Binding Anions in Rigid and Reconfigurable Triazole Receptors

Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 28)

Abstract

The use of triazole CH•••anion hydrogen bonds, strong and easy to install, has expanded dramatically since 2008. Various aryl-triazole derivatives have been synthesized and investigated to obtain fundamental understandings of anion stabilization as well as to develop new receptors for applications. Receptors have now been created to make use of triazole, triazolium, or iodotriazolium. The triazole CH•••anion binding motif has also been utilized in sophisticated structures such as interlocked molecules and toward fluorescent sensors and ion-selective electrodes. Furthermore, demonstrations on the transport of anions across membranes and studies of light-induced anion regulation have broadened the scope of application for this new anion binding motif. This chapter will focus on these recent developments.

Keywords

Anion receptor CH hydrogen bond Click chemistry Foldamers Preorganization 

Abbreviations

Bn

Benzyl

CH2Cl2

Dichloromethane

CHCl3

Chloroform

CuAAC

Copper(I)-catalyzed azide-alkyne cycloaddition

ESP

Electrostatic potential

ISE

Ion-selective electrode

Ka

Association constant

NMR

Nuclear magnetic resonance

POPC

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

TBA+

Tetrabutylammonium cation

References

  1. 1.
    Bianchi A, Bowman-James K, García-España E (1997) Supramolecular chemistry of anions. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Sessler JL, Gale PA, Cho W-S (2006) Anion receptor chemistry. RSC Publishing, Cambridge, UKGoogle Scholar
  3. 3.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press Inc, New YorkGoogle Scholar
  4. 4.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596CrossRefGoogle Scholar
  5. 5.
    Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057CrossRefGoogle Scholar
  6. 6.
    Kwon JY, Jang YJ, Kim SK, Lee K-H, Kim JS, Yoon J (2004) J Org Chem 69:5155CrossRefGoogle Scholar
  7. 7.
    Ilioudis CA, Tocher DA, Steed JW (2004) J Am Chem Soc 126:12395CrossRefGoogle Scholar
  8. 8.
    Chmielewski MJ, Charon M, Jurczak J (2004) Org Lett 6:3501CrossRefGoogle Scholar
  9. 9.
    Farnham WB, Roe DC, Dixon DA, Calabrese JC, Harlow RL (1990) J Am Chem Soc 112:7707CrossRefGoogle Scholar
  10. 10.
    Sutor DJ (1963) J Chem Soc 1105Google Scholar
  11. 11.
    Bryantsev VS, Hay BP (2005) J Am Chem Soc 127:8282CrossRefGoogle Scholar
  12. 12.
    Berryman OB, Sather AC, Hay BP, Meisner JS, Johnson DW (2008) J Am Chem Soc 130:10895CrossRefGoogle Scholar
  13. 13.
    Zhu SS, Staats H, Brandhorst K, Grunenberg J, Gruppi F, Dalcanale E, Lützen A, Rissanen K, Schalley CA (2008) Angew Chem Int Ed 47:788CrossRefGoogle Scholar
  14. 14.
    Yoon D-W, Gross DE, Lynch VM, Sessler JL, Hay BP, Lee C-H (2008) Angew Chem Int Ed 47:5038CrossRefGoogle Scholar
  15. 15.
    Palmer MH, Findlay RH, Gaskell AJ (1974) J Chem Soc Perkin Trans 2:420Google Scholar
  16. 16.
    Li Y, Flood AH (2008) Angew Chem Int Ed 47:2649CrossRefGoogle Scholar
  17. 17.
    Li Y, Flood AH (2008) J Am Chem Soc 130:12111CrossRefGoogle Scholar
  18. 18.
    Hirose K (2001) J Inclusion Phenom Macrocyclic Chem 39:193CrossRefGoogle Scholar
  19. 19.
    Li Y, Pink M, Karty JA, Flood AH (2008) J Am Chem Soc 130:17293CrossRefGoogle Scholar
  20. 20.
    Hua Y, Ramabhadran RO, Uduehi EO, Karty JA, Raghavachari K, Flood AH (2011) Chem Eur J 17:312CrossRefGoogle Scholar
  21. 21.
    Bandyopadhyay I, Raghavachari K, Flood AH (2009) ChemPhysChem 10:2535CrossRefGoogle Scholar
  22. 22.
    Juwarker H, Lenhardt JM, Pham DM, Craig SL (2008) Angew Chem Int Ed 47:3740CrossRefGoogle Scholar
  23. 23.
    Meudtner RM, Hecht S (2008) Angew Chem Int Ed 47:4926CrossRefGoogle Scholar
  24. 24.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004CrossRefGoogle Scholar
  25. 25.
    Hua Y, Flood AH (2010) Chem Soc Rev 39:1262CrossRefGoogle Scholar
  26. 26.
    McDonald KP, Hua Y, Flood AH (2010) Top Heterocycl Chem 24:341CrossRefGoogle Scholar
  27. 27.
    Cabbines DK, Margerum DW (1969) J Am Chem Soc 91:6540CrossRefGoogle Scholar
  28. 28.
    Sessler JL, Cai J, Gong H-Y, Yang X, Arambula JF, Hay BP (2010) J Am Chem Soc 132:14058CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Li Y, Li Y, Huang C, Liu H, Lai S-W, Che C-M, Zhu D (2010) Org Biomol Chem 8:3923CrossRefGoogle Scholar
  30. 30.
    Alunni S, Pero A, Reichenbach G (1998) J Chem Soc Perkin Trans 2:1747Google Scholar
  31. 31.
    Ramabhadran RO, Hua Y, Li Y, Flood AH, Raghavachari K (2011) Chem Eur J 17:9123CrossRefGoogle Scholar
  32. 32.
    Meot-Ner M, Cybulski SM, Scheiner S, Liebman JF (1988) J Phys Chem 92:2138CrossRefGoogle Scholar
  33. 33.
    Alabugin IV, Zeidan TA (2002) J Am Chem Soc 124:3175CrossRefGoogle Scholar
  34. 34.
    Juwarker H, Lenhardt JM, Castillo JC, Zhao E, Krishnamurthy S, Jamiolkowski RM, Kim K-H, Craig SL (2009) J Org Chem 74:8924CrossRefGoogle Scholar
  35. 35.
    Hua Y, Ramabhadran RO, Karty JA, Raghavachari K, Flood AH (2011) Chem Commun 47:5979CrossRefGoogle Scholar
  36. 36.
    Lee S, Hua Y, Park H, Flood AH (2010) Org Lett 12:2100CrossRefGoogle Scholar
  37. 37.
    Haridas V, Sahu S, Venugopalan P (2011) Tetrahedron 67:727CrossRefGoogle Scholar
  38. 38.
    Wang Y, Xiang J, Jiang H (2011) Chem Eur J 17:613CrossRefGoogle Scholar
  39. 39.
    García F, Torres MR, Matesanz E, Sánchez L (2011) Chem Commun 47:5016CrossRefGoogle Scholar
  40. 40.
    Schulze B, Friebe C, Hager HD, Günther W, Köhn U, Jahn BO, Görls H, Schubert US (2010) Org Lett 12:2710CrossRefGoogle Scholar
  41. 41.
    Zheng H, Zhou W, Lv J, Yin X, Li Y, Liu H, Li Y (2009) Chem Eur J 15:13253CrossRefGoogle Scholar
  42. 42.
    Mullen KM, Mercurio J, Serpell CJ, Beer PD (2009) Angew Chem Int Ed 48:4781CrossRefGoogle Scholar
  43. 43.
    Kilah NL, Wise MD, Serpell CJ, Thompson AL, White NG, Christensen KE, Beer PD (2010) J Am Chem Soc 132:11893CrossRefGoogle Scholar
  44. 44.
    Kim JS, Park SY, Kim SH, Thuéry P, Souane R, Matthews SE, Vicens J (2010) Bull Korean Chem Soc 31:624CrossRefGoogle Scholar
  45. 45.
    Zahran EM, Hua Y, Li Y, Flood AH, Bachas LG (2010) Anal Chem 82:368CrossRefGoogle Scholar
  46. 46.
    Zahran EM, Hua Y, Lee S, Flood AH, Bachas LG (2011) Anal Chem 83:3455CrossRefGoogle Scholar
  47. 47.
    Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713CrossRefGoogle Scholar
  48. 48.
    Ohmatsu K, Kiyokawa M, Ooi T (2011) J Am Chem Soc 133:1307CrossRefGoogle Scholar
  49. 49.
    Davis AP, Sheppard DN, Smith BD (2007) Chem Soc Rev 36:348CrossRefGoogle Scholar
  50. 50.
    Yano M, Tong CC, Light ME, Schmidtchen FP, Gale PA (2010) Org Biomol Chem 8:4356CrossRefGoogle Scholar
  51. 51.
    Shinkai S, Nakaji T, Ogawa T, Shigematsu K, Manabe O (1981) J Am Chem Soc 103:111CrossRefGoogle Scholar
  52. 52.
    Wang Y, Bie F, Jiang H (2010) Org Lett 12:3630CrossRefGoogle Scholar
  53. 53.
    Khan A, Kaiser C, Hecht S (2006) Angew Chem Int Ed 45:1878CrossRefGoogle Scholar
  54. 54.
    Hua Y, Flood AH (2010) J Am Chem Soc 132:12838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations