Skip to main content

Anion Binding and Transport by Prodigiosin and Its Analogs

  • Chapter
  • First Online:
Book cover Anion Recognition in Supramolecular Chemistry

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 24))

Abstract

Abstract

The red-colored prodiginines, exemplified by prodigiosin 1, are secondary metabolites produced by a number of microorganisms, including the bacterium Serratia marcescens. These tripyrrole natural products and their synthetic analogs have received renewed attention over the past deacade, primarily because of their promising immunosuppressive and anticancer activities. One of the hallmarks of prodiginin chemistry is the ability of the monoprotonated ligand to bind anions, including the essential chloride and bicarbonate ions. The resulting lipophilic ion pair is then able to diffuse across the hydrophobic barrier presented by phospholipid bilayers. Thus, prodiginines have been found to be potent transmembrane anion transporters and HCl cotransporters. In this chapter, the author reviews what is known about the solid-state structure of prodiginins and their anion complexes, the solution conformation of prodiginines, and the biochemcal evidence for the ability to bind anions and to transport HCl across cell membranes. Recent progress in making synthetic models of prodiginines and recent results on the ability of prodigiosin to transport HCO 3 − across lipid membranes are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same group later reported similar studies as described in [14].

References

  1. Bizio B (1823) Biblioteca Italiana o sia Giornale di Letteratura, Scienze e Arti Tomo 30:275–295

    Google Scholar 

  2. Merlino CP (1924) J Bacteriol 9:527–543

    CAS  Google Scholar 

  3. Hubbard R, Rimington C (1950) Biochem J 46:200–225

    Google Scholar 

  4. Gaughran ER (1969) Trans NY Acad Sci 31:3–24

    Article  CAS  Google Scholar 

  5. Bennett JW (2000) Adv Appl Microbiol 47:1–32

    Article  CAS  Google Scholar 

  6. Fürstner A (2003) Angew Chem Int Ed 42:3582–3603

    Article  Google Scholar 

  7. Wrede IF, Hettche O (1929) Ber Deut Chem Ges 62:2678–2687

    Article  Google Scholar 

  8. Wasserman HH, McKeon JE, Smith L, Forgione P (1960) J Am Chem Soc 82:506–507

    Article  CAS  Google Scholar 

  9. Rapoport H, Holden KG (1962) J Am Chem Soc 84:634–642

    Google Scholar 

  10. Manderville RA (2001) Curr Med Chem Anticancer Agents 1:195–218

    Article  CAS  Google Scholar 

  11. Perez-Tomas R, Montaner B, Llagostera E, Soto-Cerrato V (2003) Biochem Pharm 66:1447–1452

    Article  CAS  Google Scholar 

  12. Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GPC (2007) Future Microbiol 2:605–618

    Article  CAS  Google Scholar 

  13. Pandey R, Chander R, Sainis KB (2009) Curr Pharm Design 15:732–741

    Article  CAS  Google Scholar 

  14. Yamamoto C, Takemoto H, Kuno K, Yamamoto D, Tsubaru A, Kamata K, Hirata H, Yamamoto A, Kano H, Seki T, Inoue K (1999) Hepatology 30:894–902

    Article  CAS  Google Scholar 

  15. Nakashima T, Tamura T, Kurachi M, Yamaguchi K, Oda T (2005) Biol Pharm Bull 28:2289–2295

    Article  CAS  Google Scholar 

  16. Melvin MS, Ferguson DC, Lindquist N, Manderville RA (1999) J Org Chem 64:6861–6869

    Article  CAS  Google Scholar 

  17. Melvin MS, Tomlinson JT, Saluta GR, Kucera GL, Lindquist N, Manderville RA (2000) J Am Chem Soc 122:6333–6334

    Article  CAS  Google Scholar 

  18. Sessler JL, Eller LR, Cho WS, Nicolaou S, Aguilar A, Lee JT, Lynch VM, Magda DJ (2005) Angew Chem Int Ed 44:5989–5992

    Article  CAS  Google Scholar 

  19. Baldino CM, Parr J, Wilson CJ, Ng SC, Yohannes D, Wasserman HH (2006) Bioorg Med Chem Lett 16:701–704

    Article  CAS  Google Scholar 

  20. Fürstner A, Radkowski K, Peters H, Seidel G, Wirtz C, Mynott R, Lehmann CW (2007) Chem Eur J 13:1929–1945

    Article  Google Scholar 

  21. Diaz RIS, Bennett SM, Thompson A (2009) Chem Med Chem 4:742–745

    Google Scholar 

  22. Clift MD, Thomson RJ (2009) J Am Chem Soc 131:14579–14583

    Article  CAS  Google Scholar 

  23. For more information on Aida Pharmaceuticals and their development of prodigiosin 1 as an anti-cancer agent, see the website: http://www.crunchbase.com/company/aida-pharmaceuticals

  24. Dairi K, Yao Y, Faley M, Tripathy S, Rioux E, Billot X, Rabouin D, Gonzalez G, Lavallee JF, Attardo G (2007) Org Process Res Dev 11:1051–1054

    Article  CAS  Google Scholar 

  25. O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, Viallet J, Cheson BD (2009) Blood 113:299–305

    Article  Google Scholar 

  26. D’Alessio R, Bargiotti A, Carlini O, Colotta F, Ferrari M, Gnocchi P, Isetta A, Mongelli N, Motta P, Rossi A, Rossi M, Tibolla M, Vanotti E (2000) J Med Chem 43:2557–2565

    Article  Google Scholar 

  27. Stepkowski SM, Erwin-Cohen RA, Behbod F, Wang ME, Qu X, Tejpal N, Nagy ZS, Kahan BD, Kirken RA (2002) Blood 99:680–689

    Article  CAS  Google Scholar 

  28. Williamson NR, Fineran PC, Leeper FJ, Salmond GPC (2006) Nat Rev Microbiol 4:887–899

    Google Scholar 

  29. Chawrai SR, Williamson NR, Salmond GPC, Leeper FJ (2008) Chem Commun:1862–1864

    Google Scholar 

  30. Gerber NN (1975) Prodigiosin-like pigments. CRC Crit Rev Microbiol 3:469–485

    Article  CAS  Google Scholar 

  31. Kim D, Kim J, Yim JH, Kwon SK, Lee CH, Lee HK (2008) J Microbiol Biotech 18:1621–1629

    CAS  Google Scholar 

  32. Rizzo V, Morelli A, Pinciroli V, Sciangula D, D’Alessio R (1999) J Pharm Sci 88:73–78

    Article  CAS  Google Scholar 

  33. Sertan-de Guzman AA, Predicala RZ, Bernardo EB, Neilan BA, Elardo SP, Mangalindan GC, Tasdemir D, Ireland CM, Barraquio WL, Concepcion GP (2007) FEMS Microbiol Lett 277:188–196

    Article  CAS  Google Scholar 

  34. Blake AJ, Hunter GA, McNab H (1990) Chem Commun:734–736

    Google Scholar 

  35. La JQH, Michaelides AA, Manderville RA (2007) J Phys Chem B 111:11803–11811

    Article  CAS  Google Scholar 

  36. Fürstner A, Grabowski J, Lehmann CW (1999) J Org Chem 64:8275–8280

    Article  Google Scholar 

  37. Melvin MS, Tomlinson JT, Park G, Day CS, Saluta GR, Kucera GL, Manderville RA (2002) Chem Res Toxicol 15:734–741

    Article  CAS  Google Scholar 

  38. Jenkins S, Incarvito CD, Parr J, Wasserman HH (2009) CrystEngComm 11:242–245

    Article  CAS  Google Scholar 

  39. Chen K, Rannulu NS, Cai Y, Lane P, Liebl AL, Rees BB, Corre C, Challis GL, Cole RB (2008) J Am Soc Mass Spectrom 19:1856–1866

    Article  CAS  Google Scholar 

  40. Duarte HA, Duani H, De Almeida WB (2003) Chem Phys Lett 369:114–124

    Article  CAS  Google Scholar 

  41. Skawinski WJ, Venanzi TJ, Venanzi CA (2004) A molecular orbital study of tambjamine E and analogues. J Phys Chem A108:4542–4550

    Article  Google Scholar 

  42. Sessler JL, Weghorn SJ, Lynch V, Fransson K (1994) J Chem Soc Chem Commun:1289–1290

    Google Scholar 

  43. Sessler JL, Camiolo S, Gale PA (2003) Coord Chem Rev 240:17–55

    Article  CAS  Google Scholar 

  44. Park G, Tomlinson JT, Melvin MS, Wright MW, Day CS, Manderville RA (2003) Org Lett 5:113–116

    Article  CAS  Google Scholar 

  45. Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (2000) J Exp Biol 203:89–95

    CAS  Google Scholar 

  46. Sato T, Konno H, Tanaka Y, Kataoka T, Nagai K, Wasserman HH, Ohkuma S (1998) J Biol Chem 273:21455–21462

    Article  CAS  Google Scholar 

  47. Ohkuma S, Sato T, Okamoto M, Matsuya H, Arai K, Katakoa T, Nagai K, Wasserman HH (1998) Biochem J 334:731–741

    CAS  Google Scholar 

  48. Konno H, Matsuya H, Okamoto M, Sato T, Tanaka Y, Yokoyama K, Katakoa T, Nagai K, Wasserman HH, Ohkuma S (1998) J Biochem 124:547–556

    Article  CAS  Google Scholar 

  49. Matsuya H, Okamoto M, Ochi T, Nishikawa A, Shimizu S, Katakoa T, Nagai K, Wasserman HH, Ohkuma S (2000) Biochem Pharm 60:1855–1863

    Article  CAS  Google Scholar 

  50. Lee MH, Kataoka T, Magae J, Nagai K (1995) Biosci Biotechnol Biochem 59:1417–1421

    Article  CAS  Google Scholar 

  51. Kataoka T, Muroi M, Ohkuma S, Waritani T, Magae J, Takatsuki A, Kondo S, Yamasaki M, Nagai K (1995) FEBS Lett 359:53–59

    Article  CAS  Google Scholar 

  52. Kawauchi K, Shibutani K, Yagisawa H, Nakatsuji S, Anzai H, Yokoyama Y, Ikegami Y, Moriyama Y, Hirata H (1997) Biochem Biophys Res Commun 237:543–547

    Article  CAS  Google Scholar 

  53. Woo JT, Ohba Y, Tagami K, Sumitani K, Kataoka T, Nagai K (1997) Biosci Biotech Biochem 61:400–402

    Article  CAS  Google Scholar 

  54. Tanigaki K, Sato T,Tanaka Y, Ochi T,Nishikawa A, Nagai K, Kawashima H, Ohkuma S(2002) FEBS Lett.524:37-42

    Google Scholar 

  55. Rea PA, Poole RJ (1993) Annu Rev Plant Physiol Plant Mol 44:157–180

    Article  CAS  Google Scholar 

  56. Maeshima M, Nakayasu T, Kawauchi K, Hirata H, Shimmen T (1999) Plant Cell Physiol 40:439–442

    Article  CAS  Google Scholar 

  57. Nakayasu T, Kawauchi K, Hirata H, Shimmen T (2000) Plant Cell Physiol 41:857–863

    Article  CAS  Google Scholar 

  58. Lagadic-Gossmann D, Huc L, Lecureur V (2004) Cell Death Differ 11:953–961

    Article  CAS  Google Scholar 

  59. Yamamoto C, Takemoto H, Kuno K, Yamamoto D, Nakai K, Baden T, Kamata K, Hirata H, Watanabe T, Inoue K (2001) Oncology 8:821–824

    CAS  Google Scholar 

  60. Francisco R, Pérez-Tomás R, Gimènez-Bonafé P, Soto-Cerrato V, Giménez-Xavier P, Ambrosio S (2007) Eur J Pharmcol 572:111–119

    Article  CAS  Google Scholar 

  61. Kawauchi K, Tobiume K, Iwashita K, Inagaki H, Morikawa T, Shibukawa Y, Moriyama Y, Hirata H, Kamata H (2008) Biosci Biotechnol Biochem 72:1564–1570

    Article  CAS  Google Scholar 

  62. Seganish JL, Davis JT (2005) Chem Commun:5781–5783

    Google Scholar 

  63. McNally BA, Koulov AV, Smith BD, Joos JB, Davis AP (2005) Chem Commun:1087–1089

    Google Scholar 

  64. Krasne S, Eisenman G, Szabo G (1971) Science 174:412–414

    Article  CAS  Google Scholar 

  65. Kano K, Fendler JH (1978) Biochim Biophys Acta 509:289–299

    Article  CAS  Google Scholar 

  66. Sáez Díaz RI, Regourd J, Santacroce PV, Davis JT, Jakeman DL, Thompson A (2007) Chem Commun:2701–2703

    Google Scholar 

  67. Gale PA, Light ME, McNally B, Navakhun K, Sliwinski KE, Smith BD (2005) Chem Commun:3773–3775

    Google Scholar 

  68. Gale PA (2005) Chem Commun:3761–3772

    Google Scholar 

  69. Davis JT, Gale PA, Okunola OA, Prados P, Iglesias-Sánchez JC, Torroba T, Quesada R (2009) Nat Chem 1:138–144

    Article  CAS  Google Scholar 

  70. Stefayne D (1960) J Org Chem 25:1261–1262

    Article  Google Scholar 

  71. Davis AP, Sheppard DN, Smith BD (2007) Chem Soc Rev 36:348–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery T. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davis, J.T. (2010). Anion Binding and Transport by Prodigiosin and Its Analogs. In: Gale, P., Dehaen, W. (eds) Anion Recognition in Supramolecular Chemistry. Topics in Heterocyclic Chemistry, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_29

Download citation

Publish with us

Policies and ethics