Skip to main content

Phosphinine Derivatives and their Use as Versatile Intermediates in P-Heterocyclic Chemistry

  • Chapter
  • First Online:
Phosphorous Heterocycles I

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 20))

Abstract

The simplest preparation of 1,2-dihydrophosphinine oxides is based on ring enlargement of 2,5-dihydro-1H-phosphole oxides involving the addition of dichlorocarbene on the double-bond of the dihydrophosphole oxide that is followed by the opening of the cyclopropane ring so formed. Variation of the substitution pattern and the extent of saturation of the hetero ring made available a variety of six-membered P-heterocycles, such as 1,4-dihydrophosphinine oxides, 1,2,3,6-tetrahydrophosphinine oxides and 1,2,3,4,5,6-hexahydrophosphinine oxides. 3-P(O)Y2-Substituted 1,2,3,6-tetrahydrophosphinine oxides obtained by the Michael reaction of 1,2-dihydrophosphinine oxides form another representative group. The 3-P(O)Y2-tetrahydrophosphinine oxides, along with their saturated derivatives may be useful precursors of bidentate P-ligands. Novel intramolecular interactions were found to determine the conformation of the 3-substituted tetrahydrophosphinine oxides.

The Diels-Alder reaction of 1,2-dihydrophosphinine oxides with dienophiles, such as acetylenic derivatives and maleic acid derivatives affords 2-phosphabicyclo[2.2.2]octadiene and 2-phosphabicyclo[2.2.2]octene 2-oxides that may be regarded as the precursors of low-coordinate, methylenephosphine oxides that are useful in the phosphorylation of O- and N-nucleophiles. It was observed that the photochemically induced fragmentation-related phosphorylation may follow a novel addition–elimination mechanism instead of the “classical” elimination–addition protocol.

The unexpected observation that the interaction of 1-(2,4,6-triisopropylphenyl-1,2-dihydrophosphinine oxide and dimethyl acetylenedicarboxylate resulted in a β-oxophosphorane instead of the expected Diels-Alder cycloadduct prompted us to recognise a new reaction that follows a novel inverse Wittig type protocol. The reaction was found to be of general value, and hence was extended to other 1-aryl substituted P-heterocycles. The mechanism involving an oxaphosphete intermediate was studied by quantum chemical calculations. Application of the microwave technique in the synthesis of β-oxophosphoranes led to neat reactions and high yields of the β-oxophosphoranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathey F. (ed) (2001) Phosphorus-carbon heterocyclic chemistry: the rise of a new domain. Pergamon/Elsevier, Amsterdam

    Google Scholar 

  2. Katritzky AR,Rees CW,Scriven EFV (eds) (1996) Comprehensive heterocyclic chemistry II, vols 1–6, 9. Pergamon/Elsevier, Oxford

    Google Scholar 

  3. Katritzky AR (ed) (2008) Comprehensive heterocyclic chemistry III, vol 7. Pergamon/Elsevier, Amsterdam

    Google Scholar 

  4. Keglevich G.y (1993) Synthesis 931

    Google Scholar 

  5. Keglevich G.y (1996) Rev Heteroatom Chem 14:119

    CAS  Google Scholar 

  6. Keglevich Gy. (2006) Current Org Chem 10:93

    Google Scholar 

  7. Keglevich Gy, Szelke H, Kovács J. (2004) Current Org Synth 1:377

    Article  CAS  Google Scholar 

  8. Keglevich G.y (2002) Current Org Chem 6:891

    Article  CAS  Google Scholar 

  9. Keglevich Gy, Forintos H, Körtvélyesi T. (2004) Current Org Chem 8:1245

    Article  CAS  Google Scholar 

  10. Keglevich Gy, Petneházy I, Miklós P, Almásy A, Tóth G, Tőke L, Quin LD. (1987) J Org Chem 52:3983

    Article  CAS  Google Scholar 

  11. Keglevich Gy, Janke F, Fülöp V, Kálmán A, Tóth G, Tőke L. (1990) Phosphorus Sulfur Silicon Relat Elem 54:73

    Article  CAS  Google Scholar 

  12. Keglevich Gy, Androsits B, Tőke L. (1988) J Org Chem 53:4106

    Article  CAS  Google Scholar 

  13. Keglevich Gy, Brlik J, Janke F, Tőke L. (1990) Heteroatom Chem 1:419

    Article  CAS  Google Scholar 

  14. Keglevich Gy, Kovács A, Tőke L, Újszászy K, Argay Gy, Czugler M, Kálmán A. (1993) Heteroatom Chem 4:329

    Article  CAS  Google Scholar 

  15. Keglevich Gy, Vaskó áGy, Dobó A, Ludányi K, Tőke L. (2001) J Chem Soc Perkin Trans 1: 1062

    Article  Google Scholar 

  16. Keglevich Gy, Forintos H, Sipos M, Dobó A, Ludányi K, Vékey K, Tungler A, Tőke L. (2001) Heteroatom Chem 12:528

    Article  CAS  Google Scholar 

  17. Keglevich Gy, Tőke L, Kovács A, Tóth G, Újszászy K. (1993) Heteroatom Chem 4:61

    Article  CAS  Google Scholar 

  18. Keglevich Gy, Keserű GyM, Forintos H, Szöllősy á, Ludányi K, Tőke L. (1999) J Chem Soc Perkin Trans 1: 1801

    Article  Google Scholar 

  19. Keglevich Gy, Tőke L, Lovász Cs, Újszászy K, Szalontai G. (1994) Heteroatom Chem 5:395

    Article  CAS  Google Scholar 

  20. Keglevich Gy, Újszászy K, Szöllősy á, Ludányi K, Tőke L. (1996) J Organomet Chem 516:139

    Article  CAS  Google Scholar 

  21. Keglevich Gy, Janke F, Brlik J, Petneházy I, Tóth G, Tőke L. (1989) Phosphorus and Sulfur 46:69

    CAS  Google Scholar 

  22. Keglevich Gy, Szöllősy á, Tőke L, Fülöp V, Kálmán A. (1990) J Org Chem 55:6361

    Article  CAS  Google Scholar 

  23. Keglevich Gy, Újszászy K, Kovács A, Tőke L.. (1993) J Org Chem 58:977

    Article  CAS  Google Scholar 

  24. Keglevich Gy, Tóth G, Petneházy I, Miklós P, Tőke L. (1987) J Org Chem 52:5721

    Article  CAS  Google Scholar 

  25. 25. Benezra C, (1973) J Am Chem Soc 95:6890

    Article  CAS  Google Scholar 

  26. Adiwidjaja G, Meyer B, Thiem J. (1979) Z Naturforsch B Anorg Chem Org Chem 34:1547

    Google Scholar 

  27. Quin LD, Gallagher MI, Cuncle GT, Chesnut DB (1980) J Am Chem Soc 102:3136

    Article  CAS  Google Scholar 

  28. Keglevich Gy, Kovács A, Újszászy K, Tungler A, Tóth G, Tőke L. (1992) Phosphorus Sulfur 70:219

    Article  CAS  Google Scholar 

  29. Keglevich Gy, Tungler A, Novák T, Tőke L. (1996) J Chem Res (S) 528

    Google Scholar 

  30. Keglevich Gy, Sipos M, Lengyel D, Forintos H, Körtvélyesi T, Imre T, Tőke L. (2004) Synth Commun 34:4159

    Article  CAS  Google Scholar 

  31. Keglevich Gy, Böcskei Zs, Újszászy K, Tőke L. (1997) Synthesis 1997:1391

    Article  Google Scholar 

  32. Keglevich Gy, Fekete M, Chuluunbaatar T, Dobó A, Böcskei Zs, Tőke L. (2000) Synth Commun 30:4221

    Article  CAS  Google Scholar 

  33. Keglevich Gy, Sipos M, Imre T, Ludányi K, Szieberth D, Tőke L. (2002) Tetrahedron Lett 43:8515

    Article  CAS  Google Scholar 

  34. Keglevich Gy, Sipos M, Szieberth D, Nyulászi L, Imre T, Ludányi K, Tőke L. (2004) Tetrahedron 60:6619

    Article  CAS  Google Scholar 

  35. Czugler M, Körtvélyesi T, Fábián L, Sipos M, Keglevich G.y (2007) Cryst Eng Comm 9:561

    CAS  Google Scholar 

  36. Keglevich Gy, Sipos M, Körtvélyesi T, Imre T, Tőke L. (2005) Tetrahedron Lett 46:1655

    Article  CAS  Google Scholar 

  37. Sipos M, Körtvélyesi T, Ujj V, Ludányi K, Vékey K, Tőke L, Keglevich G.y (2007) Heteroatom Chem 18:747

    Article  CAS  Google Scholar 

  38. Odinets IL, Vinogradova NM, Lyssenko KA, Golovanov DG, Petrovskii PV, Mastryukova TA, Szelke H, Balázsdi Szabó N, Keglevich G.y (2005) J Organomet Chem 690:704

    Article  CAS  Google Scholar 

  39. Keglevich Gy, Sipos M, Szieberth D, Petőcz Gy, Kollár L. (2004) J Organomet Chem 689:3158

    Article  CAS  Google Scholar 

  40. Keglevich Gy, Sipos M, Ujj V, Körtvélyesi T. (2005) Letters in Org Chem 2:608

    Article  CAS  Google Scholar 

  41. Keglevich Gy, Szelke H, Bálint á, Imre T, Ludányi K, Nagy Z, Hanusz M, Simon K, Harmat V, Tőke L. (2003) Heteroatom Chem 14:443

    Article  CAS  Google Scholar 

  42. Quin LD, Tang J-S, Keglevich G.y (1991) Heteroatom Chem (1991) 2:283

    Article  Google Scholar 

  43. Quin LD, Tang J-S, Quin GyS, Keglevich G.y (1993) Heteroatom Chem 4:189

    Article  CAS  Google Scholar 

  44. Keglevich Gy, Steinhauser K, Ludányi K, Tőke L. (1998) J Organomet Chem 570:49

    Article  CAS  Google Scholar 

  45. Keglevich Gy, Szelke H, Tamás A, Harmat V, Ludányi K, Vaskó áGy, Tőke L. (2002) Heteroatom Chem 13:626

    Article  CAS  Google Scholar 

  46. Keglevich Gy, Kovács J, Ludányi K, Tőke L. (2002) Heterocyclic Commun 8:31

    CAS  Google Scholar 

  47. Keglevich Gy, Kovács J, Körtvélyesi T Parlagh Gy, Imre T, Ludányi K, Hegedűs L, Hanusz M, Simon K, Márton A, Marosi Gy, Tőke L. (2004) Heteroatom Chem 15:97

    Article  CAS  Google Scholar 

  48. Keglevich Gy, Szelke H, Tőke L. (2001) Heterocyclic Commun 7:365

    CAS  Google Scholar 

  49. Keglevich Gy, Körtvélyesi T, Forintos H, Vaskó áGy, Izvekov V, Tőke L. (2002) Tetrahedron 58:3721

    Article  CAS  Google Scholar 

  50. Keglevich Gy, Forintos H, Körtvélyesi T, Tőke L. (2002) J Chem Soc Perkin Trans 1:, 26

    Google Scholar 

  51. Deschamps E, Mathey F. (1984) J Chem Soc Chem Commun 1984:1214

    Article  Google Scholar 

  52. Keglevich G Újszászy K,Quin LD; Quin GyS. (1993) Heteroatom Chem 4:559

    Article  CAS  Google Scholar 

  53. Keglevich Gy, Steinhauser K, Keserű GyM, Böcskei Zs, Újszászy K, Marosi Gy, Ravadits I, Tőke L. (1999) J Organomet Chem 597:182

    Article  Google Scholar 

  54. Keglevich Gy, Szelke H, Dobó A, Nagy Z, Tőke L. (2001) Synth Commun 31:119

    Article  Google Scholar 

  55. Keglevich Gy, Szelke H, Nagy Z, Dobó A, Novák T, Tőke L J. (1999) Chem Res 581

    Google Scholar 

  56. Szelke H, Ludányi K, Imre T, Nagy Z, Vékey K, Tőke L, Keglevich G.y (2004) Synth Commun 34:4171

    Article  CAS  Google Scholar 

  57. Jankowski S, Rudzinski J, Szelke H, Keglevich G.y (2000) J Organomet Chem 595:109

    Article  CAS  Google Scholar 

  58. Keglevich Gy, Vaskó áGy, Dobó A, Ludányi K, Tőke L. (2001) J Chem Soc Perkin Trans 1:, 1062

    Google Scholar 

  59. Keglevich Gy, Körtvélyesi T, Forintos H, Tamás A, Ludányi K, Izvekov V, Tőke L. (2001) Tetrahedron Lett 42:4417

    Article  CAS  Google Scholar 

  60. Keglevich Gy, Forintos H, Körtvélyesi T, Tőke L. (2002) J Chem Soc Perkin Trans 1:, 26

    Google Scholar 

  61. Keglevich Gy, Körtvélyesi T, Forintos H, Vaskó áGy, Izvekov V, Tőke L. (2002) Tetrahedron 58:3721

    Article  CAS  Google Scholar 

  62. Keglevich Gy, Forintos H, Szelke H, Tamás A, Vaskó áGy, Kovács J, Körtvélyesi T, Kollár L, Tőke L. (2002) Phosphorus Sulfur Silicon Relat Elem 177:1681

    Article  CAS  Google Scholar 

  63. Keglevich Gy, Forintos H, Ujvári A, Imre, T, Ludányi K, Nagy Z, Tőke L. (2004) J Chem Res 2004:432

    Article  Google Scholar 

  64. Stewart JJP. (1995) MOPAC93 (Revision V. 2), Fujitsu Ltd., Tokyo

    Google Scholar 

  65. Keglevich Gy, Körtvélyesi T, Forintos H, Lovas S. (2002) J Chem Soc Perkin Trans 2:, 1645

    Google Scholar 

  66. Keglevich Gy, Körtvélyesi T, Ujvári A, Dudás E. (2005) J Organomet Chem 690:2497

    Article  CAS  Google Scholar 

  67. Mucsi Z, Körtvélyesi T, Viskolcz B, Csizmadia IG, Novák T, Keglevich G.y (2007) Eur J Org Chem 2007:1759

    Article  Google Scholar 

  68. Mucsi Z, Hermecz I, Viskolcz B, Csizmadia I G, Keglevich G.y (2008) Tetrahedron 64:1868

    Article  CAS  Google Scholar 

  69. Vedejs E, Marth CF. (1994) In: Quin LD,Verkade JG (eds) Phosphorus-31 NMR spectral properties in compound characterization and structural analysis. VCH, New York, Chap. 23, p 297

    Google Scholar 

  70. Keglevich Gy, Dudás E, Sipos M, Lengyel D, Ludányi K. (2006) Synthesis 1365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Keglevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Keglevich, G. (2009). Phosphinine Derivatives and their Use as Versatile Intermediates in P-Heterocyclic Chemistry. In: Bansal, R. (eds) Phosphorous Heterocycles I. Topics in Heterocyclic Chemistry, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2008_8

Download citation

Publish with us

Policies and ethics