Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

  • Brett M. Rambo
  • Eric S. Silver
  • Christopher W. BielawskiEmail author
  • Jonathan L. SesslerEmail author
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 24)


This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through noncovalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymeric materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous media. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions.


Anion complexation Molecular receptors Polymers Sensing 





Adenosine triphosphate


Bovine serum albumin


Cetyltriethylammonium bromide


Cyclic voltammetry








Differential pulse voltammetry


Excited-state intramolecular proton transfer


Guanosine monophosphate


Gel permeation chromatography


(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid


Ionic liquid


Intermolecular-proton transfer


Ion-selective electrode








Nuclear magnetic resonance


Principal component analysis


Polydispersity index


Photo-induced electron transfer


Plasma-like aqueous solution


Poly(methyl methacrylate)




Polyvinyl chloride




Standard calomel electrode









This work was supported by the National Institute of Health (grant GM 58907 to J.L.S.) and the Robert A. Welch Foundation (grants F-1018 and F-1621 to J.L.S. and C.W.B., respectively).


  1. 1.
    Staudinger H (1920) Ber Dtsch Chem Ges 53B:1073–1085Google Scholar
  2. 2.
    Staudinger H (1924) Ber Dtsch Chem Ges 57B:1203–1208Google Scholar
  3. 3.
    Carothers WH, Coffman DD (1932) J Am Chem Soc 54:4071–4076CrossRefGoogle Scholar
  4. 4.
    Carothers WH (1934) J Ind Eng Chem 26:30–33CrossRefGoogle Scholar
  5. 5.
    Urry DW, Parker TM, Reid MC, Gowda DC (1991) J Bioact Compat Polym 3:263–282CrossRefGoogle Scholar
  6. 6.
    Barrera DA, Zylstra E, Lansbury PT, Langer R (1993) J Am Chem Soc 115:11010–11011CrossRefGoogle Scholar
  7. 7.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Science 251:767–773CrossRefGoogle Scholar
  8. 8.
    Haab BB, Dunham MJ, Brown PO (2001) Genome Biol 2:1–13CrossRefGoogle Scholar
  9. 9.
    Lehn J-M (1985) Science 227:849–856CrossRefGoogle Scholar
  10. 10.
    Lehn J-M (2007) Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  11. 11.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071–4097CrossRefGoogle Scholar
  12. 12.
    Bouteiller L (2007) Adv Polym Sci 207:79–112CrossRefGoogle Scholar
  13. 13.
    Rieth S, Baddeley C, Badjic JD (2007) Soft Matter 3:137–154CrossRefGoogle Scholar
  14. 14.
    Shimizu LS (2007) Polym Int 56:444–452CrossRefGoogle Scholar
  15. 15.
    Fox JD, Rowan SJ (2009) Macromolecules 42:6823–6835CrossRefGoogle Scholar
  16. 16.
    Liu H, Wang S, Luo Y, Tang W, Yu G, Li L, Chen C, Liu Y, Xi F (2001) J Mater Chem 11:3063–3067CrossRefGoogle Scholar
  17. 17.
    Kim J, Mc Quade DT, McHugh SK, Swager TM (2000) Angew Chem Int Ed 39:3868–3872CrossRefGoogle Scholar
  18. 18.
    Charra B, Calemard E, Ruffet M, Chazot C, Terrat J-C, Vanel T, Laurent G (1992) Kidney Int 41:1286–1291CrossRefGoogle Scholar
  19. 19.
    Gutzwiller JP, Schneditz D, Huber AR, Schindler C, Gutzwiller F, Zehnder CE (2002) Nephrol Dial Transplant 17:1037–1044CrossRefGoogle Scholar
  20. 20.
    Carey CM, Riggan WB (1994) Anal Chem 66:3587–3591CrossRefGoogle Scholar
  21. 21.
    Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247–260CrossRefGoogle Scholar
  22. 22.
    Umezawa Y, Kataoka M, Takami W, Kimura E, Koike T, Nada H (1988) Anal Chem 60:2392–2396CrossRefGoogle Scholar
  23. 23.
    Ito T, Radecka H, Umezawa K, Kimura T, Yashiro A, Lin XM, Kataoka M, Kimura E, Sessler JL, Odashima K, Umezawa Y (1998) Anal Sci 14:89–98CrossRefGoogle Scholar
  24. 24.
    Král V, Furuta H, Shreder HK, Lynch V, Sessler JL (1996) J Am Chem Soc 118:1595–1607CrossRefGoogle Scholar
  25. 25.
    Lin XM, Umezawa K, Tohda K, Furuta H, Sessler JL, Umezawa Y (1998) Anal Sci 14:99–108CrossRefGoogle Scholar
  26. 26.
    Sessler JL, Cyr MJ, Furuta H, Kral V, Mody T, Morishima M (1993) Pure Appl Chem 65:393–398CrossRefGoogle Scholar
  27. 27.
    Shionoya M, Furuta H, Lynch V, Harriman A, Sessler JL (1992) J Am Chem Soc 114:5714–5722CrossRefGoogle Scholar
  28. 28.
    Furuta H, Cyr MJ, Sessler JL (1991) J Am Chem Soc 113:6677–6678CrossRefGoogle Scholar
  29. 29.
    Sessler JL, Morishima T, Lynch V (1991) Angew Chem Int Ed Engl 30:977–980CrossRefGoogle Scholar
  30. 30.
    Sessler JL, Weghorn SJ, Morishima T, Rosingana M, Lynch V, Lee V (1992) J Am Chem Soc 114:8306–8307CrossRefGoogle Scholar
  31. 31.
    Král V, Sessler JL, Shishkanova TV, Gale PA, Volf R (1999) J Am Chem Soc 121:8771–8775CrossRefGoogle Scholar
  32. 32.
    Gale PA, Sessler JL, Král V, Lynch V (1996) J Am Chem Soc 118:5140–5141CrossRefGoogle Scholar
  33. 33.
    Nishiyabu R, Anzenbacher P Jr (2005) J Am Chem Soc 127:8270–8271CrossRefGoogle Scholar
  34. 34.
    Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P Jr (2007) J Am Chem Soc 129:7538–7544CrossRefGoogle Scholar
  35. 35.
    Le Goff T, Braven J, Ebdon L, Scholefield D (2004) Anal Chim Acta 510:175–182CrossRefGoogle Scholar
  36. 36.
    Ebdon L, Braven J, Frampton NC (1990) Analyst 115:189–193CrossRefGoogle Scholar
  37. 37.
    Le Goff T, Braven J, Ebdon L, Scholefield D (2002) Anal Chem 74:2596CrossRefGoogle Scholar
  38. 38.
    Le Goff T, Marsh J, Braven J, Ebdon L, Scholefield D (2002) Green Chem 4:486–491CrossRefGoogle Scholar
  39. 39.
    Mi Y, Mathison S, Goines R, Logue A, Bakker E (1999) Anal Chim Acta 397:103–111CrossRefGoogle Scholar
  40. 40.
    Ho H-A, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M (2002) Angew Chem Int Ed 41:1548–1551CrossRefGoogle Scholar
  41. 41.
    Chayer M, Faïd K, Leclerc M (1997) Chem Mater 9:2902–2905CrossRefGoogle Scholar
  42. 42.
    Leclerc M (1999) Adv Mater 11:1491–1498CrossRefGoogle Scholar
  43. 43.
    Ho HA, Leclerc M (2003) J Am Chem Soc 125:4412–4413CrossRefGoogle Scholar
  44. 44.
    Zeng Q, Cai P, Li Z, Qin J, Tang BZ (2008) Chem Commun:1094–1096Google Scholar
  45. 45.
    Jin WJ, Fernández-Argüelles MT, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Chem Commun 883–885Google Scholar
  46. 46.
    Anzenbacher P Jr, Tyson DS, Jursíková K, Castellano FN (2002) J Am Chem Soc 124:6232–6233CrossRefGoogle Scholar
  47. 47.
    Zeng Q, Zhang L, Li Z, Qin J, Tang BZ (2009) Polymer 50:434–440CrossRefGoogle Scholar
  48. 48.
    Zeng Q, Lam JWY, Jim CKW, Qin A, Qin J, Li Z, Tang BZ (2008) J Polym Sci A Polym Chem 46:8070–8080CrossRefGoogle Scholar
  49. 49.
    Qu Y, Hua J, Jiang Y, Tian H (2009) J Polym Sci A 47:1544–1552CrossRefGoogle Scholar
  50. 50.
    Liu B, Tian H (2005) J Mater Chem 15:2681–2686CrossRefGoogle Scholar
  51. 51.
    Li Y, Cao LF, Tian H (2006) J Org Chem 71:8279–8282CrossRefGoogle Scholar
  52. 52.
    Kubo Y, Yamamoto M, Ikeda M, Takeuchi M, Shinkai S, Yamaguchi S, Tamao K (2003) Angew Chem Int Ed Engl 42:2036–2040CrossRefGoogle Scholar
  53. 53.
    Takakusa H, Kikuchi K, Urano Y, Sakamoto S, Yamaguchi K, Nagano T (2002) J Am Chem Soc 124:1653–1657CrossRefGoogle Scholar
  54. 54.
    Taki M, Wolfor JL, O'Halloran TV (2004) J Am Chem Soc 126:712–713CrossRefGoogle Scholar
  55. 55.
    Yang R-H, Chan W-H, Lee AWM, Xia P-F, Zhang H-K, Li K (2003) J Am Chem Soc 125:2884–2885CrossRefGoogle Scholar
  56. 56.
    Coskun A, Akkaya E (2004) Tetrahedron Lett 45:4947–4949CrossRefGoogle Scholar
  57. 57.
    Hu X, Huang J, Zhang W, Li M, Tao C, Li G (2008) Adv Mater 20:4074–4078CrossRefGoogle Scholar
  58. 58.
    Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) Chem Eur J 12:2122–2130CrossRefGoogle Scholar
  59. 59.
    Nicolas M, Fabre B, Simonet J (1999) Chem Commun:1881–1882Google Scholar
  60. 60.
    Reynes O, Bucher C, Moutet J-C, Royal G, Saint-Aman E (2004) Chem Commun:428–429Google Scholar
  61. 61.
    Bernardo AR, Stoddart JF, Kaifer AE (1992) J Am Chem Soc 114:10624–10631CrossRefGoogle Scholar
  62. 62.
    Kaledkowski A, Trochimczuk AW (2006) React Polym 66:740–746CrossRefGoogle Scholar
  63. 63.
    Kaledkowski A, Trochimczuk AW (2006) React Polym 66:957–966CrossRefGoogle Scholar
  64. 64.
    Sessler JL, An D, Cho WS, Lynch V (2003) J Am Chem Soc 125:13646–13647CrossRefGoogle Scholar
  65. 65.
    Aydogan A, Coady DJ, Lynch VM, Akar A, Marquez M, Bielawski CW, Sessler JL (2008) Chem Commun:1455–1457Google Scholar
  66. 66.
    Custelcean R, Moyer BA (2007) Eur J Inorg Chem 1321–1340Google Scholar
  67. 67.
    Pedersen CJ (1967) J Am Chem Soc 89:7017–7036CrossRefGoogle Scholar
  68. 68.
    Aydogan A, Coady DJ, Kim SK, Akar A, Bielawski CW, Marquez M, Sessler JL (2008) Angew Chem Int Ed 47:9648–9652CrossRefGoogle Scholar
  69. 69.
    Oddo B (1911) Gazz Chim Ital 41:248–255Google Scholar
  70. 70.
    Black CB, Andrioletti B, Try AC, Ruiperez C, Sessler JL (1999) J Am Chem Soc 121:10438–10439CrossRefGoogle Scholar
  71. 71.
    Sessler JL, Cho D-G, Lynch V (2006) J Am Chem Soc 128:16518–16519CrossRefGoogle Scholar
  72. 72.
    McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537CrossRefGoogle Scholar
  73. 73.
    Kim HJ, Lee JH, Kim TH, Lyoo WS, Kim DW, Lee C, Lee TS (2007) J Polym Sci A Polym Chem 45:1546–1556CrossRefGoogle Scholar
  74. 74.
    Kim HJ, Lee JH, Lee M, Lee TS (2008) React Funct Polym 68:1696–1703CrossRefGoogle Scholar
  75. 75.
    Wu C-Y, Chen M-S, Lin C-A, Lin S-C, Sun S-S (2006) Chem Eur J 12:2263–2269CrossRefGoogle Scholar
  76. 76.
    Aldakov D, Anzenbacher P Jr (2004) J Am Chem Soc 126:4752–4753CrossRefGoogle Scholar
  77. 77.
    Zhou G, Chen Y, Wang L, Jing X, Wang F (2005) Macromolecules 38:2148–2153CrossRefGoogle Scholar
  78. 78.
    Tong H, Zhou G, Wang L, Jing X, Wang F, Zhang J (2003) Tetrahedron Lett 44:131–134CrossRefGoogle Scholar
  79. 79.
    Tong H, Wang L, Jing X, Wang F (2003) Macromolecules 36:2584–2586CrossRefGoogle Scholar
  80. 80.
    Ma H, Jen AK-Y, Wu J, Wu X, Liu S, Shu C, Dalton LR, Marder SR, Thayumanavan S (1999) Chem Mater 11:2218–2225CrossRefGoogle Scholar
  81. 81.
    Lee JK, Na J, Kim TH, Kim Y-S, Park WH, Lee TS (2004) Mater Sci Eng C 24:261–264CrossRefGoogle Scholar
  82. 82.
    Ikegami M, Arai T (2000) Chem Lett:996Google Scholar
  83. 83.
    Tanaka K, Kumagai T, Aoki H, Deguchi M, Iwata S (2001) J Org Chem 66:7328CrossRefGoogle Scholar
  84. 84.
    Kim Y-S, Lee JK, Park WH, Lee TS (2005) Thin Solid Films 477:100–103CrossRefGoogle Scholar
  85. 85.
    Vetrichelvan M, Rajagopal N, Valiyaveettil S (2006) Macromolecules 39:8303–8310CrossRefGoogle Scholar
  86. 86.
    Kuwabara Y, Ogawa H, Inada H, Nona N, Shirota Y (1994) Adv Mater 6:667–669CrossRefGoogle Scholar
  87. 87.
    Li J, Liu D, Li Y, Lee CS, Kwong HL, Lee S (2005) Chem Mater 17:1208–1212CrossRefGoogle Scholar
  88. 88.
    Iraqi A, Wataru I (2004) J Polym Sci A Polym Chem 42:6041–6051CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe University of Texas at AustinAustinUSA

Personalised recommendations