Skip to main content

Synthesis of β-Lactams and Their Chemical Manipulations Via Microwave-Induced Reactions

  • Chapter
  • First Online:
β-Lactams: Unique Structures of Distinction for Novel Molecules

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 30))

Abstract

The β-lactam derivatives have many medicinal applications. Penicillins and cephalosporins antibiotics and a number of β-lactams have been discovered for the treatment of different medical disorders. As a result of this general trend of β-lactam use, the searches for clinically useful β-lactams will be pursued by many scientists. During the course of our studies on the synthesis of β-lactams and other heterocycles, we have found it convenient to conduct several types of synthetic steps under microwave irradiation. We have developed “microwave-induced organic reaction enhancement (MORE)” chemistry techniques for using nontraditional methods for rapid, safe, and environment-friendly reactions. These reactions are performed in unmodified domestic microwave ovens in a matter of minutes using very limited amounts of high boiling solvents (such as DMF and ethylene glycol) or no solvents if one of the reactants is a suitable liquid. It is not clear whether microwaves alter the transition state parameters of reactions. But, many laboratories (including our own) have reported that microwave-assisted reactions are much faster, comparatively free of by-products and sometimes susceptible to steric control.

Dedicated to Professor Paul Sale, Former Provost and Vice President of Academic Affairs, for his tremendous contribution to BKB’s life and career.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Clay:

Montmoriolonile

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulfoxide

h:

Hour (s)

IC50 :

Cell growth inhibition at 50% concentration

MWI:

Microwave Irradiation

NMR:

Nuclear Magnetic Resonance

PAH:

Polyaromatic hydrocarbon

SAR:

Structure–activity relationship

TEA:

Triethylamine

References

  1. Southgate R, Branch C, Coulton S, Hunt E (1993) Springer 2:621

    Google Scholar 

  2. Kidwai M, Sapra P, Bhushan KR (1999) Curr Med Chem 6:195–215

    CAS  Google Scholar 

  3. Bose AK, Manhas MS, Banik BK, Srirajan V (2000) b-Lactams: cyclic amides of distinction. In: Greenberg A, Breneman CM, Liebman JF (eds) The amide linkage: selected structural aspects in chemistry, biochemistry, and material science. Wiley-Interscience, New York, pp 157–214 (Chap. 7)

    Google Scholar 

  4. Banik BK (ed) (2004) β-Lactams: synthesis, stereochemistry, synthons and biological evaluation; current medicinal chemistry, vol 11. Bentham Science, San Francisco

    Google Scholar 

  5. Buynak JD (2004) Curr Med Chem 11:1951–1964

    CAS  Google Scholar 

  6. Manhas MS, Banik BK, Mathur A, Vincent JE, Bose AK (2000) Tetrahedron 56:5587–5601

    CAS  Google Scholar 

  7. Bose AK, Mathur C, Wagle DR, Manhas MS (2000) Tetrahedron 56:5603–5619

    CAS  Google Scholar 

  8. Ojima I (1995) Acc Chem Res 28:383–389

    CAS  Google Scholar 

  9. Banik BK, Manhas MS, Bose AK (1994) J Org Chem 58:4714–4716

    Google Scholar 

  10. Banik BK, Manhas MS, Bose AK (1993) J Org Chem 58:307–309

    CAS  Google Scholar 

  11. Suffness M (1995) Taxol science and applications. CRC, Boca Raton

    Google Scholar 

  12. Clader JW, Burnett DA, Caplen MA, Domalski MS, Dugar S, Vaccaro W, Sher R, Browne ME, Zhao H, Burrier RE, Salisbury B, Davis HR (1996) J Med Chem 39:3684–3693

    CAS  Google Scholar 

  13. Burnett DA, Caplen MA, Darris HR Jr, Burrier RE, Clader JW (1994) J Med Chem 37:1734–1736

    Google Scholar 

  14. Burnett DA (2004) Curr Med Chem 11:1873–1887

    CAS  Google Scholar 

  15. Clader JW (2004) J Med Chem 47:1–9

    CAS  Google Scholar 

  16. Finke PE, Shah SK, Fletcher DS, Ashe BM, Brause KA, Chandler GO, Dellea PS, Hand KM, Maycock AL, Osinga DG, Underwood DJ, Weston H, Davies P, Doherty JB (1995) J Med Chem 38:2449–2462

    CAS  Google Scholar 

  17. Magriotis PA (2001) Angew Chem 113:4507–4509

    Google Scholar 

  18. Taggi AE, Hafez AM, Wack H, Young B, Drury WJ III, Lectka T (2000) J Am Chem Soc 122:7831–7832

    CAS  Google Scholar 

  19. Banik BK et al (2005) Bioorg Med Chem 13:3611–3622

    CAS  Google Scholar 

  20. Hodous BL, Fu GC (2002) J Am Chem Soc 124:1578–1579

    CAS  Google Scholar 

  21. Cordova A, Watanabe S, Tanaka F, Notz W, Barbas CF Jr (2002) J Am Chem Soc 124:1866–1867

    CAS  Google Scholar 

  22. France S, Weatherwax A, Taggi AE, Lectka T (2004) Acc Chem Res 37:592–600

    CAS  Google Scholar 

  23. Ruhland B, Bhandari A, Gordon EM, Gallop MA (1996) J Am Chem Soc 118:253–254

    CAS  Google Scholar 

  24. Furman B, Thurmer R, Kaluza Z, Lysek R, Voelter W, Chmielewski M (1999) Angew Chem Int Ed 38:1121–1123

    CAS  Google Scholar 

  25. Gordon K, Bolger M, Khan N, Balasubramanian SA (2000) Tetrahedron Lett 41:8621–8625

    CAS  Google Scholar 

  26. Schunk S, Enders D (2000) Org Lett 2:907–910

    CAS  Google Scholar 

  27. Annunziata R, Benaglia M, Cinquini M, Cozzi F (2000) Chem Eur J 6:133–138

    CAS  Google Scholar 

  28. Gordon KH, Balasubramanian S (2001) Org Lett 3:53–56

    CAS  Google Scholar 

  29. Schunk S, Enders D (2002) J Org Chem 67:8034–8042

    CAS  Google Scholar 

  30. Delpiccolo CML, Mata EG (2002) Tetrahed Asym 13:905–910

    CAS  Google Scholar 

  31. Mascaretti OA, Boschetti CE, Danelon GO, Mata EG, Roveri OA (1995) Curr Med Chem 1:441–470

    CAS  Google Scholar 

  32. Edwards PD, Bernstein PR (1994) Med Res Rev 14:127–194

    CAS  Google Scholar 

  33. Sandanayaka VP, Prashad AS, Yang Y, Williamson T, Lin YI, Mansour TS (2003) J Med Chem 46:2569–2571

    CAS  Google Scholar 

  34. Buynak JD, Rao AS, Fod GP, Carver C, Carver C, Adam G, Geng B, Bachmann B, Shobassy S, Lackey S (1997) J Med Chem 40:3423–3433

    CAS  Google Scholar 

  35. Bonneau PR, Hasani F, Plouffe C, Malenfant E, Laplante SR, Guse I, Ogilvie WW, Plante R, Davidson WC, Hopkins JL, Morelock MM, Cordingley MG, Deziel R (1999) J Am Chem Soc 121:2965–2973

    CAS  Google Scholar 

  36. Ghatak A, Becker FF, Banik BK (2000) Heterocycles 53:2769–2772

    CAS  Google Scholar 

  37. Banik BK, Ghatak A, Becker FF (2000) J Chem Soc Perkin Trans 1:2179–2181

    Google Scholar 

  38. Banik BK, Becker FF (2000) Tetrahedron Lett 41:6551–6554

    CAS  Google Scholar 

  39. Ng S, Banik I, Okawa A, Becker FF, Banik BK (2001) J Chem Res 3:118–119

    Google Scholar 

  40. Dasgupta SK, Banik BK (2002) Tetrahedron Lett 43:9445–9447

    CAS  Google Scholar 

  41. Banik BK, Samajdar S, Banik I (2003) Tetrahedron Lett 44:1699–1701

    CAS  Google Scholar 

  42. Banik BK, Banik I, Hackfeld L (2003) Heterocycles 59:505–508

    CAS  Google Scholar 

  43. Banik BK, Adler D, Nguyen P, Srivastava N (2003) Heterocycles 61:101–104

    CAS  Google Scholar 

  44. Banik BK, Banik I, Samajdar S, Wilson M (2003) Heterocycles 63:283–296

    Google Scholar 

  45. Becker FF, Banik BK (1998) Bioorg Med Chem Lett 8:2877–2880

    CAS  Google Scholar 

  46. Banik BK, Venkatraman MS, Mukhopadhyay C, Becker FF (1998) Tetrahedron Lett 39:7247–7250

    CAS  Google Scholar 

  47. Becker FF, Mukhopadhyay C, Hackfeld L, Banik I, Banik BK (2000) Bioorg Med Chem 8:2693–2699

    CAS  Google Scholar 

  48. Banik BK, Ghatak A, Mukhopadhyay C, Becker FF (2000) J Chem Res 108–109

    Google Scholar 

  49. Mukhopadhyay C, Becker FF, Banik BK (2001) J Chem Res 1:28–31

    Google Scholar 

  50. Banik BK, Becker FF (2001) Bioorg Med Chem 9:593–605

    CAS  Google Scholar 

  51. Banik BK, Becker FF (2001) Curr Med Chem 8:1513–1533

    CAS  Google Scholar 

  52. Banik BK (ed) (2001) Current approaches to the development of new chemotherapeutic agents, current medicinal chemistry, vol 8. Bentham Science, San Francisco

    Google Scholar 

  53. Banik BK, Samajdar S, Banik I (2004) J Org Chem 69:213–216

    CAS  Google Scholar 

  54. Becker FF, Banik BK (2000) US Patent 6,015,811

    Google Scholar 

  55. Becker FF, Banik BK (2001) US Patent 6,184,224

    Google Scholar 

  56. Becker FF, Banik BK (2002) US Patent 6,362,200

    Google Scholar 

  57. Banik I, Becker FF, Banik BK (2003) J Med Chem 46:12–15

    CAS  Google Scholar 

  58. Banik BK, Becker FF, Banik I (2004) Bioorg Med Chem 2:2523–2528

    Google Scholar 

  59. Perreux L, Loupy A (2001) Tetrahedron 57:9199–9223

    CAS  Google Scholar 

  60. Lidstrom P, Tierney J, Wathey B, Westman J (2001) Tetrahedron 57:9225–9287

    CAS  Google Scholar 

  61. Bose AK, Manhas MS, Ganguly SN, Sharma AH, Banik BK (2002) Synthesis 1578–1591

    Google Scholar 

  62. Bose AK, Banik BK, Lavlinskaia N, Jayaraman M, Manhas MS (1997) Chemtech 27:18–24

    CAS  Google Scholar 

  63. Bose AK, Manhas MS, Ghosh M, Shah M, Raju VS, Bari SS, Newaz SN, Banik BK, Barakat KJ, Chaudhury AG (1991) J Org Chem 56:6968–6970

    CAS  Google Scholar 

  64. Banik BK, Manhas MS, Kaluza Z, Barakat KJ, Bose AK (1992) Tetrahedron Lett 33:3603–3606

    CAS  Google Scholar 

  65. Banik BK, Manhas MS, Newaz SN, Bose AK (1993) Bioorg Med Chem Lett 3:2363–2368

    CAS  Google Scholar 

  66. Bose AK, Banik BK, Barakat KJ, Manhas MS (1993) Synlett 575–577

    Google Scholar 

  67. Bose AK, Manhas MS, Banik BK, Robb EW (1994) Res Chem Intermed 20:1–20

    CAS  Google Scholar 

  68. Banik BK, Manhas MS, Robb EW, Bose AK (1997) Heterocycles 44:405–415

    CAS  Google Scholar 

  69. Banik BK, Jayaraman M, Srirajan V, Manhas MS, Bose AK (1997) J Ind Chem Soc 74:951

    Google Scholar 

  70. Banik BK, Barakat KJ, Wagle DR, Manhas MS, Bose AK (1999) J Org Chem 64:5746–5753

    CAS  Google Scholar 

  71. Rajagopal S, Anwer MK, Spatola AF (1994) In: Basava C, Anantharamaiah GM (eds) Peptides: design, synthesis and biological activity. Birkhauser, Boston, p 11 (Chap. 2)

    Google Scholar 

  72. Rao HSP, Reedy KS (1994) Tetrahedron Lett 35:171–174

    CAS  Google Scholar 

  73. Ram S, Ehrenkaufer RE (1988) Synthesis 91

    Google Scholar 

  74. Viswanatha V, Hruby V (1980) J Org Chem 45:2010

    CAS  Google Scholar 

  75. Jackson AE, Johnstone RAW (1997) Synthesis 685

    Google Scholar 

  76. Brieger G, Nestrick T (1974) J Chem Rev 74:567

    CAS  Google Scholar 

  77. Braude EA, Listead RP (1954) J Chem Soc 3544–3548

    Google Scholar 

  78. Anwer MK, Khan SA, Sivanandaiah KM (1978) Synthesis 751

    Google Scholar 

  79. Furst A, Berlo RC, Hooton S (1965) Chem Rev 65:51–68

    CAS  Google Scholar 

  80. Gray BD, Jeffs PW (1987) J Chem Soc Chem Commun 1329–1330

    Google Scholar 

  81. Elamin B, Anantharamaiah GM, Royer GP, Means GE (1979) J Org Chem 44:3442–3444

    CAS  Google Scholar 

  82. Anwer MK, Spatola AF (1980) Synthesis 929

    Google Scholar 

  83. Adger BM, O’Farrell C, Lewis NJ, Mitchell MB (1987) Synthesis 53

    Google Scholar 

  84. Carpino L, Tunga A (1986) J Org Chem 11:1930

    Google Scholar 

  85. Ram S, Ehrenkaufer RE (1986) Synthesis 133

    Google Scholar 

  86. Overman LE, Sugai S (1985) Helv Chim Acta 68:745

    CAS  Google Scholar 

  87. Ranu BC, Sarkar A, Guchhait SK, Ghosh KJ (1998) Ind Chem Soc 75:690–694

    CAS  Google Scholar 

  88. Bajwa JS (1992) Tetrahedron Lett 33:2299

    CAS  Google Scholar 

  89. Felix AM, Heimer EP, Lambros TJ, Tzougraki C, Meienhofer J (1978) J Org Chem 43:4194–4196

    CAS  Google Scholar 

  90. Entwistle ID, Gilkerson T, Johnstone RAW, Telford RP (1978) Tetrahedron 34:313

    Google Scholar 

  91. Entwistle ID, Johnstone RAW, Telford RP (1977) J Chem Res 117

    Google Scholar 

  92. Marques CA, Selva M, Tundo P (1993) J Chem Soc Perkin Trans 1:529

    Google Scholar 

  93. Bose AK, Banik BK, Barakat KJ, Manhas MS (1993) Synlett 575

    Google Scholar 

  94. Bose AK, Manhas MS, Ghosh M, Shah M, Raju VS, Bari SS, Newaz SN, Banik BK, Chaudhary AG, Barakat KJ (1991) J Org Chem 56:6968–6970

    CAS  Google Scholar 

  95. Ojima I, Suga S, Abe R (1980) Chem Lett 9:853–856

    Google Scholar 

  96. Newaz SN, Manhas MS (1993) Synlett 897

    Google Scholar 

  97. Banik BK, Newaz SN, Manhas MS, Bose AK (1993) Synlett 897

    Google Scholar 

  98. Banik BK, Manhas MS, Bose AK (1994) J Org Chem 59:4714–4716

    CAS  Google Scholar 

  99. Banik BK, Subbaraju GV, Manhas MS, Bose AK (1996) Tetrahedron Lett 37:1363–1366

    CAS  Google Scholar 

  100. Banik BK, Manhas MS, Bose AK (1997) Tetrahedron Lett 38:5077–5080

    CAS  Google Scholar 

  101. Banik BK, Zegrocka O, Manhas MS, Bose AK (1997) Heterocycles 46:173–176

    CAS  Google Scholar 

  102. Bose AK, Manhas MS, Ghosh M, Raju VS, Tabei K, Urbanczyk-Lipkowsa Z (1990) Heterocycles 30:741–744

    Google Scholar 

  103. Bose AK, Manhas MS, Ghosh M, Shah M, Raju VS, Bari SS, Newaz SN, Banik BK, Chaudhury AG, Barakat KJ (1991) J Org Chem 56:6968–6970

    CAS  Google Scholar 

  104. Bari SS, Bose AK, Chaudhury AG, Manhas MS, Raju VS, Robb EW (1992) J Chem Educ 69:938–939

    CAS  Google Scholar 

  105. Banik BK, Newaz SN, Manhas MS, Bose AK (1993) Bioorg Med Chem Lett 3:2363–2368

    CAS  Google Scholar 

  106. Samajdar S, Becker FF, Banik BK (2000) Tetrahedron Lett 41:8017–8020

    CAS  Google Scholar 

  107. Samajdar S, Becker FF, Banik BK (2001) Arkivoc 8:27–33

    Google Scholar 

  108. Samajdar S, Basu MK, Becker FF, Banik BK (2002) Synth Commun 32:1917–1921

    CAS  Google Scholar 

  109. Samajdar S, Becker FF, Banik BK (2001) Synth Commun 31:2691–2695

    CAS  Google Scholar 

  110. Srivastava N, Dasgupta S, Banik BK (2003) Tetrahedron Lett 44:119–194

    Google Scholar 

  111. Srivastava N, Banik BK (2003) J Org Chem 68:2109–2114

    CAS  Google Scholar 

  112. Banik BK, Banik I, Renteria M, Dasgupta S (2005) Tetrahedron Lett 46:2643–2646

    CAS  Google Scholar 

  113. Banik BK, Manhas MS, Bose AK (1994) J Org Chem 56:4714–4718

    Google Scholar 

  114. Samajdar S, Basu MK, Becker FF, Banik BK (2001) Tetrahedron Lett 42:4425–4427

    CAS  Google Scholar 

  115. Basu MK, Samajdar S, Becker FF, Banik BK (2001) Synlett 519

    Google Scholar 

  116. Banik BK, Fernandez M, Alvarez C (2005) Tetrahedron Lett 46:2479–2482

    CAS  Google Scholar 

  117. Salzmann TN, Ratcliffe RW, Christensen BG (1980) J Am Chem Soc 102:6161–6163

    CAS  Google Scholar 

  118. Hanessian S, Desilets D, Bennani YL (1990) J Org Chem 55:3098–3103

    CAS  Google Scholar 

  119. Nagahara T, Kametani T (1987) Heterocycles 25:729–806

    CAS  Google Scholar 

  120. Kametani T, Fukumoto K, Ihara M (1982) Heterocycles 17:463–506

    CAS  Google Scholar 

  121. DiNinno F, Beattie TR, Christensen BG (1977) J Org Chem 42:2960–2965

    CAS  Google Scholar 

  122. Todorov AR, Kurteva VB, Bontechev RP, Vassilev NG (2009) Tetrahedron 65:10339–10347

    CAS  Google Scholar 

  123. Ariens EJ (1993) Stereochemistry and biological activity of drugs. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  124. Banik BK (ed) (2004) β-Lactams: synthesis, stereochemistry, synthons and biological evaluation. Curr Med Chem, vol 11. Bentham Science, San Francisco

    Google Scholar 

  125. Chiral praseodymium trans-3-(heptafluropropylhydroxymethylene) camphorate was used as shift reagent in the NMR study

    Google Scholar 

  126. Bose AK, Jayraman M, Okawa A, Bari SS, Robb EW, Manhas MS (1996) Tetrahedron Lett 37:6989–6992

    CAS  Google Scholar 

  127. Ali P, Meshram J, Tiwari V (2010) Int J Chem Tech Res 2:956–964

    CAS  Google Scholar 

  128. Matelli G, Spunta G, Panunzio M (1998) Tetrahedron Lett 39:6257–6260

    Google Scholar 

  129. Texier-Boullet F, Latouche R, Hamelin J (1993) Tetrahedron Lett 34:2123–2126

    CAS  Google Scholar 

  130. Banik BK, Becker FF, Banik I (2004) Bioorg Med Chem 12:2523–2528

    CAS  Google Scholar 

  131. Georg GI, Ravikumar VT (1992) In: Georg GI (ed) In the organic chemistry of β-lactams. VCH, New York

    Google Scholar 

  132. Just G, Ugolini A, Zamboni R (1979) Synth Commun 9:117–121

    CAS  Google Scholar 

  133. Doyle TW, Belleau B, Luh BY, Ferrari CF, Cunningham MP (1977) Can J Chem 55:468–507

    CAS  Google Scholar 

  134. Bose AK, Chiang YH, Manhas MS (1972) Tetrahedron Lett 13:4091–4094

    Google Scholar 

  135. Lin TH, Rogers TS, Hill DL, Simpson-Herren L, Farnell DR, Kochhar DM, Alam M, Brouillette W, Muccio DD (1996) Toxicol Appl Pharmacol 139:310–316

    CAS  Google Scholar 

  136. Garratt PJ, Vonhoff S, Rowe SJ, Sugden D (1994) Bioorg Med Chem Lett 4:1559–1564

    CAS  Google Scholar 

  137. Mathe-Allainmat M, Gaudy F, Sicic S, Dangy-Caye A-L, Shen S, Bremont B, Benatalah Z, Langlois M, Renard P, Delagrange P (1996) J Med Chem 39:3089–3095

    CAS  Google Scholar 

  138. Anderson A, Boyd AC, Clark JK, Fielding L, Gemmell DK, Hamilton NM, Maidment MS, May V, McGuire R, McPhail P, Sansbury FH, Sundaram H, Taylor R (2000) J Med Chem 43:4118–4125

    CAS  Google Scholar 

  139. Barboni L, Lambertucci C, Appendino G, Vander Velde DG, Himes RH, Bombardelli E, Wang M, Synder JP (2001) J Med Chem 44:1576–1587

    CAS  Google Scholar 

  140. Hernandez AI, Balzarini J, Karlsson A, Camarasa MJ, Perez MJ (2002) J Med Chem 45:4254–4263

    CAS  Google Scholar 

  141. Selvakumar N, Srinivas D, Khera MK, Kumar MS, Mamidi RNVS, Sarnaik H, Charavaryamath C, Rao BS, Raheem MA, Das J, Iqbal J, Rajagopalan R (2002) J Med Chem 45:3953–3962

    CAS  Google Scholar 

  142. Ullrich T, Krich S, Binder D, Mereiter K, Anderson DJ, Meyer MD, Pyerin M (2002) J Med Chem 45:4047–4054

    CAS  Google Scholar 

  143. Lopez R, Sordo TL, Sordo JA, Gonzalez J (1993) J Org Chem 58:7036–7037

    CAS  Google Scholar 

  144. Ramos K, Banik BK (2011) Heterocyclic Lett 1:27–30

    Google Scholar 

  145. Bandyopadhyay D, Yanez M, Banik BK (2011) Heterocyclic Lett 1:65–67

    Google Scholar 

  146. Banik I, Samajdar S, Banik BK (2011) Heterocyclic Lett 1:69–72

    Google Scholar 

  147. Kidwai M, Sapra P, Bhushan KR, Saxen RK, Guptha R, Singh M (2000) Monatshefte Chem 131:85–90

    CAS  Google Scholar 

  148. Alcaide B, Vicente-Rodriguez A (1999) Tetrahedron Lett 40:2005–2006

    CAS  Google Scholar 

  149. Afonso A, Rosenblum SB, Puar MS, McPhail AT (1998) Tetrahedron Lett 39:7431–7434

    CAS  Google Scholar 

  150. Bolli MH, Marfurt J, Grisostomi C, Boss C, Binkert C, Hess P, Treiber A, Thorin E, Morrison K, Buchmann S, Bur D, Ramuz H, Clozel M, Fischli W, Weller T (2004) J Med Chem 47:2776–2795

    CAS  Google Scholar 

  151. Endo M, Droghini R (1993) Bioorg Med Chem Lett 3:2483–2486

    Google Scholar 

  152. Bose AK, Banik BK, Manhas MS (1995) Tetrahedron Lett 36:213–216

    CAS  Google Scholar 

  153. Arrieta A, Lecea B, Cossio FP (1998) J Org Chem 63:5869–5876

    CAS  Google Scholar 

  154. Cossio FP, Arrieta A, Lecea B, Ugalde JM (1994) J Am Chem Soc 116:2085–2093

    CAS  Google Scholar 

  155. Cossio FP, Ugalde JM, Lopez X, Lecea B, Palomo C (1993) J Am Chem Soc 115:995–1004

    CAS  Google Scholar 

  156. Hegedus LS, Montgomery J, Narukawa Y, Snustad DC (1991) J Am Chem Soc 113:5784–5791

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding support from Kleberg Foundation of Texas and NCI to BKB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal K. Banik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banik, I., Banik, B.K. (2012). Synthesis of β-Lactams and Their Chemical Manipulations Via Microwave-Induced Reactions. In: Banik, B. (eds) β-Lactams: Unique Structures of Distinction for Novel Molecules. Topics in Heterocyclic Chemistry, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2012_88

Download citation

Publish with us

Policies and ethics