Skip to main content

[4+2] Cycloaddition Reactions of Indole Derivatives

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 26))

Abstract

A review with 141 references on [4+2] cycloaddition reactions involving the indole nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For additional examples, see [127].

References

  1. Juhl M, Tanner D (2009) Recent applications of intramolecular Diels–Alder reactions to natural product synthesis. Chem Soc Rev 38:2983–2992

    CAS  Google Scholar 

  2. Tadano K-i (2009) Natural product synthesis featuring intramolecular Diels–Alder approaches – Total Syntheses of tubelactomicins and spiculoic acid A. Eur J Org Chem 4381–4394

    Google Scholar 

  3. Hassfeld J, Kalesse M et al (2005) Asymmetric total synthesis of complex marine natural products. Adv Biochem Eng Biotechnol 97:133–203

    CAS  Google Scholar 

  4. Takao K, Munakata R et al (2005) Recent advances in natural product synthesis by using intramolecular Diels–Alder reactions. Chem Rev (Washington, DC) 105:4779–4807

    CAS  Google Scholar 

  5. Tietze LF, Rackelmann N (2004) Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl Chem 76:1967–1983

    CAS  Google Scholar 

  6. Suzuki Y, Murata T et al (2002) The intramolecular Diels–Alder strategy: applications to total synthesis of natural products. Yuki Gosei Kagaku Kyokaishi 60:679–690

    CAS  Google Scholar 

  7. Nicolaou KC, Snyder SA et al (2002) The Diels–Alder reaction in total synthesis. Angew Chem Int Ed 41:1668–1698

    CAS  Google Scholar 

  8. Helmchen G, Goeke A et al (1991) Cyclopentanoid natural products via asymmetric Diels–Alder reactions. Stud Nat Prod Chem 8:139–158

    CAS  Google Scholar 

  9. Lee L, Snyder JK (1999) Indole as a dienophile in inverse electron demand Diels–Alder and related reactions. Adv Cycloaddit 6:119–171

    CAS  Google Scholar 

  10. Boger DL (1996) Azadiene Diels–Alder reactions: scope and applications. Total synthesis of natural and ent-fredericamycin A. J Heterocycl Chem 33:1519–1531

    CAS  Google Scholar 

  11. Boger DL, Patel M (1989) Recent applications of the inverse electron demand Diels–Alder reaction. Prog Heterocycl Chem 1:30–64

    CAS  Google Scholar 

  12. Boger DL, Panek JS et al (1992) Preparation and Diels–Alder reaction of a reactive, electron-deficient heterocyclic azadiene: dimethyl 1, 2, 4, 5-tetrazine-3, 6-dicarboxylate. 1, 2-Diazine (dimethyl 4-phenyl-1, 2-diazine-3, 6-dicarboxylate) and pyrrole (dimethyl 3-phenylpyrrole-2, 5-dicarboxylate) introduction. Organic Synth 70:335

    Google Scholar 

  13. Gonzalez JC, Lobo-Antunes J et al (2002) Synthesis of angular pyrrolocoumarins. Synthesis 475–478

    Google Scholar 

  14. Helliwell M, Corden S et al (2007) 5, 7-Diacetyl-13-benzyl-7, 8-dihydro-5H, 8aH, 13H-diindolo[2, 3-c;2, 3-d]pyrimidin-8-yl acetate, the result of an intramolecular cycloaddition between an N-benzylindole and a 1, 2, 4, 5-tetrazine. Acta Crystallogr Sect E Struct Rep Online E63:o1993–o1995

    CAS  Google Scholar 

  15. Giomi D, Cecchi M (2002) Study on direct benzoannelations of pyrrole and indole systems by domino reactions with 4, 5-dicyanopyridazine. Tetrahedron 58:8067–8071

    CAS  Google Scholar 

  16. Haider N, Kaeferboeck J (2004) Intramolecular [4 + 2]-cycloaddition reactions of indolylalkylpyridazines: Synthesis of annulated carbazoles. Tetrahedron 60:6495–6507

    CAS  Google Scholar 

  17. Kobayashi S (2002) Catalytic enantioselective aza Diels–Alder reactions. Cycloaddit React Org Synth 187–209

    Google Scholar 

  18. Sarkar N, Banerjee A et al (2008) [4 + 2] Cycloadditions of N-alkenyl iminium ions: Structurally complex heterocycles from a three-component Diels–Alder reaction sequence. J Am Chem Soc 130:9222–9223

    CAS  Google Scholar 

  19. Noland WE, Kedrowski BL (1999) Synthesis of angular quinoid heterocycles from 2-(2-nitrovinyl)-1, 4-benzoquinone. J Org Chem 64:596–603

    CAS  Google Scholar 

  20. Blattes E, Fleury M-B et al (2004) Simultaneously electrogenerated cycloaddition partners for regiospecific inverse-electron-demand Diels–Alder reactions: a route for polyfunctionalized 1, 4-benzoxazine derivatives. J Org Chem 69:882–890

    CAS  Google Scholar 

  21. Hu Z-L, Qian W-J et al (2009) Transformation of reactive isochromenylium intermediates to stable salts and their cascade reactions with olefins. Org Lett 11:4676–4679

    CAS  Google Scholar 

  22. May JA, Zeidan RK et al (2003) Biomimetic approach to communesin B (a.k.a. nomofungin). Tetrahedron Lett 44:1203–1205

    CAS  Google Scholar 

  23. Steinhagen H, Corey EJ (1999) A convenient and versatile route to hydroquinolines by inter- and intramolecular aza-Diels–Alder pathways. Angew Chem Int Ed 38:1928–1931

    CAS  Google Scholar 

  24. Crawley SL, Funk RL (2003) A synthetic approach to nomofungin/communesin B. Org Lett 5:3169–3171

    CAS  Google Scholar 

  25. Crawley SL, Funk RL (2006) Generation of aza-ortho-xylylenes via ring opening of 2-(2-acylaminophenyl)aziridines: application in the construction of the communesin ring system. Org Lett 8:3995–3998

    CAS  Google Scholar 

  26. George JH, Adlington RM (2008) A synthetic approach to the communesins. Synlett 2093–2096

    Google Scholar 

  27. Fuchs JR, Funk RL (2004) Total synthesis of (+-)-perophoramidine. J Am Chem Soc 126:5068–5069

    CAS  Google Scholar 

  28. Menozzi C, Dalko PI et al (2006) Concise synthesis of the (+/−)-Nb-desmethyl-meso-chimonanthine. Chem Commun (Cambridge, U K). 4638–4640

    Google Scholar 

  29. Biolatto B, Kneeteman M et al (1999) Diels–Alder reactions of N-tosyl-3-nitroindole and dienamides: synthesis of intermediates of Aspidospermine alkaloids. Tetrahedron Lett 40:3343–3346

    CAS  Google Scholar 

  30. Biolatto B, Kneeteman M et al (2000) N, N-diethyl-1-tosyl-3-indoleglyoxamide as a dienophile in Diels–Alder reactions. Hyperbaric vs. thermal conditions. Molecules 5:393–395

    CAS  Google Scholar 

  31. Kishbaugh TLS, Gribble GW (2001) Diels–Alder reactions of 2- and 3-nitroindoles. A simple hydroxycarbazole synthesis. Tetrahedron Lett 42:4783–4785

    CAS  Google Scholar 

  32. Chataigner I, Panel C et al (2007) Sulfonyl vs. carbonyl group: which is the more electron-withdrawing? Chem Commun (Cambridge, UK) 3288–3290

    Google Scholar 

  33. Chataigner I, Hess E et al (2001) Activation of the dienophilicity of indoles in normal electron demand [4 + 2] cycloadditions under high pressure. Org Lett 3:515–518

    CAS  Google Scholar 

  34. Chretien A, Chataigner I et al (2003) Complete and remarkable reversal of chemoselectivity in [4 + 2] cycloadditions involving electron-poor indoles as dienophiles. Diels–Alder versus hetero-Diels–Alder processes. J Org Chem 68:7990–8002

    CAS  Google Scholar 

  35. Victoria Gomez M, Aranda AI et al (2009) Microwave-assisted reactions of nitroheterocycles with dienes. Diels–Alder and tandem hetero Diels–Alder/[3, 3] sigmatropic shift. Tetrahedron 65:5328–5336

    CAS  Google Scholar 

  36. Lynch SM, Bur SK et al (2002) Intramolecular amidofuran cycloadditions across an indole p-Bond: an efficient approach to the aspidosperma and strychnos ABCE core. Org Lett 4:4643–4645

    CAS  Google Scholar 

  37. Zhang H, Boonsombat J et al (2007) Total synthesis of (+-)-strychnine via a [4 + 2]-cycloaddition/rearrangement cascade. Org Lett 9:279–282

    CAS  Google Scholar 

  38. Boonsombat J, Zhang H et al (2008) A general synthetic entry to the pentacyclic strychnos alkaloid family, using a [4 + 2]-cycloaddition/rearrangement cascade sequence. J Org Chem 73:3539–3550

    CAS  Google Scholar 

  39. Steinhardt SE, Vanderwal CD (2009) Complex polycyclic lactams from pericyclic cascade reactions of Zincke aldehydes. J Am Chem Soc 131:7546–7547

    CAS  Google Scholar 

  40. Steinhardt SE, Silverston JS et al (2008) Stereocontrolled synthesis of Z-dienes via an unexpected pericyclic cascade rearrangement of 5-amino-2, 4-pentadienals. J Am Chem Soc 130:7560–7561

    CAS  Google Scholar 

  41. Sissouma D, Maingot L et al (2006) Concise and efficient synthesis of calothrixin B. J Org Chem 71:8384–8389

    CAS  Google Scholar 

  42. Poumaroux A, Bouaziz Z et al (1997) Regiospecific hetero Diels–Alder synthesis of pyrido[2, 3-b]- and pyrido[3, 2-b]carbazole-5, 11-diones. Heterocycles 45:585–596

    CAS  Google Scholar 

  43. Poumaroux A, Bouaziz Z et al (1999) Regiospecific synthesis of pyrido[3, 4-b]- and pyrido[4, 3-b]carbazole-5, 11-dione derivatives. Evaluation of their in vitro antifungal or antiprotozoological activities. Chem Pharm Bull 47:643–646

    CAS  Google Scholar 

  44. Carr G, Chung MKW et al (2008) Synthesis of indoleamine 2, 3-dioxygenase inhibitory analogues of the sponge alkaloid exiguamine A. J Med Chem 51:2634–2637

    CAS  Google Scholar 

  45. Tapia RA, Prieto Y et al (2003) Synthesis and antiprotozoal evaluation of benzothiazolopyrroloquinoxalinones, analogues of kuanoniamine A. Bioorg Med Chem 11:3407–3412

    CAS  Google Scholar 

  46. Tapia RA, Prieto Y et al (2002) Synthesis and antileishmanial activity of indoloquinones containing a fused benzothiazole ring. Eur J Org Chem 4005–4010

    Google Scholar 

  47. Bouaziz Z, Gherardi A et al (2002) Synthesis of carbazolequinone derivatives as inhibitors of Toxoplasma gondii purine nucleoside phosphorylase. Eur J Org Chem 1834–1838

    Google Scholar 

  48. Beneteau V, Besson T (2001) Synthesis of novel pentacyclic pyrrolothiazolobenzoquinolinones, analogs of natural marine alkaloids. Tetrahedron Lett 42:2673–2676

    CAS  Google Scholar 

  49. Weeratunga G, Prasad GKB et al (1990) Regioselective Diels–Alder reactions of N-cyanoindole-4, 7-diones: elaboration of the A-ring of the kinamycins on a BC ring template. Tetrahedron Lett 31:5713–5716

    CAS  Google Scholar 

  50. Andersen R, Leblanc M et al (2008) Syntheses of substituted tryptophan quinones as inhibitors of indoleamine 2,3-dioxygenase (IDO). WO2008052352

    Google Scholar 

  51. Chernov SV, Shults EE et al (2000) Synthetic transformations of higher terpenoids. V. 2-Methyl-4, 5-dioxo-3-ethoxycarbonyl-4, 5-dihydroindole, a new dienophile. Synthesis of indoloterpenes from levopimaric acid. Russ J Org Chem 36:1623–1633

    CAS  Google Scholar 

  52. Cai P, Snyder JK (1990) Preparation, reactivity, and neurotoxicity of tryptamine-4, 5-dione. Tetrahedron Lett 31:969–972

    CAS  Google Scholar 

  53. Buszek KR, Luo D et al (2007) Indole-derived arynes and their Diels–Alder reactivity with furans. Org Lett 9:4135–4137

    CAS  Google Scholar 

  54. Brown N, Luo D et al (2009) Regioselective Diels–Alder cycloadditions and other reactions of 4, 5-, 5, 6-, and 6, 7-indole arynes. Tetrahedron Lett 50:63–65

    CAS  Google Scholar 

  55. Buszek KR, Brown N et al (2009) Concise total synthesis of (+-)-cis-trikentrin A and (+-)-herbindole A via intermolecular indole aryne cycloaddition. Org Lett 11:201–204

    CAS  Google Scholar 

  56. Brown N, Luo D et al (2009) New synthesis of (+-)-cis-trikentrin A via tandem indole aryne cycloaddition/Negishi reaction. Applications to library development. Tetrahedron Lett 50:7113–7115

    CAS  Google Scholar 

  57. Bronner SM, Bahnck KB et al (2009) Indolynes as electrophilic indole surrogates: fundamental reactivity and synthetic applications. Org Lett 11:1007–1010

    CAS  Google Scholar 

  58. Pindur U (1988) New Diels–Alder reactions with vinylindoles. A regio- and stereocontrolled access to annellated indoles and derivatives. Heterocycles 27:1253–1268

    CAS  Google Scholar 

  59. Pindur U (1995) Cycloaddition reactions of indole derivatives. Adv Nitrogen Heterocycl 1:121–172

    CAS  Google Scholar 

  60. Eitel M, Pindur U (1990) Reactions of 2-vinylindoles with carbodienophiles: synthetic and mechanistic aspects. J Org Chem 55:5368–5374

    CAS  Google Scholar 

  61. Abbiati G, Canevari V et al (2007) Diels–Alder reactions of 2-vinylindoles with open-chain C=C dienophiles. Eur J Org Chem 517–525

    Google Scholar 

  62. Back TG, Bethell RJ et al (2001) Preparation of vinylogous 2-sulfonylindolines by the palladium-catalyzed heteroannulation of o-iodoanilines with dienyl sulfones and their further transformation to indoles and carbazoles. J Org Chem 66:8599–8605

    CAS  Google Scholar 

  63. Back TG, Pandyra A et al (2003) Regiochemical switching in Diels–Alder cycloadditions by change in oxidation state of removable diene sulfur substituents. Synthesis of carbazoles by sequential heteroannulation and Diels–Alder cycloaddition. J Org Chem 68:3299–3302

    CAS  Google Scholar 

  64. Wilkens J, Kuehling A et al (1987) Hetero-cope rearrangements. VI. short and stereoselective synthesis of 2-vinylindoles by a tandem-process. Tetrahedron 43:3237–3246

    CAS  Google Scholar 

  65. Blechert S, Knier R et al (1995) Domino reactions – new concepts in the synthesis of indole alkaloids and other polycyclic indole derivatives. Synthesis 592–604

    Google Scholar 

  66. Cavdar H, Saracoglu N (2006) Synthesis of new 2-vinylation products of indole via a Michael-type addition reaction with dimethyl acetylenedicarboxylate and their Diels–Alder reactivity as precursors of new carbazoles. J Org Chem 71:7793–7799

    CAS  Google Scholar 

  67. McCort G, Duclos O et al (1999) A versatile new synthesis of 4-aryl- and heteroaryl-[3, 4-c]pyrrolocarbazoles by [4+2] cycloaddition followed by palladium catalyzed cross coupling. Tetrahedron Lett 40:6211–6215

    CAS  Google Scholar 

  68. Marques MMB, Lobo AM et al (1999) A Diels–Alder, retro-Diels–Alder approach to arcyriaflavin-A. Tetrahedron Lett 40:3795–3796

    CAS  Google Scholar 

  69. Barry JF, Wallace TW et al (1995) On the [4 + 2] cycloaddition approach to indolo[2, 3-a]carbazoles. Tetrahedron 51:12797–12806

    CAS  Google Scholar 

  70. Kuethe JT, Davies IW (2004) Formal [4+2] cycloaddition reactions of N-sulfonyl-2, 2'-biindoles: synthesis of indolo[2, 3-a]carbazoles and indigo azines. Tetrahedron Lett 45:4009–4012

    CAS  Google Scholar 

  71. Kuehne ME, Roland DM et al (1978) Studies in biomimetic alkaloid syntheses. 2. Synthesis of vincadifformine from tetrahydro-b-carboline through a secodine intermediate. J Org Chem 43:3705–3710

    CAS  Google Scholar 

  72. Overman LE, Sworin M (1985) Recent advances in the total synthesis of pentacyclic Aspidosperma alkaloids. Alkaloids: Chem Biol Perspect 3:275–307

    CAS  Google Scholar 

  73. Kalaus G, Vago I et al (1995) Synthesis of vinca alkaloids and related compounds. 776. Synthesis and ring transformations of compounds with the aspidospermane- and D-noraspidospermane skeleton. A formal synthesis of (+-)-12-demethoxy-N(1)-acetylcylindrocarine. Nat Prod Lett 7:197–204

    CAS  Google Scholar 

  74. Pegram JJ, Anderson CB (1988) Synthesis of 1-benzyldimethylsilyl-4-phenylthio-1, 3-butadiene. New diene-regenerable Diels–Alder synthon. Tetrahedron Lett 29:6719–6720

    CAS  Google Scholar 

  75. Kalaus G, Juhasz I et al (1997) Synthesis of vinca alkaloids and related compounds. 90. New results in the synthesis of alkaloids with the aspidospermane skeleton. First total synthesis of (+-)-3-oxominovincine. J Org Chem 62:9188–9191

    CAS  Google Scholar 

  76. Kalaus G, Leder L et al (2003) Synthesis of vinca alkaloids and related compounds. Part 102. Simple synthesis and ring transformation of (+-)-minovincine. First synthesis of (+-)-vincaminine. Tetrahedron 59:5661–5666

    CAS  Google Scholar 

  77. Eles J, Kalaus G et al (2002) Synthesis of vinca alkaloids and related compounds. Part 101: A new convergent synthetic pathway to build up the aspidospermane skeleton. Simple synthesis of 3-oxovincadifformine and 3-oxominovincine. Attempts to produce 15b-hydroxyvincadifformine. Tetrahedron 58:8921–8927

    CAS  Google Scholar 

  78. Kalaus G, Toth F et al (2006) Synthesis of vinca alkaloids and related compounds. Part 103. Recognition of an unexpected reaction and its application in building the aspidospermane skeleton. Simple synthesis of 15b-hydroxyvincadifformine. Heterocycles 68:257–270

    CAS  Google Scholar 

  79. Kalaus G, Juhasz I et al (2000) Synthesis of vinca alkaloids and related compounds. Part 94. Epimerization of compounds with aspidospermane and D-secoaspidospermane skeleton. J Heterocycl Chem 37:245–251

    CAS  Google Scholar 

  80. Toth F, Kalaus G et al (2006) Synthesis of vinca alkaloids and related compounds. Part 105: Efficient convergent synthetic pathway to the ibophyllidine skeleton and synthesis of (+-)-19-hydroxy-ibophyllidine and (+-)-19-hydroxy-20-epiibophyllidine. Tetrahedron 62:12011–12016

    CAS  Google Scholar 

  81. Toth F, Kalaus G et al (2006) Synthesis of vinca alkaloids and related compounds. Part 106. An efficient convergent synthetic pathway to build up the ibophyllidine skeleton II. Total synthesis of (+-)-deethylibophyllidine and (+-)-14-epi-deethylibophyllidine. Heterocycles 68:2301–2317

    CAS  Google Scholar 

  82. Toth F, Kalaus G et al (2007) Synthesis of vinca alkaloids and related compounds. Part 107. An efficient convergent synthetic pathway to build up the ibophyllidine skeleton. III. Total synthesis of (+-)-ibophyllidine and (+-)-20-epiibophyllidine. Heterocycles 71:865–880

    CAS  Google Scholar 

  83. Toth F, Kalaus G et al (2007) Synthesis of vinca alkaloids and related compounds. Part 108: Efficient convergent synthetic pathway to the ibophyllidine skeleton IV. First synthesis of (+-)-18-hydroxy-20-epiibophyllidine. Tetrahedron 63:7823–7827

    CAS  Google Scholar 

  84. Toth F, Kalaus G et al (2008) Synthesis of vinca alkaloids and related compounds. Part 109. An intramolecular [4+2] cycloaddition mediated biomimetic synthesis of (+-)-iboxyphylline. Heterocycles 75:65–76

    CAS  Google Scholar 

  85. Toth F, Olah J et al (2008) Synthesis of Vinca alkaloids and related compounds. Part 110: A new synthetic method for the preparation of pandoline-type alkaloid-like molecules. Tetrahedron 64:7949–7955

    CAS  Google Scholar 

  86. Vago I, Kalaus G et al (2001) Synthesis of vinca alkaloids and related compounds. 95. Attempted build-up of the aspidospermidine skeleton by [4+2] cycloaddition. Some unexpected reactions, and formation of a new ring system. Heterocycles 55:873–880

    CAS  Google Scholar 

  87. Fayol A, Fang Y-Q et al (2006) Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction. Org Lett 8:4203–4206

    CAS  Google Scholar 

  88. Passarella D, Giardini A et al (2001) Cyclodimerization of indol-2-ylacetylenes. An example of intermolecular enyne-alkyne cycloaddition. J Chem Soc, Perkin Trans 1 127–129

    Google Scholar 

  89. Ishikura M, Uchiyama H et al (2001) Cycloaddition reaction of 2-allenylindoles with diethyl acetylenedicarboxylate under thermal and high pressure conditions. J Heterocycl Chem 38:675–678

    CAS  Google Scholar 

  90. Anisimova NA, Berkova GA et al (2006) Reaction of methyl 3-nitroacrylate with 3-(2-nitroethenyl)indole. Russ J Org Chem 42:1246–1247

    CAS  Google Scholar 

  91. Wolter M, Borm C et al (2001) Enantiopure polycycles by sequential cycloadditions. Eur J Org Chem 4051–4060

    Google Scholar 

  92. Merour J-Y, Bourlot A-S et al (1995) [4+2] versus [2+2] cycloadditions with 1-ethoxyethene and heterocyclic aldehydes; formation of vinyl compounds. Tetrahedron Lett 36:3527–3530

    CAS  Google Scholar 

  93. Le Strat F, Maddaluno J (2002) New carbanionic access to 3-vinylindoles and 3-vinylbenzofurans. Org Lett 4:2791–2793

    Google Scholar 

  94. Le Strat F, Vallette H et al (2005) Access to tri- and tetracyclic structures by thermally promoted and high-pressure-promoted [4 + 2] cycloadditions of 2-, 3- or 4-vinyl-substituted binuclear heterocycles. Eur J Org Chem 5296–5305

    Google Scholar 

  95. Pindur U, Gonzalez E et al (1997) [4+2]Cycloaddition of indole derivatives with bismaleimides: a route to new biscarbazoles. J Chem Soc, Perkin Trans 1 1861–1867

    Google Scholar 

  96. Lopez-Alvarado P, Alonso MA et al (2001) One-pot assembly of large heterocyclic quinones through three-component reactions. Tetrahedron Lett 42:7971–7974

    CAS  Google Scholar 

  97. Gharagozloo P, Miyauchi M et al (1998) Intramolecular Diels–Alder reactions of 3-(tetrahydropyridinyl)indoles: stereoselective synthesis of novel pentacyclic ring systems. J Org Chem 63:1974–1980

    CAS  Google Scholar 

  98. Desarbre E, Bergman J (1998) Synthesis of symmetric and non-symmetric indolo[2,3-c]carbazole derivatives: preparation of indolo[2,3-c]pyrrolo[3,4-a]carbazoles. J Chem Soc, Perkin Trans 1 2009–2016

    Google Scholar 

  99. Somei M, Kodama A (1992) A novel synthesis of 2, 2'-bisindole and its application for the synthesis of indolo[2, 3-a]carbazole derivatives. Heterocycles 34:1285–1288

    CAS  Google Scholar 

  100. Bleile M, Wagner T et al (2005) Synthesis of substituted pyrrolo[3, 4-a]carbazoles. Helv Chim Acta 88:2879–2891

    CAS  Google Scholar 

  101. Bleile M, Otto H-H (2005) Substituted pyrrolo[3, 4-a]carbazoles from reactions between 3-(1-methoxy-vinyl)indoles and maleimides. Monatsh Chem 136:1799–1809

    CAS  Google Scholar 

  102. Hugon B, Pfeiffer B et al (2003) Synthesis of granulatimide analogues bearing a maleimide instead of an imidazole heterocycle. Tetrahedron Lett 44:3935–3937

    CAS  Google Scholar 

  103. Henon H, Anizon F et al (2006) Synthesis of dipyrrolo[3, 4-a:3, 4-c]carbazole-1, 3, 4, 6-tetraones bearing a sugar moiety. Tetrahedron 62:1116–1123

    CAS  Google Scholar 

  104. Joseph B, Facompre M et al (2001) Synthesis, cytotoxicity, DNA interaction and topoisomerase II inhibition properties of tetrahydropyrrolo[3, 4-a]carbazole-1, 3-dione and tetrahydropyrido-[3, 2-b]pyrrolo[3, 4-g]indole-1, 3-dione derivatives. Bioorg Med Chem 9:1533–1541

    CAS  Google Scholar 

  105. Markgraf JH, Synder SA et al (1998) A concise route to isocanthin-6-one. Tetrahedron Lett 39:1111–1112

    CAS  Google Scholar 

  106. Snyder SA, Vosburg DA et al (2000) Intramolecular hetero Diels–Alder routes to g-carboline alkaloids. Tetrahedron 56:5329–5335

    CAS  Google Scholar 

  107. Markgraf JH, Finkelstein M et al (1996) Canthine analogs via intramolecular Diels–Alder reactions. Tetrahedron 52:461–470

    CAS  Google Scholar 

  108. Grieco PA, Kaufman MD (1999) Intramolecular imino Diels–Alder reaction of a 3-vinyl indole: application to a total synthesis of (+-)-eburnamonine. J Org Chem 64:7586–7593

    CAS  Google Scholar 

  109. Rosillo M, Dominguez G et al (2004) Tandem enyne metathesis-Diels–Alder reaction for construction of natural product frameworks. J Org Chem 69:2084–2093

    CAS  Google Scholar 

  110. Chataigner I, Piettre SR (2007) Multicomponent domino [4+2]/[3+2] cycloadditions of nitroheteroaromatics: an efficient synthesis of fused nitrogenated polycycles. Org Lett 9:4159–4162

    CAS  Google Scholar 

  111. Knoelker H-J (1995) Transition metal-mediated synthesis of carbazole derivatives. Adv Nitrogen Heterocycl 1:173–204

    CAS  Google Scholar 

  112. Pindur U, Erfanian-Abdoust H (1989) Indolo-2, 3-quinodimethanes and stable cyclic analogs for regio- and stereocontrolled syntheses of [b]-annelated indoles. Chem Rev 89:1681–1689

    CAS  Google Scholar 

  113. Collier SJ, Storr RC (1998) Heterocyclic ortho-quinodimethanes. Prog Heterocycl Chem 10:25–48

    CAS  Google Scholar 

  114. Terzidis M, Tsoleridis CA et al (2005) Chromone-3-carboxaldehydes in Diels–Alder reactions with indole-ortho-quinodimethane. Synthesis of tetrahydrochromeno[2, 3-b]carbazoles. Tetrahedron Lett 46:7239–7242

    CAS  Google Scholar 

  115. Terzidis MA, Tsoleridis CA et al (2008) Synthesis of chromeno[2,3-b]carbazole and chromeno[3,2-f]indazole derivatives. A new class of indole- and pyrazole-fused polycyclic compounds using o-quinodimethane chemistry. A reactivity and regioselectivity computational study. ARKIVOC 132–157

    Google Scholar 

  116. Tsoleridis CA, Dimtsas J et al (2006) Reactivity and regioselectivity in the synthesis of spiroindoles via indole o-quinodimethanes. An experimental and computational study. Tetrahedron 62:4232–4242

    CAS  Google Scholar 

  117. Diker K, De Maindreville MD et al (1999) Synthesis and resolution of a C2-symmetrical indolo-2, 3-quinodimethane dimer. Tetrahedron Lett 40:7459–7462

    CAS  Google Scholar 

  118. Diker K, De Maindreville MD et al (1999) The gramine route to the Diels–Alder adducts of indolo-2, 3-quinodimethanes. Tetrahedron Lett 40:7463–7467

    CAS  Google Scholar 

  119. Rao MVB, Satyanarayana J et al (1995) Anionic [4 + 2] cycloaddition reactions of indole-2, 3-dienolate with dienophiles: a facile regiospecific route to substituted carbazoles. Tetrahedron Lett 36:3385–3388

    CAS  Google Scholar 

  120. Laronze M, Sapi J (2002) 3-Cyanomethyl-2-vinylindoles as thermal indole-2, 3-quinodimethane equivalents: synthesis of functionalized 1, 2, 3, 4-tetrahydrocarbazoles. Tetrahedron Lett 43:7925–7928

    CAS  Google Scholar 

  121. Fuwa H, Sasaki M (2007) A new method for the generation of indole-2,3-quinodimethanes and 2-(N-alkoxycarbonylamino)-1,3-dienes. Intramolecular Heck/Diels–Alder cycloaddition cascade starting from acyclic a-phosphoryloxy enecarbamates. Chem Commun 2876–2878

    Google Scholar 

  122. Kuroda N, Takahashi Y et al (2006) A novel generation of indole-2, 3-quinodimethanes. Org Lett 8:1843–1845

    CAS  Google Scholar 

  123. Inagaki F, Mizutani M et al (2009) Generation of N-(tert-Butoxycarbonyl)indole-2, 3-quinodimethane and Its [4+2]-Type Cycloaddition. J Org Chem 74:6402–6405

    CAS  Google Scholar 

  124. Royer D, Wong Y-S et al (2008) Diastereodivergence and appendage diversity in the multicomponent synthesis of aryl-pyrrolo-tetrahydrocarbazoles. Tetrahedron 64:9607–9618

    CAS  Google Scholar 

  125. Cochard F, Laronze M et al (2004) Synthesis of carbazoles by a balanced four-component condensation. Tetrahedron Lett 45:1703–1707

    CAS  Google Scholar 

  126. Gribble GW (2003) Novel chemistry of indole in the synthesis of heterocycles. Pure Appl Chem 75:1417–1432

    CAS  Google Scholar 

  127. Gribble GW, Saulnier MG et al (2005) Novel indole chemistry in the synthesis of heterocycles. Curr Org Chem 9:1493–1519

    CAS  Google Scholar 

  128. Gribble GW, Keavy DJ et al (1992) Syntheses and Diels–Alder cycloaddition reactions of 4H-furo[3, 4-b]indoles. A regiospecific Diels–Alder synthesis of ellipticine. J Org Chem 57:5878–5891

    CAS  Google Scholar 

  129. Diaz MT, Cobas A, et al (1998) Polar control of the regioselectivity of hetaryne cycloadditions. Synthesis of ellipticine. Synlett. 157.

    Google Scholar 

  130. Kappe CO, Padwa A (1996) A facile and efficient synthesis of thieno[2, 3-c]furans and furo[3, 4-b]indoles via a Pummerer-induced cyclization reaction. J Org Chem 61:6166–6174

    CAS  Google Scholar 

  131. Zhang J, Zhang Y et al (2006) Coupling of N-heterocycle-fused enyne aldehydes with g, d-unsaturated Fischer carbene complexes. Organometallics 25:1279–1284

    CAS  Google Scholar 

  132. Jeevanandam A, Srinivasan PC (1995) Synthesis and cycloaddition of 2,4-dihydropyrrolo[3,4-b]indoles. J Chem Soc, Perkin Trans 1 2663–2665

    Google Scholar 

  133. Diaz M, Cobas A et al (2001) Synthesis of ellipticine by hetaryne cycloadditions – control of regioselectivity. Eur J Org Chem 4543–4549

    Google Scholar 

  134. Van Broeck PI, Van Doren PE, et al (1992) Diels–Alder reactions of pyrano[3,4-b]indol-3-ones and a 2-benzopyran-3-one with hetero substituted olefins: generation of carbazole and naphthalene derivatives by elimination instead of dehydrogenation. J Chem Soc, Perkin Trans 1 415–419

    Google Scholar 

  135. Bates RW, Pratt AJ et al (1998) Diels–Alder reactions of 1, 1-bis(methylthio)ethene with pyran-2-ones. Aust J Chem 51:383–387

    CAS  Google Scholar 

  136. Haider N, Kaferbock J et al (1999) Diels–Alder reaction of pyrano[3, 4-b]indolones with an electron-deficient pyridazinone: a new pathway to carbazole-fused pyridazines. Heterocycles 51:2703–2710

    CAS  Google Scholar 

  137. Chou TS, Tso HH (1989) Use of substituted 3-sulfolenes as precursors for 1, 3-butadienes. Org Prep Proced Int 21:257–296

    CAS  Google Scholar 

  138. Ko C-W, Chou T-s (1998) Preparation and reactions of benzofurano-, indolo-, and benzothieno-3-sulfolenes. J Org Chem 63:4645–4653

    CAS  Google Scholar 

  139. Kinsman AC, Snieckus V (1999) Directed ortho metalation-cross coupling route to indolo-4, 5-quinodimethanes. Synthesis of benz[e]indoles. Tetrahedron Lett 40:2453–2456

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Berthel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kester, R.F., Berthel, S.J., Firooznia, F. (2010). [4+2] Cycloaddition Reactions of Indole Derivatives. In: Gribble, G. (eds) Heterocyclic Scaffolds II:. Topics in Heterocyclic Chemistry, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_55

Download citation

Publish with us

Policies and ethics