Triazole-Based Polymer Gels

Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 28)

Abstract

This chapter summarizes the recent progress of the chemistry of triazole-based polymer gels from 2000 to present. Based on the gelation mechanism, the gels are classified into reversible physical and irreversible chemical gels. The design principles of these gel systems were examined, and the various driving forces for gelation, such as hydrogen bonding, π–π stacking interaction, hydrophobic effect, covalent linkage, and metal coordination, were described. Structural factors that affect the swelling ability of such gels and their applications in controlled drug release were revealed. The advantages and drawbacks of using CuAAC chemistry to create such gelating systems, as compared to other conventional synthetic methodologies, were also discussed.

Keywords

1,2,3-Triazole Click chemistry Controlled release Polymer gels 

Notes

Acknowledgment

We thank the Research Grants Council, HKSAR, for the financial support (Project Number: 400810).

References

  1. 1.
    Finley KT (1980) Triazoles: 1,2,3. In: Montgomery JA (ed) The chemistry of heterocyclic compounds, vol 39. Wiley, New YorkGoogle Scholar
  2. 2.
    Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkenes to azides. J Org Chem 67:3057–3064CrossRefGoogle Scholar
  3. 3.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRefGoogle Scholar
  4. 4.
    Binder WH, Kluger C (2006) Azide/alkyne-“click” reactions: applications in material science and organic synthesis. Curr Org Chem 10:1791–1815CrossRefGoogle Scholar
  5. 5.
    Lutz JF (2007) 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025CrossRefGoogle Scholar
  6. 6.
    Voit B (2007) The potential of cycloaddition reactions in the synthesis of dendritic polymers. New J Chem 31:1139–1151CrossRefGoogle Scholar
  7. 7.
    Nandivada H, Jiang X, Lahann J (2007) Click chemistry: versatility and control in the hands of materials scientists. Adv Mater 19:2197–2208CrossRefGoogle Scholar
  8. 8.
    Golas PL, Matyjaszewski K (2007) Click chemistry and ATRP: a beneficial union for the preparation of functional materials. QSAR Comb Sci 26:1116–1134CrossRefGoogle Scholar
  9. 9.
    Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 36:1369–1380CrossRefGoogle Scholar
  10. 10.
    Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRefGoogle Scholar
  11. 11.
    Binder WH, Sachsenhofer R (2008) ‘Click’ chemistry in polymer and material science: an update. Macromol Rapid Commun 29:952–981CrossRefGoogle Scholar
  12. 12.
    Lundberg P, Hawker CJ, Hult A, Malkoch M (2008) Click assisted one-pot multi-step reactions in polymer science: accelerated synthetic protocols. Macromol Rapid Commun 29:998–1015CrossRefGoogle Scholar
  13. 13.
    Meldal M (2008) Polymer “clicking” by CuAAC reactions. Macromol Rapid Commun 29:1016–1051CrossRefGoogle Scholar
  14. 14.
    Johnson JA, Finn MG, Koberstein JT, Turro NJ (2008) Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry. Macromol Rapid Commun 29:1052–1072CrossRefGoogle Scholar
  15. 15.
    Carlmark A, Hawker C, Hult A, Malkoch M (2009) New methodologies in the construction of dendritic materials. Chem Soc Rev 38:352–362CrossRefGoogle Scholar
  16. 16.
    Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev 109:5620–5686CrossRefGoogle Scholar
  17. 17.
    Billiet L, Fournier D, Du Prez F (2009) Step-growth polymerization and ‘click’ chemistry: the oldest polymers rejuvenated. Polymer 50:3877–3886CrossRefGoogle Scholar
  18. 18.
    Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39:1338–1354CrossRefGoogle Scholar
  19. 19.
    Dondoni A (2007) Triazoles: the keystone in glycosylated molecular architectures constructed by a click reaction. Chem Asian J 2:700–708CrossRefGoogle Scholar
  20. 20.
    Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev 36:1674–1689CrossRefGoogle Scholar
  21. 21.
    Pieters RJ, Rijkers DTS, Liskamp RMJ (2007) Application of the 1,3-dipolar cycloaddition reaction in chemical biology: approaches toward multivalent carbohydrates and peptides and peptide-based polymers. QSAR Comb Sci 26:1181–1190CrossRefGoogle Scholar
  22. 22.
    Dirks AJ, Cornelissen JJLM, van Delft FL, van Hest JCM, Nolte RMJ, Rowan AE, Rutjes FPJT (2007) From (bio)molecules to biohybrid materials with the click chemistry approach. QSAR Comb Sci 26:1200–1210CrossRefGoogle Scholar
  23. 23.
    Le Droumaguet B, Velonia K (2008) Click chemistry: a powerful tool to create polymer-based macromolecular chimeras. Macromol Rapid Commun 29:1073–1089CrossRefGoogle Scholar
  24. 24.
    Gramlich PME, Wirges CT, Manetto A, Carell T (2008) Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed 47:8350–8358CrossRefGoogle Scholar
  25. 25.
    Santoyo-Gonzalez F, Hernandez-Mateo F (2009) Silica-based clicked hybrid glyco materials. Chem Soc Rev 38:3449–3462CrossRefGoogle Scholar
  26. 26.
    Amblard F, Cho JH, Schinazi RF (2009) Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide and oligonucleotide chemistry. Chem Rev 109:4207–4220CrossRefGoogle Scholar
  27. 27.
    van Dijk M, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink WE (2009) Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem 20:2001–2016CrossRefGoogle Scholar
  28. 28.
    Chow HF, Lau KN, Ke Z, Liang Y, Lo CM (2010) Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles. Chem Commun 46:3437–3453CrossRefGoogle Scholar
  29. 29.
    Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97:3133–3160CrossRefGoogle Scholar
  30. 30.
    van Esch JH, Feringa BL (2000) New functional materials based on self-assembling organogels: from serendipity towards design. Angew Chem Int Ed 39:2263–2266CrossRefGoogle Scholar
  31. 31.
    Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1217CrossRefGoogle Scholar
  32. 32.
    Fages F (ed) (2005) Low molecular mass gelators: design, self-assembly, function. In: Topics in current chemistry, vol 256. Springer, BerlinGoogle Scholar
  33. 33.
    Sangeetha NM, Maitra U (2005) Supramolecular gels: Functions and uses. Chem Soc Rev 34:821–836CrossRefGoogle Scholar
  34. 34.
    de Loos M, Feringa BL, van Esch JH (2005) Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem 3615–3631Google Scholar
  35. 35.
    Weiss RG, Terech P (eds) (2006) Molecular gels. Materials with self-assembled fibrillar networks. Springer, DordrechtGoogle Scholar
  36. 36.
    Dastidar P (2008) Suparmolecular gelling agents: can they be designed? Chem Soc Rev 37:2699–2715CrossRefGoogle Scholar
  37. 37.
    Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39:455–463CrossRefGoogle Scholar
  38. 38.
    Díaz DD, Rajagopal K, Strable E, Schneider J, Finn MG (2006) “Click” chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 128:6056–6057CrossRefGoogle Scholar
  39. 39.
    Díaz DD, Tellado JJM, Velázquez DG, Ravelo AG (2008) Polymer thermoreversible gels from organogelators enabled by ‘click’ chemistry. Tetrahedron Lett 49:1340–1343CrossRefGoogle Scholar
  40. 40.
    Díaz DD, Cid JJ, Vázquez P, Torres T (2008) Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry. Chem Eur J 14:9261–9273CrossRefGoogle Scholar
  41. 41.
    Binder WH, Petraru L, Roth T, Groh PW, Pálfi V, Keki S, Ivan B (2007) Magnetic and temperature-sensitive release gels from supramolecular polymers. Adv Funct Mater 17:1317–1326CrossRefGoogle Scholar
  42. 42.
    Lau KN, Chow HF, Chan MC, Wong KW (2008) Dendronized polymer organogels from click chemistry: a remarkable gelation property owing to synergistic function-group binding and dendritic size effects. Angew Chem Int Ed 47:6912–6916CrossRefGoogle Scholar
  43. 43.
    Chow HF, Lau KN, Chan MC (2011) Click dendronized poly(amide–triazole)s: effect of dendron size and polymer backbone symmetry on self assembling and gelation properties. Chem Eur J. 17:8395–8403Google Scholar
  44. 44.
    Schlüter AD (2005) A covalent chemistry approach to giant macromolecules with cylindrical shape and an engineerable interior and surface. Top Curr Chem 245:151–191Google Scholar
  45. 45.
    Chen Y, Pang XH, Dong CM (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater 20:579–586CrossRefGoogle Scholar
  46. 46.
    Reinicke S, Schmalz H (2011) Combination of living anionic polymerization and ATRP via “click” chemistry as a versatile route to multiple responsive triblock terpolymers and corresponding hydrogels. Colloid Polym Sci 289:497–512CrossRefGoogle Scholar
  47. 47.
    Ossipov DA, Hilborn J (2006) Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39:1709–1718CrossRefGoogle Scholar
  48. 48.
    Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ (2006) Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun 2774–2776Google Scholar
  49. 49.
    Xu XD, Chen CS, Wang ZC, Wang GR, Cheng SX, Zhang XZ, Zhuo RX (2008) “Click” chemistry for in situ formation of thermoresponsive p(NIPAAm-co-HEMA)-based hydrogels. J Polym Sci Polym Chem 46:5263–5277CrossRefGoogle Scholar
  50. 50.
    Xu XD, Chen CS, Lu B, Wang ZC, Cheng SX, Zhang XZ, Zhuo RX (2009) Modular synthesis of thermosensitive p(NIPAAm-co-HEMA)-β-CD based hydrogels via click chemistry. Macromol Rapid Commun 30:157–164CrossRefGoogle Scholar
  51. 51.
    Clark M, Kiser P (2009) In situ crosslinked hydrogels formed using Cu(I)-free Huisgen cycloaddition reaction. Polym Int 58:1190–1195CrossRefGoogle Scholar
  52. 52.
    Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R (2007) Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules 8:1844–1850CrossRefGoogle Scholar
  53. 53.
    Testa G, Di Meo C, Nardecchia S, Capitani D, Mannina L, Lamanna R, Barbetta A, Dentini M (2009) Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid. Int J Pharm 378:86–92CrossRefGoogle Scholar
  54. 54.
    Polizzotti BD, Fairbanks BD, Anseth KS (2008) Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules 9:1084–1087CrossRefGoogle Scholar
  55. 55.
    Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573CrossRefGoogle Scholar
  56. 56.
    DeForest CA, Sims EA, Anseth KS (2010) Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem Mater 22:4783–4790CrossRefGoogle Scholar
  57. 57.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA 104:16793–16797CrossRefGoogle Scholar
  58. 58.
    Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc 130:11486–11493CrossRefGoogle Scholar
  59. 59.
    Altin H, Kosif I, Sanyal R (2010) Fabrication of “clickable” hydrogels via dendron–polymer conjugates. Macromolecules 43:3801–3808CrossRefGoogle Scholar
  60. 60.
    De Geest BG, Van Camp W, Du Prez FE, De Smedt SC, Demeester J, Hennink WE (2008) Biodegradable microcapsules designed via ‘click’ chemistry. Chem Commun 190–192Google Scholar
  61. 61.
    Zednik J, Riva R, Lussis P, Jérôme C, Jérôme R, Lecomte P (2008) pH-Responsive biodegradable amphiphilic networks. Polymer 49:697–702CrossRefGoogle Scholar
  62. 62.
    Liu SQ, Ee PLR, Ke CY, Hedrick JL, Yang YY (2009) Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials 30:1453–1461CrossRefGoogle Scholar
  63. 63.
    Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497CrossRefGoogle Scholar
  64. 64.
    van Dijk M, van Nostrum CF, Hennink WE, Rijkers DTS, Liskamp RMJ (2010) Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry. Biomacromolecules 11:1608–1614CrossRefGoogle Scholar
  65. 65.
    Yang J, Jacobsen MT, Pan H, Kopeček J (2010) Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels. Macromol Biosci 10:445–454CrossRefGoogle Scholar
  66. 66.
    Antoni P, Hed Y, Nordberg A, Nyström D, von Holst H, Hult A, Malkoch M (2009) Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angew Chem Int Ed 48:2126–2130CrossRefGoogle Scholar
  67. 67.
    Xia Y, Verduzco R, Grubbs RH, Kornfield JA (2008) Well-defined liquid crystal gels from telechelic polymers. J Am Chem Soc 130:1735–1740CrossRefGoogle Scholar
  68. 68.
    Meudtner RM, Hecht S (2008) Responsive backbones based on alternating triazole-pyridine/benzene copolymers: from helically folding polymers to metallosupramolecularly crosslinked gels. Macromol Rapid Commun 29:347–351CrossRefGoogle Scholar
  69. 69.
    Meudtner RM, Ostermeier M, Goddard R, Limberg C, Hecht S (2007) Multifunctional “clickates” as versatile extended heteroaromatic building block: efficient synthesis via click chemistry, conformational preferences, and metal coordination. Chem Eur J 13:9834–9840CrossRefGoogle Scholar
  70. 70.
    Johnson JA, Lewis DR, Díaz DD, Finn MG, Koberstein JT, Turro NJ (2006) Synthesis of degradable model networks via ATRP and click chemistry. J Am Chem Soc 128:6564–6565CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Center of Novel Functional Molecules, and Institute of Molecular Functional Materials, AoE SchemeThe Chinese University of Hong KongShatinHong Kong, SAR
  2. 2.School of Science and TechnologyThe Open University of Hong KongHomantin, KowloonHong Kong, SAR

Personalised recommendations