Skip to main content

Quantitative Structure–Cytotoxicity Relationship of Bioactive Heterocycles by the Semi-empirical Molecular Orbital Method with the Concept of Absolute Hardness

  • Chapter
  • First Online:
Bioactive Heterocycles VII

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 16))

Abstract

The relationship between the cytotoxicity of N-heterocycles (13 4-trifluoromethylimidazole, 15 phenoxazine and 12 5-trifluoromethyloxazole derivatives), O-heterocycles (11 3-formylchromone and 20 coumarin derivatives) and seven vitamin K2 derivatives against eight tumor cell lines (HSC-2, HSC-3, HSC-4, T98G, HSG, HepG2, HL-60, MT-4) and a maximum of 15 chemical descriptors was investigated using CAChe Worksystem 4.9 project reader. After determination of the conformation of these compounds and approximation to the molecular form present in vivo (biomimetic) by CONFLEX5, the most stable structure was determined by CAChe Worksystem 4.9 MOPAC (PM3). The present study demonstrates the best relationship between the cytotoxic activity and molecular shape or molecular weight of these compounds. Their biological activities can be estimated by hardness and softness, and by using ηχ activity diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoneda F, Nitta Y (1964) Chem Pharm Bull Jap 12:1264

    CAS  Google Scholar 

  2. Yamamoto K, Sawanishi H, Miyamoto K (1989) Biol Pharm Bull 210:356

    Google Scholar 

  3. Fujii A, Bush JH, Shores KE, Johnson RG, Garascia RJ, Cook ES (1977) J Pharm Sci 66:844

    Article  CAS  Google Scholar 

  4. Hansch C, Fujita T (1964) J Am Chem Soc 86:1616

    Article  CAS  Google Scholar 

  5. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:178

    Article  CAS  Google Scholar 

  6. Bingham RC, Dewar MJ, Donald HL (1975) J Am Chem Soc 97:1294

    Article  CAS  Google Scholar 

  7. Dewar MJ, Thiel W (1977) J Am Chem Soc 99:4899

    Article  CAS  Google Scholar 

  8. Dewar MJ, Zoebisch EV, Healy EF, Stewart JJ (1985) J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  9. Stewart JJ (1989) J Comp Chem 10:209

    Article  CAS  Google Scholar 

  10. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  11. Kohn W, Sham LJ (1965) Phys Rev 140:A1135

    Article  Google Scholar 

  12. Koppel LA, Bulrk P, Koppel I, Leito I, Sonoda T, Mishima M (2000) J Am Chem Soc 122:5114

    Article  CAS  Google Scholar 

  13. Fujisawa S, Kadoma Y, Ishihara M, Atsumi T, Yokoe I (2004) J Liposome Res 14:39

    Article  CAS  Google Scholar 

  14. Parr RG, Paarson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  15. Sakar U, Parthasarathi R, Subramanian V, Chattaraji PK (2004) Internet Electronic J Mol Design IECMD 2004:1–24

    Google Scholar 

  16. Kobayashi S, Tanaka A, Sameshima K (1999) Chem Chem Indus 52:41

    Google Scholar 

  17. Kobayashi S, Sameshima K, Ishii Y, Tanaka A (1995) Chem Pharm Bull 43:1780

    CAS  Google Scholar 

  18. Kobayashi S, Hamashima H, Kurihara M, Miyata N, Tanaka A (1998) Pharm Bull 46:1108

    CAS  Google Scholar 

  19. Liu WK, Ho CK, Cheung KF, Lie PL, Ye WC, Che CT (2004) Eur J Pharmacol 498:71

    Article  CAS  Google Scholar 

  20. Bennett JE (1996) Antimicrobial agents: antifungal agents. In: Goodman LS, Limbird LE, Milinoff PB, Ruddon RW, Gilman AG (eds) Goodman & Gilman's: The pharmacological basis of therapeutics, 9th edn. MacGraw-Hill, New York, pp 1175–1190

    Google Scholar 

  21. Bellina F, Cauteruccio S, Rossi R (2007) Tetrahedron 63:4571

    Article  CAS  Google Scholar 

  22. Anil KC, Jayarama SB, Salimath BP, Rangappa KS (2007) Invest New Drugs 25:343

    Article  CAS  Google Scholar 

  23. Takekawa F, Nagumo T, Shintani S, Hashimoto K, Kikuchi H, Katayama T, Ishihara M, Amano O, Kawase M, Sakagami H (2007) Anticancer Res (in press)

    Google Scholar 

  24. Kawase M, Saito S, Kurihara T (2001) Chem Pharm Bull 49:461

    Article  CAS  Google Scholar 

  25. Kawase M, Saito S (2000) Chem Pharm Bull 48:410

    CAS  Google Scholar 

  26. Ishihara M, Takayama F, Toguchi M, Nakano K, Yasumoto E, Nakayachi T, Satoh K, Sakagami H (2000) Anticancer Res 20:4307

    CAS  Google Scholar 

  27. Ishihara M, Sakagami H (2003) Anticancer Res 23:2549

    CAS  Google Scholar 

  28. Ishihara M, Yokote Y, Sakagami H (2006) Anticancer Res 26:2883

    CAS  Google Scholar 

  29. Motohashi N, Mitscher LA, Meyer R (1991) Med Res Rev 11:239

    Article  CAS  Google Scholar 

  30. Hara K, Okamoto M, Aki T, Yagita H, Tanaka H, Mizukami Y, Nakamura H, Tomoda A, Hamasaki N, Kang D (2005) Mol Cancer Ther 4:1121

    Article  CAS  Google Scholar 

  31. Motohashi N (1982) Yakugaku Zasshi 102:646

    CAS  Google Scholar 

  32. Iwata A, Yamaguchi T, Sato K, Izumi R, Tomoda A (2003) Tohoku J Exp Med 200:161

    Article  CAS  Google Scholar 

  33. Blank B, Baxter LL (1968) J Med Chem 11:807

    Article  CAS  Google Scholar 

  34. Wadkins RM, Houghton PJ (1993) FEBS Lett 322:1

    Article  CAS  Google Scholar 

  35. Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC (2000) Nat Struct Biol 7:312

    Article  CAS  Google Scholar 

  36. Moosmann B, Skutella T, Beyer K, Ehl C (2001) Biol Chem 382:1601

    Article  CAS  Google Scholar 

  37. Suzuki F, Hashimoto K, Kikuchi H, Kawase M, Motohashi N, Sakagami H (2007) Anticancer Res (in press)

    Google Scholar 

  38. Motohashi N (1993) Yakugaku Zasshi 103:364

    Google Scholar 

  39. Pippel DJ, Mapes CM, Mani NS (2007) J Org Chem 72:5828

    Article  CAS  Google Scholar 

  40. Shimizu M, Hiyama T (2006) Angew Chem Int Ed Engl 45:5432

    Article  CAS  Google Scholar 

  41. Kirk KL (2006) J Fluor Chem 127:1013

    Article  CAS  Google Scholar 

  42. Singh SK, Vobbalareddy S, Kalleda SR, Casturi SR, Mullangi R, Ramanujam R, Yeleswarapu KR, Iqbal J (2006) Bioorg Med Chem Lett 16:3921

    Article  CAS  Google Scholar 

  43. Kawase M, Miyamae H, Kurihara T (1998) Chem Pharm Bull 46:749

    CAS  Google Scholar 

  44. Kawase M, Saito S, Kurihara T (2000) Chem Pharm Bull 48:1338

    CAS  Google Scholar 

  45. Das U, Kawase M, Sakagami H, Ideo A, Shimada J, Molnar J, Dimmick JR (2007) Bioorg Med Chem 15:3373

    Article  CAS  Google Scholar 

  46. Nawrot-Modranka J, Nawrot E, Graczyk J (2006) Eur J Med Chem 41:1301

    Article  CAS  Google Scholar 

  47. Horton DA, Bourne GT, Smythe ML (2003) Chem Rev 103:893

    Article  CAS  Google Scholar 

  48. Sabitha G (1996) Aldrichim Acta 29:15

    Google Scholar 

  49. Wang B, Yang Z-Y, Li T (2006) Bioorg Med Chem 14:6012

    Article  CAS  Google Scholar 

  50. Havsteen BH (2002) Pharmacol Ther 96:67

    Article  CAS  Google Scholar 

  51. Kawase M, Tanaka T, Kan H, Tani S, Nakashima H, Sakagami H (2007) In Vivo 21 (in press)

    Google Scholar 

  52. Murray RDH, Mendez J, Brown SA (1982) The natural coumarins: occurrence, chemistry and biochemistry. Wiley, New York, pp 282–289

    Google Scholar 

  53. Paya M, Goodwin PA, de las Heras, Hoult RS (1994) Biochem Pharmacol 48:445

    Article  CAS  Google Scholar 

  54. Maucher A, Angerer E (1994) J Cancer Res Clin Oncol 120:502

    Article  CAS  Google Scholar 

  55. Chu C-Y, Tsai Y-Y, Wang C-J, Lin W-L, Tseng T-H (2001) Eur J Pharmacol 416:25

    Article  CAS  Google Scholar 

  56. Kawase M, Sakagami H, Hashimoto K, Tani S, Hauer H, Chatterjee SS (2003) Anticancer Res 23:3243

    CAS  Google Scholar 

  57. Roy D, Palangat M, Chen CW, Thomas RD, Colerangel J, Atkinson A, Yan ZJ (1997) J Toxicol Environ Health 50:1

    Article  CAS  Google Scholar 

  58. Sakai I, Hashimoto S, Yoda M, Hida T, Ohsawa S, Nakajo S, Nakaya K (1994) Biochem Biophys Res Commun 205:1305

    Article  CAS  Google Scholar 

  59. Kameda T, Miyazawa K, Mori Y, Yuasa T, Shiokawa M, Nakamura Y, Mano H, Hakeda Y, Kameda A, Kumegawa M (1996) Biochem Biophys Res Commun 220:515

    Article  CAS  Google Scholar 

  60. Shibayama-Imazu T, Sonoda I, Sakairi S, Aiuchi T, An W-W, Nakajo S, Itabe H, Nakaya K (2006) Apoptosis 11:1535

    Article  CAS  Google Scholar 

  61. Sakagami H, Hashimoto K, Suzuki F, Ishihara M, Kikuchi H, Katayama T, Satoh K (2007) Anticancer Res (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Ishihara .

Editor information

Noboru Motohashi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishihara, M., Sakagami, H., Kawase, M., Motohashi, N. (2008). Quantitative Structure–Cytotoxicity Relationship of Bioactive Heterocycles by the Semi-empirical Molecular Orbital Method with the Concept of Absolute Hardness. In: Motohashi, N. (eds) Bioactive Heterocycles VII. Topics in Heterocyclic Chemistry, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2007_100

Download citation

Publish with us

Policies and ethics