Click Triazoles for Bioconjugation

  • Tianqing Zheng
  • Sara H. Rouhanifard
  • Abubakar S. Jalloh
  • Peng Wu
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 28)

Abstract

Click chemistry is a set of rapid, selective and robust reactions that give near-quantitative yield of the desired product in aqueous solutions. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) that forms 1,4-disubstituted triazoles is a prototypical example of click chemistry that features exquisite selectivity and bioorthogonality—that is, non-interacting with biological components while proceeding under physiological conditions. Over the past ten years, CuAAC has found extensive applications in the field of chemical biology. In this chapter, we describe the discovery of Cu(I) catalysts for this transformation and the recent development of the strain-promoted azide-alkyne cycloaddition that eliminate the use of copper. We also highlight several recent applications toward conjugating biomolecules, including proteins, nucleic acids, lipids and glycans, with biophysical probes for both in vitro and in vivo studies.

Keywords

Bioconjugation Bioorthogonal Click chemistry 

Notes

Acknowledgement

The author’s work that was highlighted in this book chapter was supported by the National Institutes of Health to P.W. (GM080585 and GM093282), the Mizutani Foundation for Glycoscience, and DuPont (DuPont Young Professor Award).

References

  1. 1.
    Wang L, Schultz PG (2004) Expanding the genetic code. Angew Chem Int Ed 44:34–66CrossRefGoogle Scholar
  2. 2.
    O'Hare HM, Johnsson K, Gautier A (2007) Chemical probes shed light on protein function. Curr Opin Struct Biol 17:488–494CrossRefGoogle Scholar
  3. 3.
    Rabuka D (2010) Chemoenzymatic methods for site-specific protein modification. Curr Opin Chem Biol 14:790–796CrossRefGoogle Scholar
  4. 4.
    Baskin JM, Bertozzi CR (2007) Bioorthogonal click chemistry: covalent labeling in living systems. Qsar Comb Sci 26:1211–1219CrossRefGoogle Scholar
  5. 5.
    Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998CrossRefGoogle Scholar
  6. 6.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRefGoogle Scholar
  7. 7.
    Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064CrossRefGoogle Scholar
  8. 8.
    Wu P, Fokin VV (2007) Catalytic azide-alkyne cycloaddition: reactivity and applications. Aldrichimica Acta 40:7–17Google Scholar
  9. 9.
    Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015CrossRefGoogle Scholar
  10. 10.
    Chan TR, Hilgraf R, Sharpless KB, Fokin VV (2004) Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org Lett 6:2853–2855CrossRefGoogle Scholar
  11. 11.
    Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed 48:9879–9883CrossRefGoogle Scholar
  12. 12.
    Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137CrossRefGoogle Scholar
  13. 13.
    Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025CrossRefGoogle Scholar
  14. 14.
    Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21CrossRefGoogle Scholar
  15. 15.
    Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan A, Levy M, Liu Y, Marlow FL, Wu P (2010) Biocompatible copper(I) catalysts for in vivo imaging of glycans. J Am Chem Soc 132:16893–16899CrossRefGoogle Scholar
  16. 16.
    Kaltgrad E, Sen Gupta S, Punna S, Huang CY, Chang A, Wong CH, Finn MG, Blixt O (2007) Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. Chembiochem 8:1455–1462CrossRefGoogle Scholar
  17. 17.
    Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163CrossRefGoogle Scholar
  18. 18.
    Link AJ, Vink MK, Tirrell DA (2004) Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 126:10598–10602CrossRefGoogle Scholar
  19. 19.
    Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano Del Amo D, Wang W, Klivansky LM, Marlow FL, Liu Y, Wu P (2011) Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed 50:8051–8056CrossRefGoogle Scholar
  20. 20.
    Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047CrossRefGoogle Scholar
  21. 21.
    Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39:1272–1279CrossRefGoogle Scholar
  22. 22.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA 104:16793–16797CrossRefGoogle Scholar
  23. 23.
    Ning X, Guo J, Wolfert MA, Boons GJ (2008) Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew Chem Int Ed 47:2253–2255CrossRefGoogle Scholar
  24. 24.
    Jewett JC, Sletten EM, Bertozzi CR (2010) Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc 132:3688–3690CrossRefGoogle Scholar
  25. 25.
    Laughlin ST, Bertozzi CR (2009) In vivo imaging of Caenorhabditis elegans glycans. ACS Chem Biol 4:1068–1072CrossRefGoogle Scholar
  26. 26.
    Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320:664–667CrossRefGoogle Scholar
  27. 27.
    Baskin JM, Dehnert KW, Laughlin ST, Amacher SL, Bertozzi CR (2010) Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proc Natl Acad Sci USA 107:10360–10365CrossRefGoogle Scholar
  28. 28.
    Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci USA 107:1821–1826CrossRefGoogle Scholar
  29. 29.
    Lallana E, Riguera R, Fernandez-Megia E (2011) Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Angew Chem Int Ed 50:8794–8804CrossRefGoogle Scholar
  30. 30.
    Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104CrossRefGoogle Scholar
  31. 31.
    Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322CrossRefGoogle Scholar
  32. 32.
    Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR (2009) Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci USA 106:3000–3005CrossRefGoogle Scholar
  33. 33.
    Lin CW, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128:4542–4543CrossRefGoogle Scholar
  34. 34.
    Green DE, Morris TW, Green J, Cronan JE Jr, Guest JR (1995) Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem J 309(Pt 3):853–862Google Scholar
  35. 35.
    Fernandez-Suarez M, Baruah H, Martinez-Hernandez L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25:1483–1487CrossRefGoogle Scholar
  36. 36.
    Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905CrossRefGoogle Scholar
  37. 37.
    Beatty KE, Fisk JD, Smart BP, Lu YY, Szychowski J, Hangauer MJ, Baskin JM, Bertozzi CR, Tirrell DA (2010) Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. Chembiochem 11:2092–2095CrossRefGoogle Scholar
  38. 38.
    Crick F (1970) Central dogma of molecular biology. Nature 227:561–563CrossRefGoogle Scholar
  39. 39.
    Dove A (1999) Proteomics: translating genomics into products? Nat Biotech 17:233–236CrossRefGoogle Scholar
  40. 40.
    Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846CrossRefGoogle Scholar
  41. 41.
    Jessani N, Liu Y, Humphrey M, Cravatt BF (2002) Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci 99:10335–10340CrossRefGoogle Scholar
  42. 42.
    Seo J, Lee K-J (2004) Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37:35–44CrossRefGoogle Scholar
  43. 43.
    Kobe B, Kemp BE (1999) Active site-directed protein regulation. Nature 402:373–376CrossRefGoogle Scholar
  44. 44.
    Jiang H, Kim JH, Frizzell KM, Kraus WL, Lin H (2010) Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases. J Am Chem Soc 132:9363–9372CrossRefGoogle Scholar
  45. 45.
    Wilson JP, Raghavan AS, Yang YY, Charron G, Hang HC (2011) Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics 10:M110 001198Google Scholar
  46. 46.
    Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84CrossRefGoogle Scholar
  47. 47.
    Yount JS, Moltedo B, Yang YY, Charron G, Moran TM, Lopez CB, Hang HC (2010) Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol 6:610–614CrossRefGoogle Scholar
  48. 48.
    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2008) Eseentials of glycobiology, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  49. 49.
    Zachara NE, Hart GW (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem Rev 102:431–438CrossRefGoogle Scholar
  50. 50.
    Taylor-Papadimitriou J, Epenetos AA (1994) Exploiting altered glycosylation patterns in cancer: progress and challenges in diagnosis and therapy. Trends Biotechnol 12:227–233CrossRefGoogle Scholar
  51. 51.
    Laughlin ST, Bertozzi CR (2009) Imaging the glycome. Proc Natl Acad Sci USA 106:12–17CrossRefGoogle Scholar
  52. 52.
    Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–1128CrossRefGoogle Scholar
  53. 53.
    Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010CrossRefGoogle Scholar
  54. 54.
    Wang W, Hu T, Frantom PA, Zheng T, Gerwe B, Del Amo DS, Garret S, Seidel RD III, Wu P (2009) Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. Proc Natl Acad Sci USA 106:16096–16101CrossRefGoogle Scholar
  55. 55.
    Zheng T, Jiang H, Gros M, del Amo DS, Sundaram S, Lauvau G, Marlow F, Liu Y, Stanley P, Wu P (2011) Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew Chem Int Ed Engl 50:4113–4118CrossRefGoogle Scholar
  56. 56.
    Hanson SR, Hsu TL, Weerapana E, Kishikawa K, Simon GM, Cravatt BF, Wong CH (2007) Tailored glycoproteomics and glycan site mapping using saccharide-selective bioorthogonal probes. J Am Chem Soc 129:7266–7267CrossRefGoogle Scholar
  57. 57.
    Yang L, Nyalwidhe JO, Guo S, Drake RR, Semmes OJ (2011) Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer. Mol Cell Proteomics 10:M110 007294Google Scholar
  58. 58.
    Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022CrossRefGoogle Scholar
  59. 59.
    Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130:11576–11577CrossRefGoogle Scholar
  60. 60.
    Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107:19915–19920CrossRefGoogle Scholar
  61. 61.
    Cravatt BF, Sorensen EJ (2000) Chemical strategies for the global analysis of protein function. Curr Opin Chem Biol 4:663–668CrossRefGoogle Scholar
  62. 62.
    Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci 96:14694–14699CrossRefGoogle Scholar
  63. 63.
    Shields DJ, Niessen S, Murphy EA, Mielgo A, Desgrosellier JS, Lau SKM, Barnes LA, Lesperance J, Bouvet M, Tarin D, Cravatt BF, Cheresh DA (2010) RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia. Proc Natl Acad Sci 107:2189–2194CrossRefGoogle Scholar
  64. 64.
    Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez J-C (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115CrossRefGoogle Scholar
  65. 65.
    Jessani N, Cravatt BF (2004) The development and application of methods for activity-based protein profiling. Curr Opin Chem Biol 8:54–59CrossRefGoogle Scholar
  66. 66.
    Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11:535–546CrossRefGoogle Scholar
  67. 67.
    Sato B, Muramatsu H, Miyauchi M, Hori Y, Takase S, Hino M, Hashimoto S, Terano H (2000) A new antimitotic substance, FR182877. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 53:123–130CrossRefGoogle Scholar
  68. 68.
    Adam GC, Vanderwal CD, Sorensen EJ, Cravatt BF (2003) (-)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew Chem Int Ed Engl 42:5480–5484CrossRefGoogle Scholar
  69. 69.
    Speers AE, Adam GC, Cravatt BF (2003) Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125:4686–4687CrossRefGoogle Scholar
  70. 70.
    Ovaa H, van Swieten PF, Kessler BM, Leeuwenburgh MA, Fiebiger E, van den Nieuwendijk AM, Galardy PJ, van der Marel GA, Ploegh HL, Overkleeft HS (2003) Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew Chem Int Ed 42:3626–3629CrossRefGoogle Scholar
  71. 71.
    Vocadlo DJ, Bertozzi CR (2004) A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew Chem Int Ed Engl 43:5338–5342CrossRefGoogle Scholar
  72. 72.
    Wright AT, Cravatt BF (2007) Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo. Chem Biol 14:1043–1051CrossRefGoogle Scholar
  73. 73.
    Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414CrossRefGoogle Scholar
  74. 74.
    Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF (2004) Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci USA 101:10000–10005CrossRefGoogle Scholar
  75. 75.
    Salisbury CM, Cravatt BF (2007) Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc Natl Acad Sci USA 104:1171–1176CrossRefGoogle Scholar
  76. 76.
    Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420CrossRefGoogle Scholar
  77. 77.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930CrossRefGoogle Scholar
  78. 78.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935CrossRefGoogle Scholar
  79. 79.
    Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tianqing Zheng
    • 1
  • Sara H. Rouhanifard
    • 1
  • Abubakar S. Jalloh
    • 1
  • Peng Wu
    • 1
  1. 1.Department of BiochemistryAlbert Einstein College of Medicine, Yeshiva UniversityBronxUSA

Personalised recommendations