Advertisement

pp 1-39 | Cite as

Recent Studies in Chemistry of Hetero Analogs of Pentalene Dianion

  • A. Krutosíková
  • T. Gracza
Chapter
Part of the Topics in Heterocyclic Chemistry book series

Abstract

This chapter is devoted to recent progress in the chemistry of the 5:5 fused heterocyclic systems. There are four possible modes of 5:5 fusions of the simple five-membered heterocycles leading to four structures containing one heteroatom in each ring. The heteroatoms may be the same or different and may be O, NH, S, Se, Te, P, As, or Sb. The fully conjugated hetero analogs of pentalene dianion have a central C–C bond and are isoelectronic with the 10-π-electron pentalene dianion. The scope of the chapter is outlined with a survey of various structural types and nomenclature of the parent compounds and their derivatives. New synthetic procedures and synthetic applications of title compounds are presented. This review has concentrated on the new developments achieved from 1997 to September 2007.

Keywords

Diheteropentalene systems, 5 5-Fused heterocycles aromaticity, 5 5-Fused heterocycles reactivity, Ring syntheses 

Abbreviations and Symbols

Ac

Acetyl;

AIBN

Azobis(isobutyronitrile);

Boc

tert-Butoxycarbonyl;

Bn

Benzyl;

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene;

DCM

Dichloromethane;

DDQ

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone;

DMAD

Dimethyl acetylenedicarboxylate;

DMAP

4-Dimethylaminopyridine;

DME

Dimethoxyethane;

DMF

Dimethylformamide;

DMSO

Dimethylsulfoxide;

DPPE

1,2-Bis(diphenylphosphino)ethane;

EWG

Electron withdrawing group;

LDA

Lithium diisopropylamide;

MCPBA

m-Chloroperbenzoic acid;

MW

Microwave;

NBS

N-Bromosuccinimide;

NPMI

N-Phenylmaleimide;

PPA

Polyphosphoric acid;

Ph

Phenyl;

TFA

Trifluoroacetic acid;

THF

Tetrahydrofuran;

TMS

Trimethylsilyl;

Tol

Tolyl;

Ts

Tosyl

Notes

Acknowledgements

The authors are grateful to the Slovak Grant Agency (VEGA No. 13549/06, No. 13584/06) and APVV (No. 20-000305).

References

  1. 1.
    1. Cava MP, Lakshmikantham MV (1984) Two fused five-membered rings each containing one heteroatom. In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry. Pergamon, Oxford, chap 3.18, p 1037Google Scholar
  2. 2.
    2. Krutošíková A (1996) Bicyclic 5-5 systems: two heteroatoms 1:1. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II. Pergamon, Oxford, chap 7.01, p 1Google Scholar
  3. 3.
    3. Krutošíková A, Gracza T (2008) Bicyclic 5-5 systems: two heteroatoms 1:1. In: Katritzky AR (ed) Comprehensive heterocyclic chemistry III. Elsevier, Oxford, chap 10.01, p 1Google Scholar
  4. 4.
    4. Subramanian G, Schleyer PvR, Jiao H (1996) Angew Chem Int Ed Engl 35:2638CrossRefGoogle Scholar
  5. 5.
    5. Sleziak R, Krutošíková A, Cyrański MK, Krygowski TM (2000) Pol J Chem 74:201Google Scholar
  6. 6.
    6. Cyrański MK, Krygowski TM, Krutošíková A, Sleziak R (2001) Tetrahedron 57:8867CrossRefGoogle Scholar
  7. 7.
    7. Cyrański MK (2005) Chem Rev 105:3373Google Scholar
  8. 8.
    8. Ogawa K, Rasmussen SC (2003) J Org Chem 68:2921PubMedCrossRefGoogle Scholar
  9. 9.
    Brugier D, Outurquin F, Paulmier C (2001) J Chem Soc Perkin Trans I, p 37Google Scholar
  10. 10.
    Black M, Cadogan JIG, McNab H, MacPherson AD, Roddam VP, Smith C, Swenson HR (1997) J Chem Soc Perkin Trans I, p 2483Google Scholar
  11. 11.
    Gajdoš P, Miklovic J, Krutošíková A (2006) Khim Geterotsikl Soed, p 825Google Scholar
  12. 12.
    Watanabe T, Miyaura N, Suzuki A (1992) Synlett, p 207Google Scholar
  13. 13.
    Appukkuttan P, Van der Eycken E, Dehaen W (2005) Synlett, p 127Google Scholar
  14. 14.
    14. Černovská K, Nič M, Pihera P, Svoboda J (2000) Collect Czech Chem Commun 65:1939CrossRefGoogle Scholar
  15. 15.
    15. Sashida H, Yasuike S (1998) J Heterocycl Chem 35:725CrossRefGoogle Scholar
  16. 16.
    16. Milkiewicz KL, Parks DJ, Lu T (2003) Tetrahedron Lett 44:4257CrossRefGoogle Scholar
  17. 17.
    17. Krayushkin MM, Yarovenko VN, Semenov SL, Zavarzin IV, Ignatenko AV, Martynkin AYu, Uzhinov BM (2002) Org Lett 4:3879PubMedCrossRefGoogle Scholar
  18. 18.
    18. Gajdoš P, Pavlíková S, Bureš F, Krutošíková A (2005) Cent Eur J Chem 3:11Google Scholar
  19. 19.
    19. Machara A, Kurfürst M, Kozmík V, Petříčková H, Dvořáková H, Svoboda J (2004) Tetrahedron Lett 45:2189CrossRefGoogle Scholar
  20. 20.
    Krutošíková A, Kryštofová-Labudová L, Dandárová M (2001) Khim Geterotsikl Soed, p 1664Google Scholar
  21. 21.
    21. Ito S, Kikuchi T, Okujima T, Morita M, Asao T (2001) J Org Chem 66:2470PubMedCrossRefGoogle Scholar
  22. 22.
    22. Puterová Z, Sterk H, Krutošíková A (2004) Molecules 9:11PubMedCrossRefGoogle Scholar
  23. 23.
    23. Puterová Z, Krutošíková A, Lyčka A, Durčeková T (2004) Molecules 9:241PubMedCrossRefGoogle Scholar
  24. 24.
    24. Gašparová R, Lácová M, Krutošíková A (2005) Collect Czech Chem Commun 70:2101CrossRefGoogle Scholar
  25. 25.
    25. Gašparová R, Zbojek D, Lácová M, Kráľová K, Gatial A, Horváth B, Krutošíková A (2005) Cent Eur J Chem 3:622CrossRefGoogle Scholar
  26. 26.
    26. Sha Ch-K, Lee R-S (1995) Tetrahedron 51:193CrossRefGoogle Scholar
  27. 27.
    27. Sha Ch-K, Hsu H-Y, Cheng S-Y, Kuo Y-L (2003) Tetrahedron 59:1477CrossRefGoogle Scholar
  28. 28.
    Jeevanandam A, Srinivasan PC (1995) J Chem Soc Perkin Trans I, p 2663Google Scholar
  29. 29.
    Gribble GW, Pelkey ET, Switzer FL (1998) Synlett, p 1061Google Scholar
  30. 30.
    30. Wensbo D, Annby U, Gronowitz S (1995) Tetrahedron 51:10323CrossRefGoogle Scholar
  31. 31.
    31. Kappe CO, Padwa A (1996) J Org Chem 61:6166PubMedCrossRefGoogle Scholar
  32. 32.
    32. Shafiee A, Ebrahimzadeh MA, Shabazi J, Hamedpanah S (1998) J Heterocycl Chem 35:71CrossRefGoogle Scholar
  33. 33.
    Saito T, Kikuchi H, Kondo A (1995) Synthesis, p 87Google Scholar
  34. 34.
    34. Gribble GW, Jiang J, Liu Y (2002) J Org Chem 67:1001PubMedCrossRefGoogle Scholar
  35. 35.
    Pelkey ET, Gribble GW (1999) Synthesis, p 1117Google Scholar
  36. 36.
    36. Phillips RS, Cohen LA, Annby U, Wensbo D, Gronowitz S (1995) Bioorg Med Chem Lett 5:1133CrossRefGoogle Scholar
  37. 37.
    37. Wensbo D, Gronowitz S (1996) Tetrahedron 52:14975CrossRefGoogle Scholar
  38. 38.
    38. Daly K, Nomak R, Snyder JK (1997) Tetrahedron Lett 50:8611CrossRefGoogle Scholar
  39. 39.
    39. Roberts-Bleming SJ, Davies GJ, Kalaji M, Murphy PJ (2003) J Org Chem 68:7115PubMedCrossRefGoogle Scholar
  40. 40.
    Diaz M, Cobas A, Guitian E, Castedo L (2001) Eur J Org Chem, p 4543Google Scholar
  41. 41.
    41. Gribble GW, Moskalev NV (2002) Tetrahedron Lett 43:197CrossRefGoogle Scholar
  42. 42.
    42. Bhattacharya G, Su T-L, Chia Ch-M, Chen K-T (2001) J Org Chem 66:426PubMedCrossRefGoogle Scholar
  43. 43.
    43. Smitrowich JH, Davies IW (2004) Org Lett 6:533CrossRefGoogle Scholar
  44. 44.
    Engqvist R, Javaid A, Bergman J (2004) Eur J Chem, p 2589Google Scholar
  45. 45.
    45. Kanbe K, Naganawa T, Nakamura T, Okami Y, Takeuchi T (1993) Biosci Biotechnol Biochem 57:636CrossRefGoogle Scholar
  46. 46.
    Katritzky AR, Vvedensky VY, Tymoshenko DO (2001) J Chem Soc Perkin Trans I, p 2483Google Scholar
  47. 47.
    Mashraqui SH, Hariharasubrahmanian H, Kumar S (1999) Synthesis, p 2030Google Scholar
  48. 48.
    Mashraqui SH, Hariharasubrahmanian (2000) Synth Commun 30:1695Google Scholar
  49. 49.
    49. Mashraqui SH, Ashraf M, Hariharasubrahmanian H, Kellogg RM, Meetsma A (2004) J Mol Struct 689:107CrossRefADSGoogle Scholar
  50. 50.
    50. Comel A, Kirsch G (2001) J Heterocycl Chem 30:1167Google Scholar
  51. 51.
    Sommen G, Comel A, Kirsch G (2001) Synlett, p 1731Google Scholar
  52. 52.
    52. Sommen G, Comel A, Kirsch G (2002) Tetrahedron Lett 43:257CrossRefGoogle Scholar
  53. 53.
    53. Sommen G, Comel A, Kirsch G (2003) Tetrahedron 59:1557CrossRefGoogle Scholar
  54. 54.
    Sommen G, Comel A, Kirsch G (2003) Synthesis, p 735Google Scholar
  55. 55.
    Sommen G, Comel A, Kirsch G (2004) Synthesis, p 451Google Scholar
  56. 56.
    56. Metten B, Kostermans M, Van Baelen G, Smet M, Dehaen W (2006) Tetrahedron 62:6018CrossRefGoogle Scholar
  57. 57.
    57. Krutošíková A, Ramsden CA, Dandárová M, Lyčka A (1997) Molecules 2:69CrossRefGoogle Scholar
  58. 58.
    58. Sleziak R, Balážiová S, Krutošíková A (1999) Collect Czech Chem Commun 64:1135CrossRefGoogle Scholar
  59. 59.
    59. Welch M, Philliphs RS (1999) Bioorg Med Chem Lett 9:637PubMedCrossRefGoogle Scholar
  60. 60.
    60. Welch M, Philliphs RS (1999) Heterocycl Commun 5:305Google Scholar
  61. 61.
    61. Sleziak R, Krutošíková A (1999) Collect Czech Chem Commun 64:321CrossRefGoogle Scholar
  62. 62.
    62. Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S, McCulloch I (2005) J Am Chem Soc 127:1078PubMedCrossRefGoogle Scholar
  63. 63.
    63. Mashraqui SH, Sangvikar YS, Meetsma A (2006) Tetrahedron Lett 47:5599CrossRefGoogle Scholar
  64. 64.
    64. Gutman I, Milun M, Trinajstic N (1977) J Am Chem Soc 99:1692CrossRefGoogle Scholar
  65. 65.
    65. Buemi G (1987) J Chim Phys Phys-Chim Biol 84:1147Google Scholar
  66. 66.
    Nakayama J, Ishii A, Kobayashi Y, Hoshino M (1988) J Chem Soc Chem Commun, p 959Google Scholar
  67. 67.
    67. Cava MP, Pollack NM (1967) J Am Chem Soc 89:3639CrossRefGoogle Scholar
  68. 68.
    68. Cava MP, Pollack NM, Dieterle GA (1973) J Am Chem Soc 95:2558CrossRefGoogle Scholar
  69. 69.
    69. Nakayama J, Choi KS, Ishii A, Hoshino M (1990) Bull Chem Soc Jpn 63:1026CrossRefGoogle Scholar
  70. 70.
    70. Ishii A, Ida Y, Nakayama J, Hoshino M (1992) Bull Chem Soc Jpn 65:2821CrossRefGoogle Scholar
  71. 71.
    71. Cava MP, Behforouz M, Husbands GEM, Srinivasan M (1973) J Am Chem Soc 95:2561CrossRefGoogle Scholar
  72. 72.
    72. Yoneda S, Ozaki K, Inoue T, Sugimoto A, Yanagi K, Minobe M (1985) J Am Chem Soc 107:5801CrossRefGoogle Scholar
  73. 73.
    73. Kobayashi T, Ozaki K, Yoneda S (1988) J Am Chem Soc 110:1793CrossRefGoogle Scholar
  74. 74.
    74. Yoneda S, Ozaki K, Tsubouchi A, Kojima H, Yanagi K (1988) J Heterocycl Chem 25:559CrossRefGoogle Scholar
  75. 75.
    Tsubouchi A, Matsumura N, Inoue H, Hamasaki N, Yoneda S, Yanagi K (1989) J Chem Soc Chem Commun, p 223Google Scholar
  76. 76.
    Tsubouchi A, Matsumura N, Inoue H (1991) J Chem Soc Chem Commun, p 520Google Scholar
  77. 77.
    77. Ishii A, Nakayama J, Kazami J, Ida Y, Nakamura T, Hoshino M (1991) J Org Chem 56:78CrossRefGoogle Scholar
  78. 78.
    78. Beye N, Cava MP (1994) J Org Chem 59:2223CrossRefGoogle Scholar
  79. 79.
    79. Amaresh RR, Lakshmikantham MV, Baldwin JW, Cava MP, Metzger RM, Rogers RD (2002) J Org Chem 67:2453PubMedCrossRefGoogle Scholar
  80. 80.
    80. Matsamura N, Tanaka H, Yagyu Y, Mizuno K, Inoue H, Takada K, Yasui M, Iwasaki F (1998) J Org Chem 63:163CrossRefGoogle Scholar
  81. 81.
    81. Rajagopal D, Lakshmikantham MV, Morkved E, Cava MP (2002) Org Lett 4:1193PubMedCrossRefGoogle Scholar
  82. 82.
    82. Saris LE, Cava MP (1977) Heterocycles 6:1349CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Chemical SciencesUniversity of St. Cyril and Methodius,Slovakia

Personalised recommendations