Advertisement

Anion Binding and Transport by Prodigiosin and Its Analogs

  • Jeffery T. DavisEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 24)

Abstract

Abstract

The red-colored prodiginines, exemplified by prodigiosin 1, are secondary metabolites produced by a number of microorganisms, including the bacterium Serratia marcescens. These tripyrrole natural products and their synthetic analogs have received renewed attention over the past deacade, primarily because of their promising immunosuppressive and anticancer activities. One of the hallmarks of prodiginin chemistry is the ability of the monoprotonated ligand to bind anions, including the essential chloride and bicarbonate ions. The resulting lipophilic ion pair is then able to diffuse across the hydrophobic barrier presented by phospholipid bilayers. Thus, prodiginines have been found to be potent transmembrane anion transporters and HCl cotransporters. In this chapter, the author reviews what is known about the solid-state structure of prodiginins and their anion complexes, the solution conformation of prodiginines, and the biochemcal evidence for the ability to bind anions and to transport HCl across cell membranes. Recent progress in making synthetic models of prodiginines and recent results on the ability of prodigiosin to transport HCO 3 across lipid membranes are discussed.

Graphical Abstract

Keywords

Anion binding Membrane transport Prodiginine Prodigiosin Tripyrrole 

References

  1. 1.
    Bizio B (1823) Biblioteca Italiana o sia Giornale di Letteratura, Scienze e Arti Tomo 30:275–295Google Scholar
  2. 2.
    Merlino CP (1924) J Bacteriol 9:527–543Google Scholar
  3. 3.
    Hubbard R, Rimington C (1950) Biochem J 46:200–225Google Scholar
  4. 4.
    Gaughran ER (1969) Trans NY Acad Sci 31:3–24CrossRefGoogle Scholar
  5. 5.
    Bennett JW (2000) Adv Appl Microbiol 47:1–32CrossRefGoogle Scholar
  6. 6.
    Fürstner A (2003) Angew Chem Int Ed 42:3582–3603CrossRefGoogle Scholar
  7. 7.
    Wrede IF, Hettche O (1929) Ber Deut Chem Ges 62:2678–2687CrossRefGoogle Scholar
  8. 8.
    Wasserman HH, McKeon JE, Smith L, Forgione P (1960) J Am Chem Soc 82:506–507CrossRefGoogle Scholar
  9. 9.
    Rapoport H, Holden KG (1962) J Am Chem Soc 84:634–642Google Scholar
  10. 10.
    Manderville RA (2001) Curr Med Chem Anticancer Agents 1:195–218CrossRefGoogle Scholar
  11. 11.
    Perez-Tomas R, Montaner B, Llagostera E, Soto-Cerrato V (2003) Biochem Pharm 66:1447–1452CrossRefGoogle Scholar
  12. 12.
    Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GPC (2007) Future Microbiol 2:605–618CrossRefGoogle Scholar
  13. 13.
    Pandey R, Chander R, Sainis KB (2009) Curr Pharm Design 15:732–741CrossRefGoogle Scholar
  14. 14.
    Yamamoto C, Takemoto H, Kuno K, Yamamoto D, Tsubaru A, Kamata K, Hirata H, Yamamoto A, Kano H, Seki T, Inoue K (1999) Hepatology 30:894–902CrossRefGoogle Scholar
  15. 15.
    Nakashima T, Tamura T, Kurachi M, Yamaguchi K, Oda T (2005) Biol Pharm Bull 28:2289–2295CrossRefGoogle Scholar
  16. 16.
    Melvin MS, Ferguson DC, Lindquist N, Manderville RA (1999) J Org Chem 64:6861–6869CrossRefGoogle Scholar
  17. 17.
    Melvin MS, Tomlinson JT, Saluta GR, Kucera GL, Lindquist N, Manderville RA (2000) J Am Chem Soc 122:6333–6334CrossRefGoogle Scholar
  18. 18.
    Sessler JL, Eller LR, Cho WS, Nicolaou S, Aguilar A, Lee JT, Lynch VM, Magda DJ (2005) Angew Chem Int Ed 44:5989–5992CrossRefGoogle Scholar
  19. 19.
    Baldino CM, Parr J, Wilson CJ, Ng SC, Yohannes D, Wasserman HH (2006) Bioorg Med Chem Lett 16:701–704CrossRefGoogle Scholar
  20. 20.
    Fürstner A, Radkowski K, Peters H, Seidel G, Wirtz C, Mynott R, Lehmann CW (2007) Chem Eur J 13:1929–1945CrossRefGoogle Scholar
  21. 21.
    Diaz RIS, Bennett SM, Thompson A (2009) Chem Med Chem 4:742–745Google Scholar
  22. 22.
    Clift MD, Thomson RJ (2009) J Am Chem Soc 131:14579–14583CrossRefGoogle Scholar
  23. 23.
    For more information on Aida Pharmaceuticals and their development of prodigiosin 1 as an anti-cancer agent, see the website: http://www.crunchbase.com/company/aida-pharmaceuticals
  24. 24.
    Dairi K, Yao Y, Faley M, Tripathy S, Rioux E, Billot X, Rabouin D, Gonzalez G, Lavallee JF, Attardo G (2007) Org Process Res Dev 11:1051–1054CrossRefGoogle Scholar
  25. 25.
    O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, Viallet J, Cheson BD (2009) Blood 113:299–305CrossRefGoogle Scholar
  26. 26.
    D’Alessio R, Bargiotti A, Carlini O, Colotta F, Ferrari M, Gnocchi P, Isetta A, Mongelli N, Motta P, Rossi A, Rossi M, Tibolla M, Vanotti E (2000) J Med Chem 43:2557–2565CrossRefGoogle Scholar
  27. 27.
    Stepkowski SM, Erwin-Cohen RA, Behbod F, Wang ME, Qu X, Tejpal N, Nagy ZS, Kahan BD, Kirken RA (2002) Blood 99:680–689CrossRefGoogle Scholar
  28. 28.
    Williamson NR, Fineran PC, Leeper FJ, Salmond GPC (2006) Nat Rev Microbiol 4:887–899Google Scholar
  29. 29.
    Chawrai SR, Williamson NR, Salmond GPC, Leeper FJ (2008) Chem Commun:1862–1864Google Scholar
  30. 30.
    Gerber NN (1975) Prodigiosin-like pigments. CRC Crit Rev Microbiol 3:469–485CrossRefGoogle Scholar
  31. 31.
    Kim D, Kim J, Yim JH, Kwon SK, Lee CH, Lee HK (2008) J Microbiol Biotech 18:1621–1629Google Scholar
  32. 32.
    Rizzo V, Morelli A, Pinciroli V, Sciangula D, D’Alessio R (1999) J Pharm Sci 88:73–78CrossRefGoogle Scholar
  33. 33.
    Sertan-de Guzman AA, Predicala RZ, Bernardo EB, Neilan BA, Elardo SP, Mangalindan GC, Tasdemir D, Ireland CM, Barraquio WL, Concepcion GP (2007) FEMS Microbiol Lett 277:188–196CrossRefGoogle Scholar
  34. 34.
    Blake AJ, Hunter GA, McNab H (1990) Chem Commun:734–736Google Scholar
  35. 35.
    La JQH, Michaelides AA, Manderville RA (2007) J Phys Chem B 111:11803–11811CrossRefGoogle Scholar
  36. 36.
    Fürstner A, Grabowski J, Lehmann CW (1999) J Org Chem 64:8275–8280CrossRefGoogle Scholar
  37. 37.
    Melvin MS, Tomlinson JT, Park G, Day CS, Saluta GR, Kucera GL, Manderville RA (2002) Chem Res Toxicol 15:734–741CrossRefGoogle Scholar
  38. 38.
    Jenkins S, Incarvito CD, Parr J, Wasserman HH (2009) CrystEngComm 11:242–245CrossRefGoogle Scholar
  39. 39.
    Chen K, Rannulu NS, Cai Y, Lane P, Liebl AL, Rees BB, Corre C, Challis GL, Cole RB (2008) J Am Soc Mass Spectrom 19:1856–1866CrossRefGoogle Scholar
  40. 40.
    Duarte HA, Duani H, De Almeida WB (2003) Chem Phys Lett 369:114–124CrossRefGoogle Scholar
  41. 41.
    Skawinski WJ, Venanzi TJ, Venanzi CA (2004) A molecular orbital study of tambjamine E and analogues. J Phys Chem A108:4542–4550CrossRefGoogle Scholar
  42. 42.
    Sessler JL, Weghorn SJ, Lynch V, Fransson K (1994) J Chem Soc Chem Commun:1289–1290Google Scholar
  43. 43.
    Sessler JL, Camiolo S, Gale PA (2003) Coord Chem Rev 240:17–55CrossRefGoogle Scholar
  44. 44.
    Park G, Tomlinson JT, Melvin MS, Wright MW, Day CS, Manderville RA (2003) Org Lett 5:113–116CrossRefGoogle Scholar
  45. 45.
    Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (2000) J Exp Biol 203:89–95Google Scholar
  46. 46.
    Sato T, Konno H, Tanaka Y, Kataoka T, Nagai K, Wasserman HH, Ohkuma S (1998) J Biol Chem 273:21455–21462CrossRefGoogle Scholar
  47. 47.
    Ohkuma S, Sato T, Okamoto M, Matsuya H, Arai K, Katakoa T, Nagai K, Wasserman HH (1998) Biochem J 334:731–741Google Scholar
  48. 48.
    Konno H, Matsuya H, Okamoto M, Sato T, Tanaka Y, Yokoyama K, Katakoa T, Nagai K, Wasserman HH, Ohkuma S (1998) J Biochem 124:547–556CrossRefGoogle Scholar
  49. 49.
    Matsuya H, Okamoto M, Ochi T, Nishikawa A, Shimizu S, Katakoa T, Nagai K, Wasserman HH, Ohkuma S (2000) Biochem Pharm 60:1855–1863CrossRefGoogle Scholar
  50. 50.
    Lee MH, Kataoka T, Magae J, Nagai K (1995) Biosci Biotechnol Biochem 59:1417–1421CrossRefGoogle Scholar
  51. 51.
    Kataoka T, Muroi M, Ohkuma S, Waritani T, Magae J, Takatsuki A, Kondo S, Yamasaki M, Nagai K (1995) FEBS Lett 359:53–59CrossRefGoogle Scholar
  52. 52.
    Kawauchi K, Shibutani K, Yagisawa H, Nakatsuji S, Anzai H, Yokoyama Y, Ikegami Y, Moriyama Y, Hirata H (1997) Biochem Biophys Res Commun 237:543–547CrossRefGoogle Scholar
  53. 53.
    Woo JT, Ohba Y, Tagami K, Sumitani K, Kataoka T, Nagai K (1997) Biosci Biotech Biochem 61:400–402CrossRefGoogle Scholar
  54. 54.
    Tanigaki K, Sato T,Tanaka Y, Ochi T,Nishikawa A, Nagai K, Kawashima H, Ohkuma S(2002) FEBS Lett.524:37-42Google Scholar
  55. 55.
    Rea PA, Poole RJ (1993) Annu Rev Plant Physiol Plant Mol 44:157–180CrossRefGoogle Scholar
  56. 56.
    Maeshima M, Nakayasu T, Kawauchi K, Hirata H, Shimmen T (1999) Plant Cell Physiol 40:439–442CrossRefGoogle Scholar
  57. 57.
    Nakayasu T, Kawauchi K, Hirata H, Shimmen T (2000) Plant Cell Physiol 41:857–863CrossRefGoogle Scholar
  58. 58.
    Lagadic-Gossmann D, Huc L, Lecureur V (2004) Cell Death Differ 11:953–961CrossRefGoogle Scholar
  59. 59.
    Yamamoto C, Takemoto H, Kuno K, Yamamoto D, Nakai K, Baden T, Kamata K, Hirata H, Watanabe T, Inoue K (2001) Oncology 8:821–824Google Scholar
  60. 60.
    Francisco R, Pérez-Tomás R, Gimènez-Bonafé P, Soto-Cerrato V, Giménez-Xavier P, Ambrosio S (2007) Eur J Pharmcol 572:111–119CrossRefGoogle Scholar
  61. 61.
    Kawauchi K, Tobiume K, Iwashita K, Inagaki H, Morikawa T, Shibukawa Y, Moriyama Y, Hirata H, Kamata H (2008) Biosci Biotechnol Biochem 72:1564–1570CrossRefGoogle Scholar
  62. 62.
    Seganish JL, Davis JT (2005) Chem Commun:5781–5783Google Scholar
  63. 63.
    McNally BA, Koulov AV, Smith BD, Joos JB, Davis AP (2005) Chem Commun:1087–1089Google Scholar
  64. 64.
    Krasne S, Eisenman G, Szabo G (1971) Science 174:412–414CrossRefGoogle Scholar
  65. 65.
    Kano K, Fendler JH (1978) Biochim Biophys Acta 509:289–299CrossRefGoogle Scholar
  66. 66.
    Sáez Díaz RI, Regourd J, Santacroce PV, Davis JT, Jakeman DL, Thompson A (2007) Chem Commun:2701–2703Google Scholar
  67. 67.
    Gale PA, Light ME, McNally B, Navakhun K, Sliwinski KE, Smith BD (2005) Chem Commun:3773–3775Google Scholar
  68. 68.
    Gale PA (2005) Chem Commun:3761–3772Google Scholar
  69. 69.
    Davis JT, Gale PA, Okunola OA, Prados P, Iglesias-Sánchez JC, Torroba T, Quesada R (2009) Nat Chem 1:138–144CrossRefGoogle Scholar
  70. 70.
    Stefayne D (1960) J Org Chem 25:1261–1262CrossRefGoogle Scholar
  71. 71.
    Davis AP, Sheppard DN, Smith BD (2007) Chem Soc Rev 36:348–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations