Skip to main content

The Piperazine Space in Isocyanide-based MCR Chemistry

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 23))

Abstract

Piperazines and its congeners, (di)keto piperazines are valuable tools in drug discovery, providing a natural path for the process peptide > peptidomimetic > small molecule also called depeptisation. Moreover, they can provide molecular probes to understand molecular pathways for diseases of unmet medical need. However, in order to better understand the design of such value added compounds, the detailed understanding of scope and limitation of their synthesis as well as their 3D structures and associated physicochemical properties is indispensables. Isocyanide multicomponent reaction (MCR) chemistry provides a prime tool for entering the chemical space of (di)(keto)piperazines since not less then 20 different ways exist to access a diversity of related scaffolds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. eMolecules (2010) http://www.emolecules.com

  2. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(suppl 1):D901–D906

    CAS  Google Scholar 

  3. Borio P (1953) The anthelmintic action of papain and of piperazine diphenylacetate (DPP). Minerva Farm 2(4):141–142

    CAS  Google Scholar 

  4. Hendlich M, Bergner A, Gunther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J Mol Biol 326(2):607–620

    Article  CAS  Google Scholar 

  5. Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, van Aalten DMF (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47(23):5713–5720

    Article  CAS  Google Scholar 

  6. Miller RA, Karady S, Reider PJ (2003) Piperazinecarboxamide intermediates of HIV protease inhibitors and processes for their preparation. US Pat Appl Publ US 2003191121 A1 20031009

    Google Scholar 

  7. Ikemoto N, Miller RA, Fleitz FJ, Liu J, Petrillo DE, Leone JF, Laquidara J, Marcune B, Karady S, Armstrong Iii JD, Volante RP (2005) Approaches to installing a N-gem-dimethylmethylene-2-oxazolyl group and application to the synthesis of a second generation HIV protease inhibitor. Tetrahedron Lett 46(11):1867–1871

    Article  CAS  Google Scholar 

  8. Leach CA, Liddle J, Peace S, Philp J, Smith IED, Terrell LR, Zhang J (2006) Preparation of 1,6-disubstituted-(3R,6R)-3-(2,3-dihydro-1H-inden-2-yl)-2,5-piperazinedione derivatives as oxytocin receptor antagonists for the treatment of pre-term labor, dysmenorrhea and endometriosis. PCT Int Appl WO 2006067462 A1 20060629

    Google Scholar 

  9. Borthwick AD, Hickey DMB, Liddle J, Mason AM (2006) Preparation of diketopiperazines as oxytocin receptor antagonists. 2005-EP6760 WO2006000399, 20050621

    Google Scholar 

  10. Borthwick AD, Hickey DMB, Liddle J, Mason AM, Pollard DR, Sollis S (2006) Preparation of diketopiperazines as oxytocin antagonists. 2005-GB2448 WO2006000759, 20050621

    Google Scholar 

  11. Hulme C, Tempest P, Ma V, Nixey T, Balow G (2005) Preparation of tetrazolylmethylpiperazines as melanin concentrating hormone receptor antagonists. 2004-US26021 WO2005019167, 20040811

    Google Scholar 

  12. Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (2002) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 55(15):4512–4515

    Article  Google Scholar 

  13. Chen J, Chen X, Bois-Choussy M, Zhu J (2005) Total synthesis of ecteinascidin 743. J Am Chem Soc 128(1):87–89

    Article  Google Scholar 

  14. Rikimaru K, Mori K, Kan T, Fukuyama T (2005) Synthetic studies on (-)-lemonomycin: stereocontrolled construction of the 3,8-diazabicyclo[3.2.1] skeleton. Chem Commun (3) 394–396

    Google Scholar 

  15. He H, Shen B, Carter GT (2000) Structural elucidation of lemonomycin, a potent antibiotic from Streptomyces candidus. Tetrahedron Lett 41(13):2067–2071

    Article  CAS  Google Scholar 

  16. Fischer PM (2003) Diketopiperazines in peptide and combinatorial chemistry. J Pept Sci 9(1):9–35

    Article  CAS  Google Scholar 

  17. Horton DA, Bourne GT, Smythe ML (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. Mol Divers 5(4):289–304

    Article  Google Scholar 

  18. Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63(40):9923–9932

    Article  CAS  Google Scholar 

  19. Dinsmore CJ, Beshore DC (2002) Recent advances in the synthesis of diketopiperazines. Tetrahedron 58(17):3297–3312

    Article  CAS  Google Scholar 

  20. Srivastava S, Beck B, Herdtweck E, Khoury K, Dömling A (2009) A novel delta-thiolactone scaffold by a versatile intramolecular multicomponent reaction. Heterocycles 77(2):731–738

    Article  CAS  Google Scholar 

  21. Giovenzana GB, Tron GC, Paola SD, Menegotto IG, Pirali T (2006) A mimicry of primary amines by bis-secondary diamines as components in the Ugi four-component reaction13. Angew Chem 118(7):1117–1120

    Article  Google Scholar 

  22. Rossen K, Sager J, DiMichele LM (1997) An efficient and versatile synthesis of piperazine-2-carboxamides. Tetrahedron Lett 38(18):3183–3186

    Article  CAS  Google Scholar 

  23. Dömling A, Beck B, Fuchs T, Yazbak A (2006) Parallel synthesis of arrays of amino-acid-derived isocyanoamides useful as starting materials in IMCR. J Comb Chem 8(6):872–880

    Article  Google Scholar 

  24. Mahalingam B, Wang Y-F, Boross PI, Tozser J, Louis JM, Harrison RW, Weber IT (2004) Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site. Eur J Biochem 271(8):1516–1524

    Article  CAS  Google Scholar 

  25. Rossen K, Pye PJ, DiMichele LM, Volante RP, Reider PJ (1998) An efficient asymmetric hydrogenation approach to the synthesis of the Crixivan (R) piperazine intermediate. Tetrahedron Lett 39(38):6823–6826

    Article  CAS  Google Scholar 

  26. Askin D, Eng KK, Rossen K, Purick RM, Wells KM, Volante RP, Reider PJ (1994) Highly diastereoselective reaction of a chiral, non-racemic amide enolate with (S)-glycidyl tosylate. Synthesis of the orally active HIV-1 protease inhibitor L-735, 524. Tetrahedron Lett 35(5):673–676

    Article  CAS  Google Scholar 

  27. Keung W, Bakir F, Patron AP, Rogers D, Priest CD, Darmohusodo V (2004) Novel alpha-amino amidine synthesis via scandium(III) triflate mediated 3CC Ugi condensation reaction. Tetrahedron Lett 45(4):733–737

    Article  CAS  Google Scholar 

  28. Shaabani A, Maleki A, Moghimi-Rad J (2007) A novel isocyanide-based three-component reaction: synthesis of highly substituted 1, 6-dihydropyrazine-2, 3-dicarbonitrile derivatives. J Org Chem 72(16):6309–6311

    Article  CAS  Google Scholar 

  29. Faggi C, Garcia-Valverde M, Marcaccini S, Pepino R, Pozo MC (2003) Studies on isocyanides and related compounds: a facile synthesis of 1,6-dihydro-6-oxopyrazine-2-carboxylic acid derivatives via Ugi four-component condensation. Synthesis (10) 1553–1558

    Google Scholar 

  30. Cheng JF, Chen M, Arrhenius T, Nadzan A (2002) A convenient solution and solid-phase synthesis of delta(5)-2-oxopiperazines via N-acyliminium ions cyclization. Tetrahedron Lett 43(36):6293–6295

    Article  CAS  Google Scholar 

  31. Ilyin AP, Trifilenkov AS, Kurashvili ID, Krasavin M, Ivachtchenko AV (2005) One-step construction of peptidomimetic 5-carbamoyl-4-sulfonyl-2-piperazinones. J Comb Chem 7(3):360–363

    Article  CAS  Google Scholar 

  32. Hulme C, Cherrier MP (1999) Novel applications of ethyl glyoxalate with the Ugi MCR. Tetrahedron Lett 40(29):5295–5299

    Article  CAS  Google Scholar 

  33. Hulme C, Peng J, Louridas B, Menard P, Krolikowski P, Kumar NV (1998) Applications of N-BOC-diamines for the solution phase synthesis of ketopiperazine libraries utilizing a Ugi/De-BOC/Cyclization (UDC) strategy. Tetrahedron Lett 39(44):8047–8050

    Article  CAS  Google Scholar 

  34. Rhoden CRB, Rivera DG, Kreye O, Bauer AK, Westermann B, Wessjohann LA (2009) Rapid Access to N-substituted diketopiperazines by one-pot Ugi-4CR/deprotection + activation/cyclization (UDAC). J Comb Chem 11(6):1078–1082

    Article  CAS  Google Scholar 

  35. Marcaccini S, Pepino R, Pozo MC (2001) A facile synthesis of 2,5-diketopiperazines based on isocyanide chemistry. Tetrahedron Lett 42(14):2727–2728

    Article  CAS  Google Scholar 

  36. Wyatt PG, Allen MJ, Borthwick AD, Davies DE, Exall AM, Hatley RJD, Irving WR, Livermore DG, Miller ND, Nerozzi F, Sollis SL, Szardenings AK (2005) 2,5-diketopiperazines as potent and selective oxytocin antagonists - 1: identification, stereochemistry and initial SAR. Bioorg Med Chem Lett 15(10):2579–2582

    Article  CAS  Google Scholar 

  37. Sollis SL (2005) Short and novel stereospecific synthesis of trisubstituted 2,5-diketopiperazines. J Org Chem 70(12):4735–4740

    Article  CAS  Google Scholar 

  38. Borthwick AD, Davies DE, Exall AM, Hatley RJD, Hughes JA, Irving WR, Livermore DG, Sollis SL, Nerozzi F, Valko KL, Allen MJ, Perren M, Shabbir SS, Woollard PM, Price MA (2006) 2, 5-Diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists. 3. Synthesis, pharmacokinetics, and in vivo potency. J Med Chem 49(14):4159–4170

    Article  CAS  Google Scholar 

  39. Borthwick AD, Davies DE, Exall AM, Livermore DG, Sollis SL, Nerozzi F, Allen MJ, Perren M, Shabbir SS, Woollard PM, Wyatt PG (2005) 2, 5-Diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists. 2. Synthesis, chirality, and pharmacokinetics. J Med Chem 48(22):6956–6969

    Article  CAS  Google Scholar 

  40. Liddle J, Allen MJ, Borthwick AD, Brooks DP, Davies DE, Edwards RM, Exall AM, Hamlett C, Irving WR, Mason AM, McCafferty GP, Nerozzi F, Peace S, Philp J, Pollard D, Pullen MA, Shabbir SS, Sollis SL, Westfall TD, Woollard PM, Wu C, Hickey DMB (2008) The discovery of GSK221149A: a potent and selective oxytocin antagonist. Bioorg Med Chem Lett 18(1):90–94

    Article  CAS  Google Scholar 

  41. Habashita H, Kokubo M, Hamano S, Hamanaka N, Toda M, Shibayama S, Tada H, Sagawa K, Fukushima D, Maeda K, Mitsuya H (2006) Design, synthesis, and biological evaluation of the combinatorial library with a new spirodiketopiperazine scaffold. Discovery of novel potent and selective low-molecular-weight CCR5 antagonists. J Med Chem 49(14):4140–4152

    Article  CAS  Google Scholar 

  42. Szardenings AK, Antonenko V, Campbell DA, DeFrancisco N, Ida S, Shi LH, Sharkov N, Tien D, Wang YW, Navre M (1999) Identification of highly selective inhibitors of collagenase-1 from combinatorial libraries of diketopiperazines. J Med Chem 42(8):1348–1357

    Article  CAS  Google Scholar 

  43. Cho S, Keum G, Kang SB, Han SY, Kim Y (2003) An efficient synthesis of 2, 5-diketopiperazine derivatives by the Ugi four-center three-component reaction. Mol Divers 6(3–4):283–286

    CAS  Google Scholar 

  44. Rhoden CRB, Westermann B, Wessjohann LA (2008) One-pot multicomponent synthesis of N-substituted tryptophan-derived diketopiperazines. Synthesis (Stuttg) (13):2077–2082

    Google Scholar 

  45. Szardenings AK, Burkoth TS, Lu HH, Tien DW, Campbell DA (1997) A simple procedure for the solid phase synthesis of diketopiperazine and diketomorpholine derivatives. Tetrahedron 53(19):6573–6593

    Article  CAS  Google Scholar 

  46. Lin Q, Blackwell HE (2006) Rapid synthesis of iketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem Commun (27):2884–2886

    Google Scholar 

  47. Hulme C, Morrissette MM, Volz FA, Burns CJ (1998) The solution phase synthesis of diketopiperazine libraries via the Ugi reaction: novel application of Armstrong's convertible isonitrile. Tetrahedron Lett 39(10):1113–1116

    Article  CAS  Google Scholar 

  48. Campbell J, Blackwell HE (2009) Efficient construction of diketopiperazine macroarrays through a cyclative-cleavage strategy and their evaluation as luminescence inhibitors in the bacterial symbiont Vibrio fischeri. J Comb Chem 11(6):1094–1099

    Article  CAS  Google Scholar 

  49. Ugi I, Hörl W, Hanusch-Kompa C, Schmid T, Herdtweck E (1998) MCR 6: chiral 2, 6-piperazinediones via Ugi reactions with alpha-amino acids, carbonyl compounds, isocyanides and alcohols. Heterocycles 47(2):965–975

    Article  CAS  Google Scholar 

  50. Bachand B, Tarazi M, St-Denis Y, Edmunds JJ, Winocour PD, Leblond L, Siddiqui MA (2001) Potent and selective bicyclic lactam inhibitors of thrombin. Part 4: transition state inhibitors. Bioorg Med Chem Lett 11(3):287–290

    Article  CAS  Google Scholar 

  51. Hanusch-Kompa C, Ugi I (1998) Multi-component reactions 13: synthesis of [gamma]-lactams as part of a multiring system via Ugi-4-centre-3-component reaction. Tetrahedron Lett 39(18):2725–2728

    Article  CAS  Google Scholar 

  52. Golebiowski A, Klopfenstein SR, Shao X, Chen JJ, Colson A-O, Grieb AL, Russell AF (2000) Solid-supported synthesis of a peptide β-turn mimetic. Org Lett 2(17):2615–2617

    Article  CAS  Google Scholar 

  53. Golebiowski A, Jozwik J, Klopfenstein SR, Colson A-O, Grieb AL, Russell AF, Rastogi VL, Diven CF, Portlock DE, Chen JJ (2002) Solid-supported synthesis of putative peptide β-turn mimetics via Ugi reaction for diketopiperazine formation. J Comb Chem 4(6):584–590

    Article  CAS  Google Scholar 

  54. Nixey T, Tempest P, Hulme C (2002) Two-step solution-phase synthesis of novel quinoxalinones utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 43(9):1637–1639

    Article  CAS  Google Scholar 

  55. Nenajdenko VG, Reznichenko AL, Balenkova ES (2007) Diastereoselective Ugi reaction without chiral amines: the synthesis of chiral pyrroloketopiperazines. Tetrahedron 63:3031–3041

    Article  CAS  Google Scholar 

  56. Nixey T, Kelly M, Semin D, Hulme C (2002) Short solution phase preparation of fused azepine-tetrazoles via a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 43(20):3681–3684

    Article  CAS  Google Scholar 

  57. Nixey T, Kelly M, Hulme C (2000) The one-pot solution phase preparation of fused tetrazole-ketopiperazines. Tetrahedron Lett 41(45):8729–8733

    Article  CAS  Google Scholar 

  58. Bienaym H, Bouzid K (1998) Synthesis of rigid hydrophobic tetrazoles using an Ugi multi-component heterocyclic condensation. Tetrahedron Lett 39(18):2735–2738

    Article  Google Scholar 

  59. Neochoritis C, Stephanidou-Stephanatou J, Tsoleridis CA (2009) Heterocyclizations via TosMIC-based multicomponent reactions: a new approach to one-pot facile synthesis of substituted quinoxaline derivatives. Synlett 2009(02):302–305

    Article  Google Scholar 

  60. Shaabani A, Maleki A, Mofakham H, Khavasi HR (2008) Novel isocyanide-based three-component synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives. J Comb Chem 10(2):323–326

    Article  CAS  Google Scholar 

  61. Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra JT, Holst JJ, Jeppesen CB, Johnson MD, de Jong JC, Jorgensen AS, Kercher T, Kostrowicki J, Madsen P, Olesen PH, Petersen JS, Poulsen F, Sidelmann UG, Sturis J, Truesdale L, May J, Lau J (2007) Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci 104(3):937–942

    Article  CAS  Google Scholar 

  62. Erb W, Neuville L, Zhu JP (2009) Ugi-post functionalization, from a single set of Ugi-adducts to two distinct heterocycles by microwave-assisted palladium-catalyzed cyclizations: tuning the reaction pathways by ligand switch. J Org Chem 74(8):3109–3115

    Article  CAS  Google Scholar 

  63. Nikulnikov M, Tsirulnikov S, Kysil V, Ivachtchenko A, Krasavin M (2009) tert-Butyl isocyanide as a convertible reagent in Ugi reaction: microwave-assisted preparation of 5,6-dihydropyrazolo[1, 5-a]pyrazine-4, 7-diones. Synlett 2009(02):260–262

    Article  Google Scholar 

  64. McTigue MA, Williams DR, Tainer JA (1995) Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistomal drug praziquantel. J Mol Biol 246(1):21–27

    Article  CAS  Google Scholar 

  65. Dömling A, Khoury K (2010) Praziquantel and schistosomiasis. Angew Chem Int Ed (in press)

    Google Scholar 

  66. Dömling A (2009) Preparation of praziquantel. 2009-EP2042 WO2009115333, 20090319

    Google Scholar 

  67. Liu H, Dömling A (2010) MCR synthesis and biological evaluation of novel praziquantel derivatives. Submitted

    Google Scholar 

  68. Liu H, Dömling A (2009) Efficient and diverse synthesis of indole derivatives. J Org Chem 74(17):6895–6898

    Article  CAS  Google Scholar 

  69. Wang W, Herdtweck E, Dömling A (2010) Polycyclic indole alkaloid-type compounds by MCR. Chem Commun 46(5):770–772

    Article  CAS  Google Scholar 

  70. El Kaim L, Gageat M, Gaultier L, Grimaud L (2007) New Ugi/Pictet–Spengler multicomponent formation of polycyclic diketopiperazines from isocyanides and alpha-keto acids. Synlett 2007(03):0500–0502

    Article  Google Scholar 

  71. Krasavin M, Shkavrov S, Parchinsky V, Bukhryakov K (2009) Imidazo[1,2-a]quinoxalines accessed via two sequential isocyanide-based multicomponent reactions. J Org Chem 74(6):2627–2629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dömling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, Y., Khoury, K., Dömling, A. (2010). The Piperazine Space in Isocyanide-based MCR Chemistry. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_27

Download citation

Publish with us

Policies and ethics