Advertisement

Acyclic Oligopyrrolic Anion Receptors

  • Hiromitsu MaedaEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 24)

Abstract

Recent progress in the guest-binding and supramolecular chemistry of anion-responsive acyclic oligopyrroles is summarized here in this chapter. The hydrogen-bonding properties of the pyrrole NH sites determine anion binding in acylic oligopyrroles such as guanidinocarbonyl and amidopyrroles, dipyrrins and their analogs, dipyrrolylquinoxalines, and boron complexes of dipyrrolyldiketones. Linear oligopyrroles can be incorporated as subunits in various macromolecules and complexes by means of covalent and noncovalent interactions; in fact, boron complexes of dipyrrolyldiketones form assembled structures and, with the appropriate substituents, soft materials such as anion-responsive supramolecular gels.

Keywords

Anion receptors Open-chain systems Pyrrole derivatives Supramolecular assemblies 

Notes

Acknowledgments

The contributions of the Maeda group reported herein were supported by Grants-in-Aid for Young Scientists (B) (No. 17750137, 19750122, 21750155) and Scientific Research in a Priority Area “Super-Hierarchical Structures” (No. 18039038, 19022036) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Izumi Science and Technology Foundation, Iketani Science Technology Foundation, Mitsubishi Chemical Corporation Fund, Kumagai Foundation for Science and Technology, Nissan Science Foundation, Saneyoshi Scholarship Foundation, the Japan Securities Scholarship Foundation, the Science and Technology Foundation of Japan, Shorai Foundation for Science and Technology, and the Kao Foundation for Arts and Sciences, the matching fund subsidies for private universities from the MEXT, 2003–2008 and 2009–2014, and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project, 2008–2013.

References

  1. 1.
    Miller C (2006) Nature 440:484CrossRefGoogle Scholar
  2. 2.
    Pusch M (2010) In: Kew J, Davies C (eds) Ion channels from structure and function. Oxford University Press, New York, p 172, references thereinGoogle Scholar
  3. 3.
    Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) Nature 415:287CrossRefGoogle Scholar
  4. 4.
    Bianchi A, Bowman-James K, García-España E (eds) (1997) Supramolecular chemistry of anions. Wiley-VCH, New YorkGoogle Scholar
  5. 5.
    Singh RP, Moyer BA (eds) (2004) Fundamentals and applications of anion separations. Kluwer Academic/Plenum, New YorkGoogle Scholar
  6. 6.
    Stibor I (ed) (2005) Anion sensing. Topics in current chemistry, vol 255. Springer, Berlin, pp 238Google Scholar
  7. 7.
    Sessler JL, Gale PA, Cho WS (2006) Anion receptor chemistry. RSC, CambridgeGoogle Scholar
  8. 8.
    Vilar R (ed) (2008) Recognition of anions. Structure and bonding, vol 129. Springer, Berlin, pp 252Google Scholar
  9. 9.
    Schmidtchen FP, Berger M (1997) Chem Rev 97:1515CrossRefGoogle Scholar
  10. 10.
    Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486CrossRefGoogle Scholar
  11. 11.
    Sessler JL, Camiolo S, Gale PA (2003) Coord Chem Rev 240:17CrossRefGoogle Scholar
  12. 12.
    Martínez-Máñez R, Sancenón F (2003) Chem Rev 103:4419CrossRefGoogle Scholar
  13. 13.
    Gale PA (2005) Chem Commun:3761Google Scholar
  14. 14.
    Gale PA (2006) Acc Chem Res 39:465CrossRefGoogle Scholar
  15. 15.
    Gale PA, Quesada R (2006) Coord Chem Rev 250:3219CrossRefGoogle Scholar
  16. 16.
    Kang SO, Begum RA, Bowman-James K (2006) Angew Chem Int Ed 45:7882CrossRefGoogle Scholar
  17. 17.
    Bolondeau P, Segura M, Perez-Fernandez R, de Mendoza J (2007) Chem Soc Rev 36:198CrossRefGoogle Scholar
  18. 18.
    Gale PA, García-Garrido SE, Garric J (2008) Chem Soc Rev 37:151CrossRefGoogle Scholar
  19. 19.
    Caltagirone C, Gale PA (2009) Chem Soc Rev 38:520CrossRefGoogle Scholar
  20. 20.
    Maeda H (2010) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. Vol 8. Word Scientific, New Jersey, chap 38Google Scholar
  21. 21.
    Fischer H, Orth H (1934) Die Chemie des Pyrrols. Akademische Verlagsgesellschaft M. B. H, LeipzigGoogle Scholar
  22. 22.
    Kadish KM, Smith KM, Guilard R (eds) (2000) The porphyrin handbook. Academic, San DiegoGoogle Scholar
  23. 23.
    Gale PA, Sessler JL, Král V, Lynch V (1996) J Am Chem Soc 118:5140CrossRefGoogle Scholar
  24. 24.
    Gale PA, Sessler JL, Král V (1998) Chem Commun:1Google Scholar
  25. 25.
    Sessler JL, Gross DE, Cho WS, Lynch VM, Schmidtchen FP, Bates GW, Light ME, Gale PA (2006) J Am Chem Soc 128:12281CrossRefGoogle Scholar
  26. 26.
    Lee CH, Miyaji H, Yoon DW, Sessler JL (2008) Chem Commun:24Google Scholar
  27. 27.
    Jasat A, Dolphin D (1997) Chem Rev 97:2267CrossRefGoogle Scholar
  28. 28.
    Sessler JL, Seidel D (2003) Angew Chem Int Ed 42:5134CrossRefGoogle Scholar
  29. 29.
    Chandrashekar TK, Venkatraman S (2003) Acc Chem Res 36:676CrossRefGoogle Scholar
  30. 30.
    Shimizu S, Osuka A (2006) Eur J Inorg Chem:1319Google Scholar
  31. 31.
    Sessler JL, Cyr MJ, Lynch V, McGhee E, Ibers JA (1990) J Am Chem Soc 112:2810CrossRefGoogle Scholar
  32. 32.
    Shionoya M, Furuta H, Lynch V, Harriman A, Sessler JL (1992) J Am Chem Soc 114:5714CrossRefGoogle Scholar
  33. 33.
    Sessler JL, Davis J (2001) Acc Chem Res 34:989CrossRefGoogle Scholar
  34. 34.
    Seidel D, Lynch V, Sessler JL (2002) Angew Chem Int Ed 41:1422CrossRefGoogle Scholar
  35. 35.
    Maeda H (2007) Eur J Org Chem:5313Google Scholar
  36. 36.
    Maeda H (2009) J Incl Phenom 64:193CrossRefGoogle Scholar
  37. 37.
    Coles SJ, Gale PA, Hursthouse MB (2001) CrystEngComm 53:1Google Scholar
  38. 38.
    Best MD, Tobey SL, Anslyn EV (2003) Coord Chem Rev 240:3CrossRefGoogle Scholar
  39. 39.
    Houk RJT, Tobey SL, Anslyn EV (2005) In: Stibor I (ed) Anion sensing. Topics in current chemistry, vol 255. Springer, Berlin, p 119Google Scholar
  40. 40.
    Schmuck C (1999) Chem Commun:843Google Scholar
  41. 41.
    Schmuck C (1999) Eur J Org Chem:2397Google Scholar
  42. 42.
    Schmuck C (2006) Coord Chem Rev 250:3053CrossRefGoogle Scholar
  43. 43.
    Schmuck C (2000) J Org Chem 65:2432CrossRefGoogle Scholar
  44. 44.
    Schmuck C, Dudaczek J (2007) Eur J Org Chem:3326Google Scholar
  45. 45.
    Schmuck C, Rehm T, Gröhn F, Reinhold F (2006) J Am Chem Soc 128:1430CrossRefGoogle Scholar
  46. 46.
    Schmuck C, Rehm T, Klein K, Gröhn F (2007) Angew Chem Int Ed 46:1693CrossRefGoogle Scholar
  47. 47.
    Gunther H, Anslyn EV (2002) Chem Eur J 8:2218CrossRefGoogle Scholar
  48. 48.
    Schmuck C, Schwegmann M (2005) J Am Chem Soc 127:3373CrossRefGoogle Scholar
  49. 49.
    Schmuck C, Schwegmann M (2006) Org Biomol Chem 4:836CrossRefGoogle Scholar
  50. 50.
    Ciferri A (ed) (2000) Supramolecular polymers. Marcel Dekker, New YorkGoogle Scholar
  51. 51.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071CrossRefGoogle Scholar
  52. 52.
    Sauvage JP (ed) Transition metals in supramolecular chemistry. Wiley, ChichesterGoogle Scholar
  53. 53.
    Manners I (2004) Synthetic metal-containing polymers. Wiley-VCH, WeinheimGoogle Scholar
  54. 54.
    Schubert US, Newkome GR, Manners I (eds) (2006) Metal-containing and metallosupramolecular polymers and materials. ACS, Washington, DCGoogle Scholar
  55. 55.
    Gröger G, Stepanenko V, Würthner F, Schmuck C (2009) Chem Commun:698Google Scholar
  56. 56.
    Gale PA, Camiolo S, Chapman CP, Light ME, Hursthouse MB (2001) Tetrahedron Lett 42:5095CrossRefGoogle Scholar
  57. 57.
    Gale PA, Camiolo S, Tizzard GJ, Chapman CP, Light ME, Coles SJ, Hursthouse MB (2001) J Org Chem 66:7849CrossRefGoogle Scholar
  58. 58.
    Gale PA, Navakhun K, Camiolo S, Light ME, Hursthouse MB (2002) J Am Chem Soc 124:11228CrossRefGoogle Scholar
  59. 59.
    Light ME, Gale PA, Navakhun K (2005) Acta Cryst E 61:o1300CrossRefGoogle Scholar
  60. 60.
    Navakhun K, Ruangpornvisuti V (2006) J Mol Struct Theochem 772:23CrossRefGoogle Scholar
  61. 61.
    Navakhun K, Ruangpornvisuti V (2009) J Mol Struct Theochem 907:131CrossRefGoogle Scholar
  62. 62.
    Sessler JL, Pantos GD, Gale PA, Light ME (2006) Org Lett 8:1593CrossRefGoogle Scholar
  63. 63.
    Sessler JL, Barkey NM, Pantos GD, Lynch VM (2007) New J Chem 31:646CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Yin Z, Li Z, Hea J, Cheng JP (2007) Tetrahedron 63:7560CrossRefGoogle Scholar
  65. 65.
    Yin Z, Li Z, Yu A, He J, Cheng JP (2004) Tetrahedron Lett 45:6803CrossRefGoogle Scholar
  66. 66.
    Chen CL, Chen YH, Chen CY, Sun SS (2006) Org Lett 8:5053CrossRefGoogle Scholar
  67. 67.
    Chen CL, Lin TP, Chen YS, Sun SS (2007) Eur J Org Chem:3999Google Scholar
  68. 68.
    Zyryanov GV, Palacios MA, Anzenbacher P Jr (2007) Angew Chem Int Ed 46:7849CrossRefGoogle Scholar
  69. 69.
    Falk H (1989) The chemistry of linear and oligopyrroles and bile pigments. Springer, ViennaCrossRefGoogle Scholar
  70. 70.
    Wood TE, Thompson A (2007) Chem Rev 107:1831CrossRefGoogle Scholar
  71. 71.
    Becker W, Sheldrick WS, Engel J (1978) Acta Cryst B 34:1021CrossRefGoogle Scholar
  72. 72.
    Sessler JL, Eller LR, Cho WS, Nicolaou S, Aguilar A, Lee JT, Lynch VM, Magda DJ (2005) Angew Chem Int Ed 44:5989CrossRefGoogle Scholar
  73. 73.
    Shin JY, Dolphin D, Patrick BO (2004) Cryst Grow Des 4:659CrossRefGoogle Scholar
  74. 74.
    Huggins MT, Musto C, Munro L, Catalano VJ (2007) Tetrahedron 63:12994CrossRefGoogle Scholar
  75. 75.
    Vega IED, Camiolo S, Gale PA, Hursthouse MB, Light ME (2003) Chem Commun:1686Google Scholar
  76. 76.
    Vega IED, Gale PA, Hursthouse MB, Light ME (2004) Org Biomol Chem 2:2935CrossRefGoogle Scholar
  77. 77.
    Guo Y, Shao SJ, Xu J, Shi YP, Jiang SX (2004) Inorg Chem Commun 7:333CrossRefGoogle Scholar
  78. 78.
    Sessler JL, An D, Cho WS, Lynch V, Marquez M (2005) Chem Eur J 11:2001CrossRefGoogle Scholar
  79. 79.
    Renić M, Basarić N, Mlinarić-Majerski K (2007) Tetrahedron Lett 48:7873CrossRefGoogle Scholar
  80. 80.
    Chauhan SMS, Bisht T, Garg B (2009) Sens Act B 141:116CrossRefGoogle Scholar
  81. 81.
    Denekamp C, Suwinska K, Salman H, Abraham Y, Eichen Y, Ben Ari J (2007) Chem Eur J 13:657CrossRefGoogle Scholar
  82. 82.
    Sessler JL, An D, Cho WS, Lynch V (2003) J Am Chem Soc 125:13646CrossRefGoogle Scholar
  83. 83.
    Lin CI, Selvi S, Fang JM, Chou PT, Lai CH, Cheng YM (2007) J Org Chem 72:3537CrossRefGoogle Scholar
  84. 84.
    Fürstner A (2003) Angew Chem Int Ed 42:3582CrossRefGoogle Scholar
  85. 85.
    Davis JT (2010) In: Gale PA, Dehaen W (eds) Anion complexation by heterocycle based receptors. Topics in heterocyclic chemistry. Springer, Berlin DOI 7081_2010_29Google Scholar
  86. 86.
    Sessler JL, Weghorn SJ, Lynch V, Fransson K (1994) J Chem Soc Chem Commun:1289Google Scholar
  87. 87.
    Morosini P, Scherer M, Meyer S, Lynch V, Sessler JL (1997) J Org Chem 62:8848CrossRefGoogle Scholar
  88. 88.
    Oddo B, Dainotti C (1911) Gazz Chim Ital 41:248Google Scholar
  89. 89.
    Behr D, Brandänge S, Lindström B (1973) Acta Chem Scand 27:2411CrossRefGoogle Scholar
  90. 90.
    Black CB, Andrioletti B, Try AC, Ruiperez C, Sessler JL (1999) J Am Chem Soc 121:10438CrossRefGoogle Scholar
  91. 91.
    Sessler JL, Andrioletti B, Anzenbacher P Jr, Black C, Eller L, Furuta H, Jursíkova K, Maeda H, Marquez M, Mizuno T, Try A (2004) In: Singh RP, Moyer BA (eds) Fundamentals and applications of anion separations. Kluwer Academic/Plenum, New York, p 71CrossRefGoogle Scholar
  92. 92.
    Anzenbacher P Jr, Try AC, Miyaji H, Jursíková K, Lynch VM, Marquez M, Sessler JL (2000) J Am Chem Soc 122:10268CrossRefGoogle Scholar
  93. 93.
    Mizuno T, Eller L, Wei WH, Sessler JL (2002) J Am Chem Soc 124:1134CrossRefGoogle Scholar
  94. 94.
    Kirkovits GJ, Zimmerman RS, Huggins MT, Lynch VM, Sessler JL (2002) Eur J Org Chem:3768Google Scholar
  95. 95.
    Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H (2002) Chem Commun:862Google Scholar
  96. 96.
    Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H (2002) J Am Chem Soc 124:13474CrossRefGoogle Scholar
  97. 97.
    Sessler JL, Pantos GD, Katayev E, Lynch VM (2003) Org Lett 5:4141CrossRefGoogle Scholar
  98. 98.
    Ghosh T, Maiya BG, Smanta A (2006) Dalton Trans:795Google Scholar
  99. 99.
    Aldakov D, Anzenbacher P Jr (2003) Chem Commun:1394Google Scholar
  100. 100.
    Aldakov D, Palacios MA, Anzenbacher P Jr (2005) Chem Mater 17:5238CrossRefGoogle Scholar
  101. 101.
    Aldakov D, Anzenbacher P Jr (2004) J Am Chem Soc 126:4752CrossRefGoogle Scholar
  102. 102.
    Anzenbacher P Jr, Jursikova K, Aldakov D, Marquez M, Pohl R (2004) Tetrahedron 60:11163CrossRefGoogle Scholar
  103. 103.
    Pohl R, Aldakov D, Kubát P, Jursíková K, Marquez M, Anzenbacher P Jr (2004) Chem Commun:1282Google Scholar
  104. 104.
    Anzenbacher P Jr, Palacios MA, Jursíková K, Marquez M (2005) Org Lett 7:5027CrossRefGoogle Scholar
  105. 105.
    Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P Jr (2007) J Am Chem Soc 129:7538CrossRefGoogle Scholar
  106. 106.
    Ghosh T, Maiya BG, Wong MW (2004) J Phys Chem A 108:11249CrossRefGoogle Scholar
  107. 107.
    Wu CY, Chen MS, Lin CA, Lin SC, Sun SS (2006) Chem Eur J 12:2263CrossRefGoogle Scholar
  108. 108.
    Szydlo F, Andrioletti B, Rose E (2006) Org Lett 8:2345CrossRefGoogle Scholar
  109. 109.
    Balleter P (2008) In: Vilar R (ed) Recognition of anions. Structure and bonding, vol 129. Springer, Berlin, p 127Google Scholar
  110. 110.
    Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68CrossRefGoogle Scholar
  111. 111.
    Yoo J, Kim MS, Hong SJ, Sessler JL, Lee CH (2009) J Org Chem 74:1065CrossRefGoogle Scholar
  112. 112.
    Salman H, Abraham Y, Tal S, Meltzman S, Kapon M, Tessler N, Speise S, Eichen Y (2005) Eur J Org Chem:2207Google Scholar
  113. 113.
    Lin Z, Chen HC, Sun SS, Hsu CP, Chow TJ (2009) Tetrahedron 65:5216CrossRefGoogle Scholar
  114. 114.
    Shevchuk SV, Lynch VM, Sessler JL (2004) Tetrahedron 60:11283CrossRefGoogle Scholar
  115. 115.
    Plitt P, Gross DE, Lynch VM, Sessler JL (2007) Chem Eur J 13:1374CrossRefGoogle Scholar
  116. 116.
    Vega IED, Gale PA, Light ME, Loeb SJ (2005) Chem Commun:4913Google Scholar
  117. 117.
    Oddo B, Dainotti C (1912) Gazz Chim Ital 42:716Google Scholar
  118. 118.
    Stark WM, Baker MG, Leeper FJ, Raithby PR, Battersby AR (1988) J Chem Soc Perkin Trans 1:1187Google Scholar
  119. 119.
    Maeda H, Kusunose Y (2005) Chem Eur J 11:5661CrossRefGoogle Scholar
  120. 120.
    Maeda H, Ito Y (2006) Inorg Chem 45:8205CrossRefGoogle Scholar
  121. 121.
    Fujimoto C, Kusunose Y, Maeda H (2006) J Org Chem 71:2389CrossRefGoogle Scholar
  122. 122.
    Maeda H, Kusunose Y, Mihashi Y, Mizoguchi T (2007) J Org Chem 72:2621Google Scholar
  123. 123.
    Maeda H, Haketa Y, Nakanishi T (2007) J Am Chem Soc 129:13661CrossRefGoogle Scholar
  124. 124.
    Maeda H, Terasaki M, Haketa Y, Mihashi Y, Kusunose Y (2008) Org Biomol Chem 6:433CrossRefGoogle Scholar
  125. 125.
    Maeda H, Ito Y, Haketa Y, Eifuku N, Lee E, Lee M, Hashishin T, Kaneko K (2009) Chem Eur J 15:3709Google Scholar
  126. 126.
    Maeda H, Haketa Y, Bando Y, Sakamoto S (2009) Synth Met 159:792CrossRefGoogle Scholar
  127. 127.
    Maeda H, Eifuku N (2009) Chem Lett 38:208CrossRefGoogle Scholar
  128. 128.
    Maeda H, Kusunose Y, Terasaki M, Ito Y, Fujimoto C, Fujii R, Nakanishi T (2007) Chem Asian J 2:350CrossRefGoogle Scholar
  129. 129.
    Sanchez-Queseda J, Seel C, Prados P, de Mendoza J (1996) J Am Chem Soc 118:277CrossRefGoogle Scholar
  130. 130.
    Maeda H, Ito Y, Kusunose Y, Nakanishi T (2007) Chem Commun:1136Google Scholar
  131. 131.
    Maeda H, Bando Y, Haketa Y, Honsho Y, Seki S, Nakajima H, Tohnai N (submitted)Google Scholar
  132. 132.
    Maeda H, Fujii Y, Mihashi Y (2008) Chem Commun:4285Google Scholar
  133. 133.
    Maeda H, Takayama M, Kobayashi K, Shinmori H (submitted)Google Scholar
  134. 134.
    Maeda H, Haketa Y (2008) Org Biomol Chem 6:3091CrossRefGoogle Scholar
  135. 135.
    Maeda H, Mihashi Y, Haketa Y (2008) Org Lett 10:3179CrossRefGoogle Scholar
  136. 136.
    Maeda H, Fujii R, Haketa Y (2010) Eur J Org Chem:1468Google Scholar
  137. 137.
    Terech P, Weiss RG (1997) Chem Rev 97:3133CrossRefGoogle Scholar
  138. 138.
    Abdallah DJ, Weiss RG (2000) Adv Mater 12:1237CrossRefGoogle Scholar
  139. 139.
    Fages F (ed) (2005) Low molecular mass gelators. Topics in current chemistry, vol 256. Springer, Berlin, pp 283Google Scholar
  140. 140.
    Weiss RG, Terech P (eds) (2006) Molecular gels: materials with self-assembled fibrillar networks. Springer, DordrechtGoogle Scholar
  141. 141.
    Ishi-i T, Shinkai S (2005) In: Würthner F (ed) Supramolecular dye chemistry. Topics in current chemistry, vol 258. Springer, Berlin, p 119Google Scholar
  142. 142.
    Smith DK (2007) In: Atwood JL, Steed JW (eds) Organic nanostructures. Wiley-VCH, Weinheim, p 111Google Scholar
  143. 143.
    Maeda H (2008) Chem Eur J 14:11274CrossRefGoogle Scholar
  144. 144.
    Lloyd GO, Steed JW (2009) Nat Chem 1:437CrossRefGoogle Scholar
  145. 145.
    Piepenbrock MOM, Lloyd GO, Clarke N, Steed JW (2010) Chem Rev 110:1960Google Scholar
  146. 146.
    Maeda H, Haketa Y, Sasaki S, Masunaga H, Ogawa H, Mizuno N, Araoka F, Takezoe H (to be submitted)Google Scholar
  147. 147.
    Hamley IW (2000) Introduction to soft matter – polymers, colloids, amphiphiles and liquid crystals. Wiley, ChichesterGoogle Scholar
  148. 148.
    Israelachvili JN (1992) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  149. 149.
    Luisi PL, Walde P (eds) (2000) Giant vesicles. Wiley-VCH, ChichesterGoogle Scholar
  150. 150.
    Maeda H, Terashima Y, Haketa Y, Asano A, Honsho Y, Seki S, Shimizu M, Mukai H, Ohta K (2010) Chem Commun 46: (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.College of Pharmaceutical Sciences, Institute of Science and EngineeringRitsumeikan UniversityKusatsuJapan
  2. 2.PRESTOJapan Science and Technology Agency (JST)KawaguchiJapan

Personalised recommendations