamerton I, Gunathilagan S (2001) Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide. Tetrahedron 57:6847–6853

    CAS  Google Scholar 

  90. Cunningham ID, Danks TN, Hay JN, Hamerton I, Gunathilagan S, Janczak C (2002) Stability of various metalloporphyrin catalysts during hydrogen peroxide epoxidation of alkene. J Mol Catal A Chem 185:25–31

    CAS  Google Scholar 

  91. Serra AC, Marçalo EC, Rocha Gonsalves AM’A (2004) A view on the mechanism of metalloporphyrin degradation in hydrogen peroxide epoxidation reactions. J Mol Catal A Chem 215:17–21

    CAS  Google Scholar 

  92. Rácz K, Burger M, Ungvarai-Nagy Z (2010) Comparison of the oxidation of two porphyrin complexes by bromate with respect to wave propagation. Physica D 239:752–756

    Google Scholar 

  93. Rácz K, Burger M, Nagy-Ungvarai Z (2006) Autocatalytic oxidation of hemin by acidic bromate. Int J Chem Kinet 38:503–509

    Google Scholar 

  94. Rácz K, Burger M, Lagzi I, Ungvarai-Nagy Z (2008) Oxidation of a water-soluble porphyrin complex by bromate. React Kinet Catal Lett 95:135–142

    Google Scholar 

  95. Türk H, Erdem M (2004) Structural stabilities of N-permethylated tetracations of meso-tetrakis(4-pyridyl)porphyrin, meso-tetrakis[4-(dimethylamino)phenyl]porphyrin and their manganese(III) complexes toward hydrogen peroxide, tert-butylhydroperoxide and sodium hypochlorite. J Porphyr Phthalocyanines 8:1196–1203

    Google Scholar 

  96. Türk H, Tay T, Berber H (2000) Structural stabilities of sulfonated manganese tetramesitylporphyrin and its β-brominated analogue toward NaOCl, H2O2 and (CH3)3COOH. J Mol Catal A Chem 160:323–330

    Google Scholar 

  97. Türk H, Berber H (2000) Structural stabilities of water-soluble MnTDCSPP, MnTSPP, and supported analogues toward hydrogen peroxide and sodium hypochlorite. Int J Chem Kinet 32:271–278

    Google Scholar 

  98. Türk H, Berber H (2001) Structural studies of water-soluble β-brominated manganese porphyrins: stabilities of MnTDCSPPBr8 and MnTSPPBr8 as homogeneous and supported reagents toward hydrogen peroxide and sodium hypochlorite. Turk J Chem 25:215–222

    Google Scholar 

  99. Lente G, Fábián I (2007) Kinetics and mechanism of the oxidation of water soluble porphyrin FeIIITPPS with hydrogen peroxide and the peroxomonosulfate ion. Dalton Trans 4268–4275

    Google Scholar 

  100. Chmielewski PJ, Latos-Grażyński L, Rachlewicz K, Głowiak T (1994) Tetra-p-tolylporphyrin with an inverted pyrrole ring: a novel isomer of porphyrin. Angew Chem Int Ed Engl 33:779–781

    Google Scholar 

  101. Furuta H, Asano T, Ogawa T (1994) “N-confused porphyrin”: a new isomer of tetraphenylporphyrin. J Am Chem Soc 11:767–768

    Google Scholar 

  102. Furuta H, Maeda H, Osuka A (2002) Regioselective oxidative liberation of aryl-substituted tripyrrinone metal complexes from N-confused porphyrin. Org Lett 4:181–184

    CAS  Google Scholar 

  103. Furuta H, Maeda H, Osuka A (2003) Crystal structures of palladium(II) and copper(II) complexes of meso-phenyl tripyrrinone. Inorg Chem Commun 6:162–164

    CAS  Google Scholar 

  104. Pawlicki M, Kańska I, Latos-Grażyński L (2007) Copper(II) and copper(III) complexes of pyrrole-appended oxacarbaporphyrin. Inorg Chem 46:6575–6584

    CAS  Google Scholar 

  105. Lemon CM, Brothers PJ (2011) The synthesis reactivity and peripheral functionalization of corroles. J Porphyr Phthalocyanines 15:809–834

    CAS  Google Scholar 

  106. Nardis S, Mandoj F, Paolesse R, Fronczek FR, Smith KM, Prodi L, Montalti M, Battistini G (2007) Synthesis and functionalization of germanium triphenylcorrolate: the first example of a partially brominated corrole. Eur J Inorg Chem 2345–2352

    Google Scholar 

  107. Mandoj F, Nardis S, Pomarico G, Stefanelli M, Schiaffino L, Ercolani G, Prodi L, Genovese D, Zaccheroni N, Fronczek FR, Smith KM, Xiao X, Shen J, Kadish KM, Paolesse R (2009) 6-Azahemiporphycene: a new member of the porphyrinoid family. Inorg Chem 8:10346–10357

    Google Scholar 

  108. Gros CP, Barbe J-M, Espinosa E, Guilard R (2006) Room-temperature autoconversion of free-base corrole into free-base porphyrin. Angew Chem Int Ed 45:5642–5645

    CAS  Google Scholar 

  109. Nardis S, Pomarico G, Fronczek FR, Vicente MGH, Paolesse R (2007) One-step synthesis of isocorroles. Tetrahedron Lett 48:8643–8646

    CAS  Google Scholar 

  110. Pomarico G, Xiao X, Nardis S, Paolesse R, Fronczek FR, Smith KM, Fang Y, Ou Z, Kadish KM (2010) Synthesis and characterization of free-base copper, and nickel isocorroles. Inorg Chem 49:5766–5774

    CAS  Google Scholar 

  111. Mandoj F, Nardis S, Pomarico G, Paolesse R (2008) Demetalation of corrole complexes: an old dream turning into reality. J Porphyr Phthalocyanines 12:19–26

    CAS  Google Scholar 

  112. Stefanelli M, Shen J, Zhu W, Mastroianni M, Mandoj F, Nardis S, Ou Z, Kadish KM, Fronczek FR, Smith KM, Paolesse R (2009) Demetalation of silver(III) corrolates. Inorg Chem 48:6879–6887

    CAS  Google Scholar 

  113. Barata JFB, Silva AMG, Neves MGPMS, Tomé AC, Silva AMS, Cavaleiro JAS (2006) β,β′-Corrole dimers. Tetrahedron Lett 47:8171–8174

    CAS  Google Scholar 

  114. Bonnett R, Martínez G (2001) Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron 57:9513–9547

    CAS  Google Scholar 

  115. Wöhrle D, Wendt A, Weitmeyer A, Stark J, Spiller W, Schneider G, Müller S, Michelsen U, Kliesch H, Heuermann A, Ardeschirpur A (1994) Metal chelates of porphyrin derivatives as sensitizers in photooxidation processes of sulfur compounds and in photodynamic therapy of cancer. Russ Chem Bull 43:1953–1964

    Google Scholar 

  116. Silva M, Azenha ME, Pereira MM, Burrows HD, Sarakha M, Forano C, Ribeiro MF, Fernandes A (2010) Immobilization of halogenated porphyrins and their copper complexes in MCM-41: environmentally friendly photocatalysts for the degradation of pesticides. Appl Catal B 100:1–9

    CAS  Google Scholar 

  117. Kim H, Kim W, Mackeyev Y, Lee G-S, Kim H-J, Tachikawa T, Hong S, Lee S, Kim J, Wilson LJ, Majima T, Alvarez PJJ, Choi W, Lee J (2012) Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems. Environ Sci Technol 46:9606–9613

    CAS  Google Scholar 

  118. Sternberg ED, Dolphin D, Brückner C (1998) Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202

    CAS  Google Scholar 

  119. Ali H, van Lier JE (2010) Porphyrins and phthalocyanines as photosensitizers and radiosensitizers. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering biology and medicine, vol 4. World Scientific, Singapore, pp 1–119 (Chapter 16)

    Google Scholar 

  120. Arnaut LG (2011) Design of porphyrin-based photosensitizers for photodynamic therapy. Adv Inorg Chem 63:187–233

    CAS  Google Scholar 

  121. Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362

    CAS  Google Scholar 

  122. Fuhrhop J-H, Mauzerall D (1971) The photooxygenation of magnesium-octaethylporphin. Photochem Photobiol 13:453–458

    CAS  Google Scholar 

  123. Bonnett R, Chaney BD (1987) meso-Reactivity of porphyrins and related compounds. Part 9. Photo-oxygenation of octaethyloxophlorin. J Chem Soc Perkin Trans 1 1063–1067

    Google Scholar 

  124. Matsuura T, Inoue K, Ranade AC, Saito I (1980) Photooxygenation of magnesium meso-tetraphenylporphyrin. Photochem Photobiol 31:23–26

    CAS  Google Scholar 

  125. Smith KM, Brown SB, Troxler RF, Lai J-J (1982) Photooxygenation of meso-tetraphenylporphyrin metal complexes. Photochem Photobiol 36:147–152

    CAS  Google Scholar 

  126. Smith KM, Brown SB, Troxler RF, Lai J-J (1980) Mechanism of photo-oxygenation of meso-tetraphenylporphyrin metal complexes. Tetrahedron Lett 21:2763–2766

    CAS  Google Scholar 

  127. Cavaleiro JAS, Hewlins MJE, Jackson AH, Neves GPMS (1986) Structures of the ring-opened oxidation products from meso-tetraphenylporphyrin. J Chem Soc Chem Commun 142–144

    Google Scholar 

  128. Cavaleiro JAS, Neves MGPS, Hewlins MJE, Jackson AH (1990) The photo-oxidation of meso-tetraphenylporphyrins. J Chem Soc Perkin Trans 1 1937–1943

    Google Scholar 

  129. Silva AMS, Neves MGPMS, Martins RRL, Cavaleiro JAS, Boschi T, Tagliatesta P (1998) Photo-oxygenation of meso-tetraphenylporphyrin derivatives: the influence of the substitution pattern and characterization of the reaction products. J Porphyr Phthalocyanines 2:45–51

    CAS  Google Scholar 

  130. Cavaleiro JAS, Hewlins MJE, Jackson AH, Neves MGPMS (1992) Structures of the zinc complexes of the bilinones formed by photo-oxidations of meso-tetraphenylporphyrins. Tetrahedron Lett 33:6871–6874

    CAS  Google Scholar 

  131. Jeandon C, Krattinger B, Ruppert R, Callot HJ (2001) Biladienones from the photooxidation of a meso-gem-disubstituted phlorin: crystal and molecular structures of the 3N + O coordinated nickel(II) and copper(II) complexes. Inorg Chem 40:3149–3153

    CAS  Google Scholar 

  132. LeSaulnier TD, Graham BW, Geier GR III (2005) Enhancement of phlorin stability by the incorporation of meso-mesityl substituents. Tetrahedron Lett 46:5633–5637

    CAS  Google Scholar 

  133. Herath HMA, Karunaratne V, Rajapakse RMG, Wickramasinghe A (2005) Synthesis, characterization and photochemistry of 5,10,15,20-tetrakis(4-N-pentylpyridyl)porphyrins, [(TPePyP)H2]4+ and [(TPePyP)ZnII]4+. J Porphyr Phthalocyanines 9:155–162

    CAS  Google Scholar 

  134. Niziolek M, Korytowski W, Girotti AW (2005) Self-sensitized photodegradation of membrane-bound protoporphyrin mediated by chain lipid peroxidation: inhibition by nitric oxide with sustained singlet oxygen damage. Photochem Photobiol 81:299–305

    CAS  Google Scholar 

  135. Cavaleiro JAS, Görner H, Lacerda PSS, MacDonald JG, Mark G, Neves MGPMS, Nohr RS, Schuchmann H-P, von Sonntag C, Tomé AC (2001) Singlet oxygen formation and photostability of meso-tetraarylporphyrin derivatives and their copper complexes. J Photochem Photobiol A Chem 144:131–140

    CAS  Google Scholar 

  136. Wojaczyński J, Latos-Grażyński L (2010) Photooxidation of N-confused porphyrin: a route to N-confused biliverdin analogues. Chem Eur J 16:2679–2682

    Google Scholar 

  137. Wojaczyński J, Popiel M, Szterenberg L, Latos-Grażyński L (2011) Common origin, common fate: regular porphyrin and N-confused porphyrin yield an identical tetrapyrrolic degradation product. J Org Chem 76:9956–9961

    Google Scholar 

  138. Aviv I, Gross Z (2007) Corrole-based applications. Chem Commun 1987–1999

    Google Scholar 

  139. Flamigni L, Gryko DT (2009) Photoactive corrole-based arrays. Chem Soc Rev 38:1635–1646

    CAS  Google Scholar 

  140. Ventura B, Degli Esposti A, Koszarna B, Gryko DT, Flamigni L (2005) Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation. New J Chem 9:1559–1566

    Google Scholar 

  141. Geier GR III, Chick JFB, Callinan JB, Reid CG, Auguscinski WP (2004) A survey of acid catalysis and oxidation conditions in the two-step one-flask synthesis of meso-substituted corroles via dipyrromethanedicarbinols and pyrrole. J Org Chem 69:4159–4169

    CAS  Google Scholar 

  142. Ding T, Alemán EA, Modarelli DA, Ziegler CJ (2005) Photophysical properties of a series of free-base corroles. J Phys Chem A 109:7411–7417

    CAS  Google Scholar 

  143. Tardieux C, Gros CP, Guilard R (1998) On corrole chemistry. An isomerization and oxidative cleavage of the corrole macroring to a biliverdin structure. J Heterocycl Chem 35:965–970

    CAS  Google Scholar 

  144. Paolesse R, Sagone F, Macagnano A, Boschi T, Prodi L, Montalti M, Zaccheroni N, Bolletta F, Smith KM (1999) Photophysical behaviour of corrole and its symmetrical and unsymmetrical dyads. J Porphyr Phthalocyanines 3:364–370

    CAS  Google Scholar 

  145. Yamauchi T, Mizutani T, Wada K, Horii S, Furukawa H, Masaoka S, Chang H-C, Kitagawa S (2005) A facile and versatile preparation of bilindiones and biladienones from tetraarylporphyrins. Chem Commun 1309–1311

    Google Scholar 

  146. Jérôme F, Gros CP, Tardieux C, Barbe J-M, Guilard R (1998) First synthesis of sterically hindered cofacial bis(corroles) and their bis(cobalt) complexes. Chem Commun 2007–2008

    Google Scholar 

  147. Wojaczyński J, Duszak M, Latos-Grażyński L (unpublished results)

    Google Scholar 

  148. Barata JFB, Neves MGPMS, Tomé AC, Faustino MAF, Silva AMS, Cavaleiro JAS (2010) How light affects 5,10,15-tris(pentafluorophenyl)corrole. Tetrahedron Lett 51:1537–1540

    CAS  Google Scholar 

  149. Warburg O, Negelein E (1930) Grünes Haemin aus Blut-Haemin. Chem Ber 63:1816–1818

    Google Scholar 

  150. Lemberg R (1956) Chemical mechanism of bile pigment formation. Rev Pure Appl Chem 6:1–23

    CAS  Google Scholar 

  151. Lemberg R, Cortis-Jones B, Norrie M (1937) Coupled oxidation of ascorbic acid and haemo-chromogens. Nature 139:1016–1017

    CAS  Google Scholar 

  152. Libowitzky H, Fischer H (1938) Bile pigments. XVIII. From coprohemin I to coproglaucobilin. Z Physiol Chem 255:209–233

    CAS  Google Scholar 

  153. Balch AL, Latos-Grażyński L, Noll BC, Olmstead MM, Szterenberg L, Safari N (1993) Structural characterization of verdoheme analogs. Iron complexes of octaethyloxoporphyrin. J Am Chem Soc 115:1422–1429

    CAS  Google Scholar 

  154. Balch AL, Latos-Grażyński L, Noll BC, Olmstead MM, Safari N (1993) Isolation and characterization of an iron biliverdin-type complex that is formed along with verdohemochrome during the coupled oxidation of iron(II) octaethylporphyrin. J Am Chem Soc 115:9056–9061

    CAS  Google Scholar 

  155. St Claire TN, Balch AL (1999) In situ monitoring of the degradation of iron porphyrins by dioxygen with hydrazine as sacrificial reductant. Detection of paramagnetic intermediates in the coupled oxidation process by 1H NMR spectroscopy. Inorg Chem 38:684–691

    CAS  Google Scholar 

  156. Balch AL, Koerner R, Latos-Grażyński L, Lewis JE, St Claire TN, Zovinka EP (1997) Coupled oxidation of heme without pyridine. Formation of cyano complexes of iron oxophlorin and 5-oxaporphyrin (verdoheme) from octaethylheme. Inorg Chem 36:3892–3897

    CAS  Google Scholar 

  157. Balch AL, Mazzanti M, St Claire TN, Olmstead MM (1995) Production of oxaporphyrin and biliverdin derivatives by coupled oxidation of cobalt(II) octaethylporphyrin. Inorg Chem 34:2194–2200

    CAS  Google Scholar 

  158. Wojaczyński J, Stępień M, Latos-Grażyński L (2002) Monomeric and dimeric iron(III) complexes of 5-hydroxy-10,15,20-triphenylporphyrin: formation of cyano and pyridine complexes of (5-oxo-10,15,20-triphenylphlorin)iron. Eur J Inorg Chem 1806–1815

    Google Scholar 

  159. Asano N, Uemura S, Kinugawa T, Akasaka H, Mizutani T (2007) Synthesis of biladienone and bilatrienone by coupled oxidation of tetraarylporphyrins. J Org Chem 72:5320–5326

    CAS  Google Scholar 

  160. Nakamura R, Kakeya K, Furuta N, Muta E, Nishisaka H, Mizutani T (2011) Synthesis of para- or ortho-substituted triarylbilindiones and tetraarylbiladienones by coupled oxidation of tetraarylporphyrins. J Org Chem 76:6108–6115

    CAS  Google Scholar 

  161. Balch AL (2000) Coordination chemistry with meso-hydroxylated porphyrins (oxophlorins), intermediates in heme degradation. Coord Chem Rev 200–202:349–377

    Google Scholar 

  162. Balch AL, Latos-Grażyński L, Noll BC, Olmstead MM, Zovinka EP (1992) Chemistry of iron oxophlorins. 1. 1H NMR and structural studies of five-coordinate iron(III) complexes. Inorg Chem 31:2248–2255

    CAS  Google Scholar 

  163. Balch AL, Noll BC, Zovinka EP (1992) Structural characterization of zinc(II) complexes of octaethyloxophlorin dianion and octaethyloxophlorin radical anion. J Am Chem Soc 114:3380–3385

    CAS  Google Scholar 

  164. Balch AL, Noll BC, Phillips SL, Reid SM, Zovinka EP (1993) Nickel(II) complexes of the octaethyloxophlorin dianion and octaethyloxophlorin radical dianion. Inorg Chem 32:4730–4736

    CAS  Google Scholar 

  165. Balch AL, Noll BC, Reid SM, Zovinka EP (1993) Coordination patterns for oxophlorin ligands. Pyridine-induced cleavage of dimeric manganese(III) and iron(III) octaethyloxophlorin complexes. Inorg Chem 32:2610–2611

    CAS  Google Scholar 

  166. Balch AL, Mazzanti M, Olmstead MM (1993) Cobalt complexes of octaethyloxophlorin. Metal-centered redox chemistry in the presence of a redox-active ligand. Inorg Chem 32:4737–4744

    CAS  Google Scholar 

  167. Masuoka N, Itano HA (1987) Radical intermediates in the oxidation of octaethylheme to octaethylverdoheme. Biochemistry 26:3672–3680

    CAS  Google Scholar 

  168. Balch AL, Latos-Grażyński L, Noll BC, Szterenberg L, Zovinka EP (1993) Chemistry of iron oxophlorins. 2. Oxidation of the iron(III) octaethyloxophlorin dimer and observation of stepwise two-electron oxidation of the oxophlorin macrocycle. J Am Chem Soc 115:11846–11854

    CAS  Google Scholar 

  169. Balch AL, Noll BC, Olmstead MM, Reid SM (1993) A cofacial dimeric, metallooxophlorin complex: [indium(III)(octaethyloxophlorin)]2. J Chem Soc Chem Commun 1088–1090

    Google Scholar 

  170. Balch AL, Latos-Grażyński L, St Claire TN (1995) Chemistry of iron oxophlorins. 3. Reversible, one-electron oxidation of the iron(III) octaethyloxophlorin dimer. Inorg Chem 34:1395–1401

    CAS  Google Scholar 

  171. Garcia TY, Olmstead MM, Fettinger JC, Balch AL (2008) Cleavage of the indium(III) octaethyloxophlorin dimer, {InIII(OEPO)}2, with Lewis bases. Importance of outer-sphere hydrogen bonding in adduct structures. Inorg Chem 47:11417–11422

    CAS  Google Scholar 

  172. Sano S, Sugiura Y, Meada Y, Ogawa S, Morishima I (1981) Electronic states of iron oxyporphyrin and verdohemochrome obtained by coupled oxidation of iron porphyrin. J Am Chem Soc 103:2888–2890

    CAS  Google Scholar 

  173. Morishima I, Fujii H, Shiro Y, Sano S (1986) NMR studies of metalloporphyrin radicals. Iron(II) oxophlorin radical formed from iron(III) meso-hydroxyoctaethylporphyrin. J Am Chem Soc 108:3858–3860

    CAS  Google Scholar 

  174. Morishima I, Fujii H, Shiro Y, Sano S (1995) Studies on the iron(II) meso-oxyporphyrin π-neutral radical as a reaction intermediate in heme catabolism. Inorg Chem 34:1528–1535

    CAS  Google Scholar 

  175. Balch AL, Koerner R, Noll BC (1996) A role for electron transfer in heme catabolism? Structure and redox behavior of an intermediate, (pyridine)2Fe(octaethyloxophlorin). J Am Chem Soc 118:2760–2761

    CAS  Google Scholar 

  176. Szterenberg L, Latos-Grażyński L, Wojaczyński J (2002) Oxophlorin and metallooxophlorin radicals − DFT studies. Chemphyschem 3:575–583

    CAS  Google Scholar 

  177. Rath SP, Olmstead MM, Balch AL (2004) The effects of axial ligands on electron distribution and spin states in iron complexes of octaethyloxophlorin, intermediates in heme degradation. J Am Chem Soc 126:6379–6386

    CAS  Google Scholar 

  178. Rath SP, Olmstead MM, Balch AL (2006) Electron distribution in iron octaethyloxophlorin complexes. Importance of the Fe(III) oxophlorin trianion form in the bis-pyridine and bis-imidazole complexes. Inorg Chem 45:6083–6093

    CAS  Google Scholar 

  179. Gheidi M, Safari N, Zahedi M (2012) Effect of axial ligand on the electronic configuration, spin states, and reactivity of iron oxophlorin. Inorg Chem 51:7094–7102

    CAS  Google Scholar 

  180. Rath SP, Koerner R, Olmstead MM, Balch AL (2003) Reversible binding of nitric oxide and carbon–carbon bond formation in a meso-hydroxylated heme. J Am Chem Soc 125:11798–11799

    CAS  Google Scholar 

  181. Rath SP, Olmstead MM, Balch AL (2004) Reactions of meso-hydroxyhemes with carbon monoxide and reducing agents in search of the elusive species responsible for the g = 2.006 resonance of carbon monoxide-treated heme oxygenase. Isolation of diamagnetic iron(II) complexes of octaethyl-meso-hydroxyporphyrin. Inorg Chem 43:6357–6365

    CAS  Google Scholar 

  182. Rath SP, Olmstead MM, Latos-Grażyński L, Balch AL (2003) Formation and isolation of an iron-tripyrrole complex from heme degradation. J Am Chem Soc 125:12678–12679

    CAS  Google Scholar 

  183. Ortiz de Montellano PR, Auclair K (2003)) Heme oxygenase structure and mechanism. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 12. Academic, San Diego, pp 183–210 (Chapter 75)

    Google Scholar 

  184. Saito S, Itano HA (1986) Cyclization of biliverdins to verdohaemochromes. J Chem Soc Perkin Trans 1 1–7

    Google Scholar 

  185. Saito S, Sumita S, Iwai K, Sano H (1988) Preparation of mesoverdohemochrome IXα dimethyl ester and Mössbauer spectra of related porphyrins. Bull Chem Soc Jpn 61:3539–3547

    CAS  Google Scholar 

  186. Balch AL, Noll BC, Safari N (1993) Structural characterization of low-spin iron(III) complexes of octaethyloxoporphyrin. Inorg Chem 32:2901–2905

    CAS  Google Scholar 

  187. Balch AL, Mazzanti M, Olmstead MM (1994) Preparation of a cobalt analogue of verdoheme by coupled oxidation of cobalt(II) octaethylporphyrin. J Chem Soc Chem Commun 269–270

    Google Scholar 

  188. Balch AL, Koerner R, Olmstead MM (1995) Crystallographic characterization of octaethylverdohaem. J Chem Soc Chem Commun 873–874

    Google Scholar 

  189. Lord PA, Latos-Grażyński L, Balch AL (2002) Reactivity of iron verdohemes with phenylmagnesium bromide. Formation of paramagnetic iron–phenyl complexes. Inorg Chem 41:1011–1014

    CAS  Google Scholar 

  190. Rath SP, Olmstead MM, Balch AL (2004) Oxidative verdoheme formation and stabilization by axial isocyanide ligation. Inorg Chem 43:7648–7655

    CAS  Google Scholar 

  191. Khorasani-Motlagh M, Safari N, Noroozifar M, Saffari J, Biabani M, Rebouças JS, Patrick BO (2005) New class of verdoheme analogues with weakly coordinating anions: the structure of (μ-oxo)bis[(octaethyloxoporphinato)iron(III)] hexafluorophosphate. Inorg Chem 44:7762–7769

    CAS  Google Scholar 

  192. Khorasani-Motlagh M, Safari N, Noroozifar M, Shahroosvand H, Parsaii Z, Patrick BO (2007) Formation and stabilization of five-coordinate iron(II) verdoheme analogues by axial weakly coordinating anion ligation. X-ray crystal structures of [(OEOPFe)2O](X)2 (X = AsF6, SbF6). Inorg Chim Acta 360:2331–2338

    CAS  Google Scholar 

  193. Balch AL, Bowles FL (2010)) Coordination chemistry of verdohemes and open-chain oligopyrrole systems involved in heme oxidation and porphyrin destruction. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering biology and medicine, vol 8. World Scientific, Singapore, pp 293–342 (Chapter 40)

    Google Scholar 

  194. Saito S, Itano HA (1982) Verdohemochrome IXα: preparation and oxidoreductive cleavage to biliverdin IXα. Proc Natl Acad Sci USA 79:1393–1397

    CAS  Google Scholar 

  195. Nguyen KT, Rath SP, Latos-Grażyński L, Olmstead MM, Balch AL (2004) Formation of a highly oxidized iron biliverdin complex upon treatment of a five-coordinate verdoheme with dioxygen. J Am Chem Soc 126:6210–6211

    CAS  Google Scholar 

  196. Fuhrhop J-H, Krüger P (1977) 1-Oder 19-methoxy-1-oder 19-amino-und 1-oder 19-thio-desoxybiliverdine. Liebigs Ann 360–370

    Google Scholar 

  197. Latos-Grażyński L, Johnson J, Attar S, Olmstead MM, Balch AL (1998) Reactivity of the verdoheme analogues, 5-oxaporphyrin complexes of cobalt(II) and zinc(II) with nucleophiles: opening of the planar macrocycle by alkoxide addition to form helical complexes. Inorg Chem 37:4493–4499

    Google Scholar 

  198. Koerner R, Latos-Grażyński L, Balch AL (1998) Models for verdoheme hydrolysis. Paramagnetic products from the ring opening of verdohemes, 5-oxaporphyrin complexes of iron(II) with methoxide ion. J Am Chem Soc 120:9246–9255

    CAS  Google Scholar 

  199. Johnson JA, Olmstead MM, Stolzenberg AM, Balch AL (2001) Ring-opening and meso substitution from the reaction of cyanide ion with zinc verdohemes. Inorg Chem 40:5585–5595

    CAS  Google Scholar 

  200. Latos-Grażyński L, Wojaczyński J, Koerner R, Johnson JJ, Balch AL (2001) Verdoheme reactivity. Remarkable paramagnetically shifted 1H NMR spectra of intermediates from the addition of hydroxide or methoxide with FeII and FeIII verdohemes. Inorg Chem 40:4971–4977

    Google Scholar 

  201. Johnson JA, Olmstead MM, Balch AL (1999) Reactivity of the verdoheme analogues. Opening of the planar macrocycle by amide and thiolate nucleophiles to form helical complexes. Inorg Chem 38:5379–5383

    CAS  Google Scholar 

  202. Saito S, Itano HA (1987) Autoxidation and solvolysis products of octaethylverdohaemochrome. J Chem Soc Perkin Trans 1 1183–1188

    Google Scholar 

  203. Davari MD, Bahrami H, Zahedi M, Safari N (2010) Effect of the axial ligands on the structure and reactivity of tin verdoheme in the ring opening process. Inorg Chim Acta 363:1577–1586

    CAS  Google Scholar 

  204. Jamaat PR, Safari N, Ghiasi M, Naghavi SS, Zahedi M (2008) Noninnocent effect of axial ligand on the heme degradation process: a theoretical approach to hydrolysis pathway of verdoheme to biliverdin. J Biol Inorg Chem 13:121–132

    CAS  Google Scholar 

  205. Davari MD, Bahrami H, Zahedi M, Safari N (2009) How tin metal prevents verdoheme ring opening? Comparative study of various nucleophiles. J Mol Struct (THEOCHEM) 908:1–11

    CAS  Google Scholar 

  206. Davari MD, Bahrami H, Zahedi M, Safari N (2009) Theoretical investigations on the hydrolysis pathway of tin verdoheme complexes: elucidation of tin’s ring opening inhibition role. J Mol Model 15:1299–1315

    CAS  Google Scholar 

  207. Bonfiglio JV, Bonnett R, Hursthouse MB, Malik KMA (1977) Crystal structure of the nickel complex of 2,3,7,8,12,13,17,18-octaethyl-1,19(21H,24H)-bilindione (octaethylbilatriene-abc). J Chem Soc Chem Commun 83–84

    Google Scholar 

  208. Bonfiglio JV, Bonnett R, Buckley DG, Hamzetash D, Hursthouse MB, Malik KMA, McDonagh AF, Trotter J (1983) Linear tetrapyrroles as ligands: syntheses and X-ray analyses of boron and nickel complexes of octaethyl-21H,24H-bilin-1,19-dione. Tetrahedron 39:1865–1874

    CAS  Google Scholar 

  209. Balch AL, Mazzanti M, Noll BC, Olmstead MM (1993) Geometric and electronic structure and dioxygen sensitivity of the copper complex of octaethylbilindione, a biliverdin analog. J Am Chem Soc 15:12206–12207

    Google Scholar 

  210. Balch AL, Mazzanti M, Noll BC, Olmstead MM (1994) Coordination patterns for biliverdin-type ligands. Helical and linked helical units in four-coordinate cobalt and five-coordinate manganese(III) complexes of octaethylbilindione. J Am Chem Soc 116:9114–9122

    CAS  Google Scholar 

  211. Attar S, Balch AL, Van Calcar PM, Winkler K (1997) Electron transfer behavior and solid state structures of the helical cobalt complexes of the open-chain tetrapyrrole ligand, octaethylbilindione. J Am Chem Soc 119:3317–3323

    CAS  Google Scholar 

  212. Attar S, Ozarowski A, Van Calcar PM, Winkler K, Balch AL (1997) Axial ligation modulates the electron distribution in helical cobalt complexes derived from octaethylbilindione. Chem Commun 1115–1116

    Google Scholar 

  213. Koerner R, Olmstead MM, Van Calcar PM, Winkler K, Balch AL (1998) Carbon monoxide production during the oxygenation of cobalt complexes of linear tetrapyrroles. Formation and characterization of CoII(tetraethylpropentdyopent anion)2. Inorg Chem 37:982–988

    CAS  Google Scholar 

  214. Lord PA, Olmstead MM, Balch AL (2000) Redox characteristics of nickel and palladium complexes of the open-chain tetrapyrrole octaethylbilindione: a biliverdin model. Inorg Chem 39:1128–1134

    CAS  Google Scholar 

  215. Lord PA, Noll BC, Olmstead MM, Balch AL (2001) A remarkable skeletal rearrangement of a coordinated tetrapyrrole: chemical consequences of palladium π-coordination to a bilindione. J Am Chem Soc 123:10554–10559

    CAS  Google Scholar 

  216. Fuhrhop J-H, Krüger P, Sheldrick WS (1977) Darstellung Struktur und Eigenschaften der 5-aza-5-oxonia-und 5-thioniamesoporphin-dimethylester und -protoporphin-dimethylester. Liebigs Ann 339–359

    Google Scholar 

  217. Kakeya K, Nakagawa A, Mizutani T, Hitomi Y, Kodera M (2012) Synthesis, reactivity and spectroscopic properties of meso-triaryl-5-oxaporphyrins. J Org Chem 77:6510–6519

    CAS  Google Scholar 

  218. Zahedi M, Bahrami H, Shahbazian S, Safari N, Ng SW (2003) An ab initio/hybrid (ONIOM) investigation of biliverdin isomers and metal–biliverdin analogue complexes. J Mol Struct (THEOCHEM) 633:21–33

    CAS  Google Scholar 

  219. Wasbotten I, Ghosh A (2006) Biliverdine-based metalloradicals: sterically enhanced noninnocence. Inorg Chem 45:4914–4921

    CAS  Google Scholar 

  220. Szterenberg L, Latos-Grażyński L, Wojaczyński J (2003) Metallobiliverdin radicals − DFT studies. Chemphyschem 4:691–698

    CAS  Google Scholar 

  221. Zahedi M, Safari N, Haddadpur S (2000) Semiempirical molecular orbital calculations of biliverdin: study of dynamics and energetics of the self-association of a two-electron oxidation product. J Mol Struct (THEOCHEM) 531:79–88

    CAS  Google Scholar 

  222. Zahedi M, Kamalipour M, Safari N (2002) Theoretical studies of biliverdin: energetics of the reduction pathways to bilirubin. J Mol Model 8:113–118

    CAS  Google Scholar 

  223. Bonnett R, McDonagh AF (1970) Oxidative cleavage of the haem system: the four isomeric biliverdins of the IX series. Chem Commun 237–238

    Google Scholar 

  224. Bonnett R, McDonagh AF (1973) The meso-reactivity of porphyrins and related compounds. Part VI. Oxidative cleavage of the haem system. The four isomeric biliverdins of the IX series. J Chem Soc Perkin Trans 1 881–888

    Google Scholar 

  225. Crusats J, Suzuki A, Mizutani T, Ogoshi H (1998) Regioselective porphyrin bridge cleavage controlled by electronic effects. Coupled oxidation of 3-demethyl-3-(trifluoromethyl)mesohemin IX and identification of its four biliverdin derivatives. J Org Chem 63:602–607

    CAS  Google Scholar 

  226. Niemevz F, Alvarez DE, Buldain GY (2002) Chemical oxidation of synthetic iron(III)-complex of 15-phenyl protoporphyrin IX. Heterocycles 57:697–704

    CAS  Google Scholar 

  227. Niemevz F, Vazquez MS, Buldain G (2008) Synthesis of a series of mono-meso-arylmesoporphyrins III of biological interest and their biliverdin derivatives. Synthesis 875–882

    Google Scholar 

  228. Wang J, Niemevz F, Lad L, Huang L, Alvarez DE, Buldain G, Poulos TL, Ortiz de Montellano PR (2004) Human heme oxygenase oxidation of 5- and 15-phenylhemes. J Biol Chem 279:42593–42604

    CAS  Google Scholar 

  229. Hudson MF, Smith KM (1975) Bile pigments. Chem Soc Rev 4:363–399

    CAS  Google Scholar 

  230. Frankenberg N, Lagarias JC (2003)) Biosynthesis and biological functions of bilins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 13. Academic, San Diego, pp 211–235 (Chapter 83)

    Google Scholar 

  231. Lagarias JC (1982) Bile pigment-protein interactions. Coupled oxidation of cytochrome c. Biochemistry 21:5962–5967

    CAS  Google Scholar 

  232. van der Horst MA, Hellingwerf KJ (2004) Photoreceptor proteins “Star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res 37:13–20

    Google Scholar 

  233. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61:748–755

    CAS  Google Scholar 

  234. Frydman RB, Frydman B (1987) Heme catabolism: a new look at substrates and enzymes. Acc Chem Res 20:250–256

    CAS  Google Scholar 

  235. Yoshida T, Migita CT (2000) Mechanism of heme degradation by heme oxygenase. J Inorg Biochem 82:33–41

    CAS  Google Scholar 

  236. Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338:558–567

    CAS  Google Scholar 

  237. Rivera M, Zeng Y (2005) Heme oxygenase steering dioxygen activation toward heme hydroxylation. J Inorg Biochem 99:337–354

    CAS  Google Scholar 

  238. Morse D, Choi AMK (2005) Heme oxygenase-1. From bench to bedside. Am J Respir Crit Care Med 172:660–670

    Google Scholar 

  239. Matsui T, Iwasaki M, Sugiyama R, Unno M, Ikeda-Saito M (2010) Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase. Inorg Chem 49:3602–3609

    CAS  Google Scholar 

  240. Schuller DJ, Zhu W, Stojiljkovic I, Wilks A, Poulos TL (2001) Crystal structure of heme oxygenase from the Gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry 40:11552–11558

    CAS  Google Scholar 

  241. Friedman J, Lad L, Li H, Wilks A, Poulos TL (2004) Structural basis for novel δ-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43:5239–5245

    CAS  Google Scholar 

  242. Uchida T, Sekine Y, Matsui T, Ikeda-Saito M, Ishimori K (2012) A heme degradation enzyme, HutZ, from Vibrio cholerae. Chem Commun 48:6741–6743

    CAS  Google Scholar 

  243. Lad L, Schuller DJ, Shimizu H, Friedman J, Li H, Ortiz de Montellano PR, Poulos TL (2003) Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. J Biol Chem 278:7834–7843

    CAS  Google Scholar 

  244. Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL (1999) Crystal structure of human heme oxygenase-1. Nat Struct Mol Biol 6:860–867

    CAS  Google Scholar 

  245. Unno M, Matsui T, Ikeda-Saito M (2012) Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme. J Inorg Biochem 113:102–109

    CAS  Google Scholar 

  246. Lad L, Ortiz de Montellano PR, Poulos TL (2004) Crystal structures of ferrous and ferrous–NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage. J Inorg Biochem 98:1686–1695

    CAS  Google Scholar 

  247. Sugishima M, Sakamoto H, Higashimoto Y, Noguchi M, Fukuyama K (2003) Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction. J Biol Chem 278:32352–32358

    CAS  Google Scholar 

  248. Lad L, Friedman J, Li H, Bhaskar B, Ortiz de Montellano PR, Poulos TL (2004) Crystal structure of human heme oxygenase-1 in a complex with biliverdin. Biochemistry 43:3793–3801

    CAS  Google Scholar 

  249. Sharma PK, Kevorkiants R, de Visser SP, Kumar D, Shaik S (2004) Porphyrin traps its terminator! Concerted and stepwise porphyrin degradation mechanisms induced by heme-oxygenase and cytochrome P450. Angew Chem Int Ed 43:1129–1132

    CAS  Google Scholar 

  250. Kumar D, de Visser SP, Shaik S (2005) Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase. J Am Chem Soc 127:8204–8213

    CAS  Google Scholar 

  251. Chen H, Moreau Y, Derat E, Shaik S (2008) Quantum mechanical/molecular mechanical study of mechanisms of heme degradation by the enzyme heme oxygenase: the strategic function of the water cluster. J Am Chem Soc 130:1953–1965

    CAS  Google Scholar 

  252. Matsui T, Nakajima A, Fujii H, Mansfield Matera K, Migita CT, Yoshida T, Ikeda-Saito M (2005) O2- and H2O2-dependent verdoheme degradation by heme oxygenase. Reaction mechanisms and potential physiological roles of the dual pathway degradation. J Biol Chem 280:36833–36840

    CAS  Google Scholar 

  253. Lai W, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S (2010) Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study. J Am Chem Soc 132:12960–12970

    CAS  Google Scholar 

  254. Damaso CO, Bunce RA, Barybin MV, Wilks A, Rivera M (2005) The ferrous verdoheme–heme oxygenase complex is six-coordinate and low-spin. J Am Chem Soc 127:17582–17583

    CAS  Google Scholar 

  255. Gohya T, Sato M, Zhang X, Migita CT (2008) Variation of the oxidation state of verdoheme in the heme oxygenase reaction. Biochem Biophys Res Commun 376:293–298

    CAS  Google Scholar 

  256. Zhou H, Migita CT, Sato M, Sun D, Zhang X, Ikeda-Saito M, Fujii H, Yoshida T (2000) Participation of carboxylate amino acid side chain in regiospecific oxidation of heme by heme oxygenase. J Am Chem Soc 122:8311–8312

    CAS  Google Scholar 

  257. Zeng Y, Deshmukh R, Caignan GA, Bunce RA, Rivera M, Wilks A (2004) Mixed regioselectivity in the Arg-177 mutants of Corynebacterium diphtheriae heme oxygenase as a consequence of in-plane heme disorder. Biochemistry 43:5222–5238

    CAS  Google Scholar 

  258. Lad L, Wang J, Li H, Friedman J, Bhaskar B, Ortiz de Montellano PR, Poulos TL (2003) Crystal structures of the ferric, ferrous and ferrous-NO forms of the Asp140Ala mutant of human heme oxygenase-1: catalytic implications. J Mol Biol 330:527–538

    CAS  Google Scholar 

  259. Ratliff M, Zhu W, Desmukh R, Wilks A, Stojiljkovic I (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183:6394–6403

    CAS  Google Scholar 

  260. Caignan GA, Deshmukh R, Wilks A, Zeng Y, Huang H, Moënne-Loccoz P, Bunce RA, Eastman MA, Rivera M (2002) Oxidation of heme to β- and δ-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. J Am Chem Soc 124:14879–14892

    CAS  Google Scholar 

  261. Deshmukh R, Zeng Y, Furci LM, Huang H, Morgan BN, Sander S, Alontaga AY, Bunce RA, Moënne-Loccoz P, Rivera M, Wilks A (2005) Heme oxidation in a chimeric protein of the α-selective Neisseriae meningitidis heme oxygenase with the distal helix of the δ-selective Pseudomonas aeruginosa. Biochemistry 44:13713–13723

    CAS  Google Scholar 

  262. Peng D, Ma L-H, Smith KM, Zhang X, Sato M, La Mar GN (2012) Role of propionates in substrate binding to heme oxygenase from Neisseria meningitidis: a nuclear magnetic resonance study. Biochemistry 51:7054–7063

    CAS  Google Scholar 

  263. Zhang X, Fujii H, Mansfield Matera K, Migita CT, Sun D, Sato M, Ikeda-Saito M, Yoshida T (2003) Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin. Biochemistry 42:7418–7426

    CAS  Google Scholar 

  264. Torpey J, Ortiz de Montellano PR (1996) Oxidation of the meso-methylmesoheme regioisomers by heme oxygenase. Electronic control of the reaction regiospecificity. J Biol Chem 271:26067–26073

    CAS  Google Scholar 

  265. Evans JP, Niemevz F, Buldain G, Ortiz de Montellano PR (2008) Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of α-meso-phenylheme. J Biol Chem 283:19530–19539

    CAS  Google Scholar 

  266. Torpey J, Ortiz de Montellano PR (1997) Oxidation of α-meso-formylmesoheme by heme oxygenase. Electronic control of the reaction regiospecificity. J Biol Chem 272:22008–22014

    CAS  Google Scholar 

  267. Lemberg R, Legge JW, Lockwood WH (1939) Coupled oxidation of ascorbic acid and haemoglobin. I. Biochem J 33:754–758

    CAS  Google Scholar 

  268. Avila L, Huang H, Damaso CO, Lu S, Moënne-Loccoz P, Rivera M (2003) Coupled oxidation vs heme oxygenation: insights from axial ligand mutants of mitochondrial cytochrome b5. J Am Chem Soc 125:4103–4110

    CAS  Google Scholar 

  269. O’Carra P (1975)) Heme cleavage: biological systems and chemical analogs. In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 123–153 (Chapter 4)

    Google Scholar 

  270. Brown SB, Docherty JC (1978) Haem degradation in abnormal haemoglobins. Biochem J 173:985–987

    CAS  Google Scholar 

  271. Murakami T, Morishima I, Matsui T, Ozaki S, Hara I, Yang H-J, Watanabe Y (1999) Effects of the arrangement of a distal catalytic residue on regioselectivity and reactivity in the coupled oxidation of sperm whale myoglobin mutants. J Am Chem Soc 121:2007–2011

    CAS  Google Scholar 

  272. Vernon DI, Brown SB (1984) Formation of bile pigments by coupled oxidation of cobalt-substituted haemoglobin and myoglobin. Biochem J 223:205–209

    CAS  Google Scholar 

  273. Rice JK, Fearnley IM, Barker PD (1999) Coupled oxidation of heme covalently attached to cytochrome b 562 yields a novel biliprotein. Biochemistry 38:16847–16856

    CAS  Google Scholar 

  274. Avila L, Huang H, Rodríguez JC, Moënne-Loccoz P, Rivera M (2000) Oxygen activation by axial ligand mutants of mitochondrial cytochrome b5: oxidation of heme to verdoheme and biliverdin. J Am Chem Soc 122:7618–7619

    CAS  Google Scholar 

  275. Kräutler B (2003)) Chlorophyll breakdown and chlorophyll catabolites. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 13. Academic, San Diego, pp 183–209 (Chapter 82)

    Google Scholar 

  276. Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149

    CAS  Google Scholar 

  277. Moser S, Müller T, Oberhuber M, Kräutler B (2009) Chlorophyll catabolites – chemical and structural footprints of a fascinating biological phenomenon. Eur J Org Chem 21–31

    Google Scholar 

  278. Barry CS (2009) The stay-green revolution: recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants. Plant Sci 176:325–333

    CAS  Google Scholar 

  279. Hörtensteiner S, Wüthrich KL, Matile P, Ongania K-H, Kräutler B (1998) The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273:15335–15339

    Google Scholar 

  280. Pružinská A, Tanner G, Anders I, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron–sulfur protein encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264

    Google Scholar 

  281. Troxler RF, Smith KM, Brown SB (1980) Mechanism of photo-oxidation of bacteriochlorophyll-c derivatives. Tetrahedron Lett 21:491–494

    CAS  Google Scholar 

  282. Iturraspe J, Gossauer A (1991) Dependence of the regioselectivity of photo-oxidative ring opening of the chlorophyll macrocycle on the complexed metal ion. Helv Chim Acta 74:1713–1717

    CAS  Google Scholar 

  283. Okamoto Y, Tamiaki H (2011) C3- and C13-substituent effects on electronic absorption spectra of linear tetrapyrroles produced by photooxidation of zinc chlorophyll derivatives. J Photochem Photobiol A Chem 219:250–254

    CAS  Google Scholar 

  284. Saito S, Furukawa K, Osuka A (2010) Fully π-conjugated helices from oxidative cleavage of meso-aryl-substituted expanded porphyrins. J Am Chem Soc 132:2128–2129

    CAS  Google Scholar 

  285. Berlicka A, Latos-Grażyński L, Szterenberg L, Pawlicki M (2010) Photooxidation of dithiaethyneporphyrin. Eur J Org Chem 5688–5695

    Google Scholar 

  286. Pawlicki M, Bykowski D, Szterenberg L, Latos-Grazyński L (2012) From 21,23-dioxaporphyrin to a 3-pyranone dioxacorrole skeleton: the Achmatowicz rearrangement in the porphyrin frame. Angew Chem Int Ed 51:2500–2504

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Wojaczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wojaczyński, J. (2013). Degradation Pathways for Porphyrinoids. In: Paolesse, R. (eds) Synthesis and Modifications of Porphyrinoids. Topics in Heterocyclic Chemistry, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_99

Download citation

Publish with us

Policies and ethics