Advertisement

Molecular Recognition with Designed Heterocycles and Their Lanthanide Complexes

  • Samir Mameri
  • Satoshi Shinoda
  • Hiroshi TsukubeEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 17)

Abstract

Molecular recognition with designed heterocycles and their lanthanide complexes in the solution states was mainly described. Various synthetic receptors for specific binding of cationic and anionic guests were presented, in which several weak interactions were combined to fit the size, shape, geometry, and electronic characteristics of the specific guest species. The cation-ligating heterocycles were successfully organized in the receptor molecules to exhibit high selectivity and efficiency in the cation recognition and sensing. A series of N-protonated and substituted heterocycles had the potentials as anion receptors effective in aqueous media. Furthermore, the designed heterocycle-lanthanide complexes worked as luminescent sensory devices of biologically important anions. The examples presented here clearly indicated that a variety of heterocycles acted as useful building blocks in the receptor architecture. The sophisticated molecular synthesis using potential heterocycles can provide specific recognition at the molecular and supramolecular levels.

Chirality Lanthanide complex Luminescence Molecular recognition Receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atwood AL, Davies JED, MacNicol DD, Vögtle F (eds) (1996) Comprehensive supramolecular chemistry, vol 1, 2, and 6. Pergamon, New York Google Scholar
  2. 2.
    Sauvage JP (1990) Acc Chem Res 23:319 Google Scholar
  3. 3.
    Fujita M, Ogura K (1996) Coord Chem Rev 148:249 Google Scholar
  4. 4.
    Dutzler R, Campbell EB, MacKinnon R (2003) Science 300:108 Google Scholar
  5. 5.
    Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) Nature 415:287 Google Scholar
  6. 6.
    Clare JP, Ayling AJ, Joos J-B, Sisson AL, Magro G, Pérez-Payán MN, Lambert TN, Shukla R, Smith BD, Davis AP (2005) J Am Chem Soc 127:10739 Google Scholar
  7. 7.
    Davis JT (2004) Angew Chem Int Ed 43:668 Google Scholar
  8. 8.
    Boyd PDW, Reed CA (2005) Acc Chem Res 38:235 Google Scholar
  9. 9.
    Sato H, Tashiro K, Shinmori H, Osuka A, Murata Y, Komatsu K, Aida T (2005) J Am Chem Soc 127:13086 Google Scholar
  10. 10.
    Prince RB, Barnes SA, Moore JS (2000) J Am Chem Soc 122:2758 Google Scholar
  11. 11.
    Garric J, Léger J-M, Huc I (2005) Angew Chem Int Ed 44:1954 Google Scholar
  12. 12.
    Waki M, Abe H, Inouye M (2007) Angew Chem Int Ed 46:3059 Google Scholar
  13. 13.
    Kumar S, Paul D, Singh H (2005) Adv Heterocycl Chem 89:65 Google Scholar
  14. 14.
    Morohashi N, Narumi F, Iki N, Hattori T, Miyano S (2006) Chem Rev 106:5291 Google Scholar
  15. 15.
    Ishibashi K, Tsue H, Tokita S, Matsui K, Takahashi H, Tamura R (2006) Org Lett 8:5991 Google Scholar
  16. 16.
    Tsukube H, Yamada T, Shinoda S (2000) Ind Eng Chem Res 39:3412 Google Scholar
  17. 17.
    Tsukube H, Shinoda S, Uenishi J, Hiraoka, Imakoga T, Yonemitsu O (1998) J Org Chem 63:3884 Google Scholar
  18. 18.
    Tsukube H, Yamada T, Shinoda S (2004) J Alloys Compd 374:40 Google Scholar
  19. 19.
    Tsukube H (1990) In: Inoue Y, Gokel GW (eds) Cation binding by macrocycles. Marcel Dekker, New York, p 487 Google Scholar
  20. 20.
    Erickson SD, Still WC (1990) Tetrahedron Lett 31:4253 Google Scholar
  21. 21.
    Dai Z, Xu X, Canary JW (2002) Chem Commun, p 1414 Google Scholar
  22. 22.
    Kataoka Y, Paul D, Miyake H, Shinoda S, Tsukube H (2007) Dalton Trans 2784 Google Scholar
  23. 23.
    Yamada Y, Shinoda S, Sugimoto H, Uenishi J, Tsukube H (2003) Inorg Chem 42:7932 Google Scholar
  24. 24.
    Tsukube H (1996) Coord Chem Rev 148:1 Google Scholar
  25. 25.
    Tsukube H, Yamada T, Shinoda S (2001) J Hetrocycl Chem 38:1401 CrossRefGoogle Scholar
  26. 26.
    van Unen D-J, Engbersen KFJ, Reinhoudt DN (2001) J Mol Catal B: Enzym 11:877 Google Scholar
  27. 27.
    Itoh T, Takagi Y, Tsukube H (1997) J Mol Catal B: Enzym 3:259 Google Scholar
  28. 28.
    Odell B, Earlam G (1985) J Chem Soc Chem Commun, p 359 Google Scholar
  29. 29.
    Julian RR, Beauchamp JL (2001) Int J Mass Spectrom 613:210–211 Google Scholar
  30. 30.
    Paul D, Suzumura A, Sugimoto H, Teraoka J, Shinoda S, Tsukube H (2003) J Am Chem Soc 125:11478 Google Scholar
  31. 31.
    Hamuro Y, Calama MC, Park HS, Hamilton AD (1997) Angew Chem Int Ed Engl 36:2680 Google Scholar
  32. 32.
    Oshima T, Goto M, Furusaki S (2002) Biomacromolecules 3:438 Google Scholar
  33. 33.
    Paul D, Miyake H, Shinoda S, Tsukube H (2006) Chem Eur J 12:1328 Google Scholar
  34. 34.
    Shinoda S, Ohashi M, Tsukube H (2007) Chem Eur J 13:81 Google Scholar
  35. 35.
    Tsukube H, Suzuki Y, Paul D, Kataoka Y, Shinoda S (2007) Chem Commun, p 2533 Google Scholar
  36. 36.
    Park CH, Simmons HE (1968) J Am Chem Soc 90:2431 Google Scholar
  37. 37.
    Schmidtchen FP, Müller GJ (1980) Chem Ber 113:864 Google Scholar
  38. 38.
    Schmidtchen FP, Müller GJ (1984) Chem Commun, p 1115 Google Scholar
  39. 39.
    Dietrich B, Guilhem J, Lehn J-M, Pascard C, Sonveaux E (1984) Helv Chim Acta 67:91 Google Scholar
  40. 40.
    Hosseini H, Lehn J-M (1986) Helv Chim Acta 69:587 Google Scholar
  41. 41.
    Bianch A, Bowman-James K, García-España (eds) (1997) Supramolecular chemistry of anions. Wiley-VCH, New York Google Scholar
  42. 42.
    Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486 Google Scholar
  43. 43.
    Sessler JL, Gale PA, Cho W-S (2006) Anion Receptor Chemistry. RSC Publishing, Cambridge Google Scholar
  44. 44.
    Bryantsev VS, Hay BP (2005) J Am Chem Soc 127:8282 Google Scholar
  45. 45.
    Berryman OB, Bryantsev VS, Stay DP, Johnson DW, Hay BP (2006) J Am Chem Soc 129:48 Google Scholar
  46. 46.
    Choi K, Hamilton AD (2003) Coord Chem Rev 240:101 Google Scholar
  47. 47.
    García-España E, Díaz P, Llinares JM, Bianchi A (2006) Coord Chem Rev 250:2952 Google Scholar
  48. 48.
    Wichmann K, Antonioli B, Söhnel T, Wenzel M, Gloe K, Price JR, Lindoy LF, Blake AJ, Schröder M (2006) Coord Chem Rev 250:2987 Google Scholar
  49. 49.
    Tabushi I, Kumura Y, Yamamura K (1978) J Am Chem Soc 100:1304 Google Scholar
  50. 50.
    Tabushi I, Kumura Y, Yamamura K (1981) J Am Chem Soc 103:6486 Google Scholar
  51. 51.
    Cramer RE, Fermin V, Kuwabara E, Kirkup R, Selman M, Aoki K, Adeyemo A, Yamazaki H (1991) J Am Chem Soc 113:7033 Google Scholar
  52. 52.
    Cramer RE, Carrié MJ (1990) Inorg Chem 29:3902 Google Scholar
  53. 53.
    Cramer RE, Mitchell KA, Hirazumi AY, Smith SL (1994) J Chem Soc Dalton Trans 563 Google Scholar
  54. 54.
    Cramer RE, Smith DW, VanDoorne W (1998) Inorg Chem 37:5895 Google Scholar
  55. 55.
    Shinoda S, Tadokoro M, Tsukube H, Arakawa R (1998) Chem Commun, p 181 Google Scholar
  56. 56.
    Cabildo P, Sanz D, Claramunt RM, Rourne SA, Alkorta I, Elguero J (1999) Tetrahedron 55:2327 Google Scholar
  57. 57.
    Alcalde E, Alvarez-Rúa C, García-Granda S, García-Rodriguez E, Mesquida N, Pérez-García L (1999) Chem Commun, p 295 Google Scholar
  58. 58.
    Ramos S, Alcalde E, Doddi G, Mencarelli P, Pérez-García L (2002) J Org Chem 67:8463 Google Scholar
  59. 59.
    Chellappan K, Singh NJ, Hwang I-C, Lee JW, Kim KS (2005) Angew Chem Int Ed 44:2899 Google Scholar
  60. 60.
    Sato K, Arai S, Yamagishi T (1999) Tetrahedron Lett 40:5219 Google Scholar
  61. 61.
    Ihm H, Yun S, Kim HG, Kim JK, Kim KS (2002) Org Lett 4:2897 Google Scholar
  62. 62.
    Yoon J, Kim SJ, Singh NJ, Kim KS (2006) Chem Soc Rev 35:355 Google Scholar
  63. 63.
    Abouderbala LO, Belcher WJ, Boutelle MG, Cragg PJ, Dhaliwal J, Fabre M, Steed JW, Turner DR, Wallace KJ (2002) Chem Commun, p 358 Google Scholar
  64. 64.
    Wallace KJ, Belcher WJ, Turner DR, Syed KF, Steed JW (2003) J Am Chem Soc 125:9699 Google Scholar
  65. 65.
    Ilioudis CA, Tocher DA, Steed JW (2004) J Am Chem Soc 126:12395 Google Scholar
  66. 66.
    Gale PA (2000) Coord Chem Rev 199:181 Google Scholar
  67. 67.
    Gale PA (2001) Coord Chem Rev 213:79 Google Scholar
  68. 68.
    Gale PA (2003) Coord Chem Rev 240:191 Google Scholar
  69. 69.
    Gale PA, Quesada R (2006) Coord Chem Rev 250:3219 Google Scholar
  70. 70.
    Kang SO, Hossain MA, Bowman-James K (2006) Coord Chem Rev 250:3038 Google Scholar
  71. 71.
    Kang SO, Begun RA, Bowman-James K (2006) Angew Chem Int Ed 45:7882 Google Scholar
  72. 72.
    Sessler JL, Cyr MJ, Lynch V, McGhee E, Ibers JA (1990) J Am Chem Soc 112:2810 Google Scholar
  73. 73.
    Shionoya M, Furuta H, Lynch V, Harriman A, Sessler JL (1992) J Am Chem Soc 114:5714 Google Scholar
  74. 74.
    Gale PA, Sessler JL, Král V, Lynch V (1996) J Am Chem Soc 118:5140 Google Scholar
  75. 75.
    Sessler JL, An D, Cho W-S, Lynch V (2003) J Am Chem Soc 125:13646 Google Scholar
  76. 76.
    Sessler JL, An D, Cho W-S, Lynch V (2003) Angew Chem Int Ed 42:2278 Google Scholar
  77. 77.
    Sessler JL, An D, Cho W-S, Lynch V, Marquez M (2005) Chem Eur J 11:2001 Google Scholar
  78. 78.
    Gale PA, Camiolo S, Tizzard GJ, Chapman CP, Light ME, Coles SJ, Hursthouse MB (2001) J Org Chem 66:7849 Google Scholar
  79. 79.
    Gale PA (2006) Acc Chem Res 39:465 Google Scholar
  80. 80.
    Chmielewski MJ, Charon M, Jurczak J (2004) Org Lett 6:3501 Google Scholar
  81. 81.
    Maeda H, Ito Y (2006) Inorg Chem 45:8205 Google Scholar
  82. 82.
    Maeda H, Kusunose Y (2005) Chem Eur J 11:5661 Google Scholar
  83. 83.
    Chang K-L, Moon D, Lah MS, Jeong K-S (2005) Angew Chem Int Ed 44:7926 Google Scholar
  84. 84.
    Katayev EA, Boev NV, Khrustalev VN, Ustynyuk YA, Tananaev IG, Sessler JL (2007) J Org Chem 72:2886 Google Scholar
  85. 85.
    Martínez-Máñez R, Sancenón F (2003) Chem Rev 103:4419 Google Scholar
  86. 86.
    Suksai C, Tuntulani T (2003) Chem Soc Rev 32:192 Google Scholar
  87. 87.
    Black CB, Andrioletti B, Try AC, Ruiperez C, Sessler JL (1999) J Am Chem Soc 121:10438 Google Scholar
  88. 88.
    Nishiyabu R, Anzenbacher P jr (2005) J Am Chem Soc 127:8270 Google Scholar
  89. 89.
    Evans LS, Gale PA, Light ME, Quesada R (2006) Chem Commun, p 965 Google Scholar
  90. 90.
    Nguyen BT, Anslyn EV (2006) Coord Chem Rev 250:3118 Google Scholar
  91. 91.
    Metzger A, Anslyn EV (1998) Angew Chem Int Ed 37:649 Google Scholar
  92. 92.
    Piatek AM, Bomble YJ, Wiskur SL, Anslyn EV (2004) J Am Chem Soc 126:6072 Google Scholar
  93. 93.
    Wiskur SL, Anslyn EV (2001) J Am Chem Soc 123:10109 Google Scholar
  94. 94.
    Gale PA, Twyman LJ, Handlin CI, Sessler JL (1999) Chem Commun, p 1851 Google Scholar
  95. 95.
    Atilgan S, Akkaya EU (2004) Tetrahedron Lett 45:9269 Google Scholar
  96. 96.
    Beer PD, Hayes EJ (2003) Coord Chem Rev 240:167 Google Scholar
  97. 97.
    Sigel A, Sigel H (eds) (2003) Metal ions in biological systems, vol 40. Marcel Dekker, New York Google Scholar
  98. 98.
    Parker D (2004) Chem Soc Rev 33:156 Google Scholar
  99. 99.
    Tsukube H, Shinoda S (2002) Chem Rev 102:2389 Google Scholar
  100. 100.
    Shinoda S, Miyake H, Tsukube H (2005) Handbook on the physics and chemistry of rare earths 35:273 Google Scholar
  101. 101.
    Di Bari L, Salvadori P (2005) Coord Chem Rev 249:2854 Google Scholar
  102. 102.
    Riehl JP, Muller G (2005) Handbook on the physics and chemistry of rare earths 34:289 Google Scholar
  103. 103.
    Wenzel TJ, Wilcox JD (2003) Chirality 15:256 Google Scholar
  104. 104.
    Rothchild R, Wyss H (1994) Spectrosc Lett 27:225 Google Scholar
  105. 105.
    Inamoto A, Ogasawara K, Omata K, Kabuto K, Sasaki Y (2000) Org Lett 2:3543 Google Scholar
  106. 106.
    Di Bari L, Lelli M, Pintacuda G, Salvadori P (2002) Chirality 14:265 Google Scholar
  107. 107.
    Aime S, Botta M, Parker D, Williams JAG (1995) J Chem Soc Dalton Trans 2259 Google Scholar
  108. 108.
    Aime S, Botta M, Crich SG, Terreno E, Anelli PL, Uggeri F (1999) Chem Eur J 5:1261 Google Scholar
  109. 109.
    Corsi DM, van Bekkum H, Peters JA (2000) Inorg Chem 39:4802 Google Scholar
  110. 110.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Springer, Berlin Heidelberg New York Google Scholar
  111. 111.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim Google Scholar
  112. 112.
    Douce L, Charbonnière L, Cesario M, Ziessel R (2001) New J Chem 25:1024 Google Scholar
  113. 113.
    Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KC (2003) J Am Chem Soc 125:12376 Google Scholar
  114. 114.
    Richardson FS (1982) Chem Rev 82:541 Google Scholar
  115. 115.
    Comby S, Bünzli J-CG (2007) Handbook on the physics and chemistry of rare earths 37:217 Google Scholar
  116. 116.
    Reuben J (1979) J Chem Soc Chem Commun, p 68 Google Scholar
  117. 117.
    Reuben J (1980) J Am Chem Soc 102:2232 Google Scholar
  118. 118.
    Bünzli J-CG (1989) In: Bünzli J-CG, Choppin GR (eds) Lanthanide probes in life, chemical and earth sciences. Elsevier, Amsterdam, p 219 Google Scholar
  119. 119.
    Parker D, Dickins RS, Puschmann H, Crossland C, Howard JAK (2002) Chem Rev 102:1977 Google Scholar
  120. 120.
    Mathis G (1995) Clin Chem 41:1391 Google Scholar
  121. 121.
    Dickson EFG, Pollack A, Diamandis EP (1995) J Photochem Photobiol B 27:3 Google Scholar
  122. 122.
    Elbanowski M, Makowska B (1996) J Photochem Photobiol A 99:85 Google Scholar
  123. 123.
    Faulkner S, Mattews JL (2003) In: Ward MD (ed) Comprehensive coordination chemistry II, vol 9. Elsevier, Amsterdam, p 913 Google Scholar
  124. 124.
    Balzani V, Sabbatini N, Scandola F (1986) Chem Rev 86:319 Google Scholar
  125. 125.
    Montalti M, Prodi L, Zaccheroni N, Charbonnière L, Douce L, Ziessel R (2001) J Am Chem Soc 123:12694 Google Scholar
  126. 126.
    Charbonnière LJ, Ziessel R, Montalti M, Prodi L, Zaccheroni N, Boehme C, Wipff G (2002) J Am Chem Soc 124:7779 Google Scholar
  127. 127.
    Yamada T, Shinoda S, Tsukube H (2002) Chem Commun, p 1218 Google Scholar
  128. 128.
    Best MD, Anslyn EV (2003) Chem Eur J 9:51 Google Scholar
  129. 129.
    Dickins RS, Gunnlaugsson T, Parker D, Peacock RD (1998) Chem Commun, p 1643 Google Scholar
  130. 130.
    Bruce JI, Dickins RS, Govenlock LJ, Gunnlaugsson T, Lopinski S, Lowe MP, Parker D, Peacock RD, Perry JJB, Aime S, Botta M (2000) J Am Chem Soc 122:9674 Google Scholar
  131. 131.
    Mameri S, Charbonnière LJ, Ziessel RF (2003) Synthesis 17:2713 Google Scholar
  132. 132.
    Charbonnière LJ, Schurhammer R, Mameri S, Wipff G, Ziessel RF (2005) Inorg Chem 44:7151 Google Scholar
  133. 133.
    Ziessel RF, Charbonnière LJ, Mameri S, Camerel F (2005) J Org Chem 70:9835 Google Scholar
  134. 134.
    Magennis SW, Craig J, Gardner A, Fucassi F, Cragg PJ, Robertson N, Parsons S, Pikramenou Z (2003) Polyhedron 22:745 Google Scholar
  135. 135.
    Gunnlaugsson T, Harte AJ, Leonard JP, Nieuwenhuyzen M (2002) Chem Commun, p 2134 Google Scholar
  136. 136.
    Leonard JP, dos Santos CMG, Plush SE, McCabe T, Gunnlaugsson T (2007) Chem Commun, p 129 Google Scholar
  137. 137.
    Parker D, Senanayake K, Williams JAG (1997) Chem Commun, p 1777 Google Scholar
  138. 138.
    Parker D, Senanayake K, Williams JAG (1998) J Chem Soc Perkin Trans 2:2129 Google Scholar
  139. 139.
    Yu J, Parker D (2005) Eur J Org Chem 4249 Google Scholar
  140. 140.
    Parker D, Yu J (2005) Chem Commun, p 3141 Google Scholar
  141. 141.
    Terreno E, Botta M, Fedeli F, Mondino B, Milone L, Aime S (2003) Inorg Chem 42:4891 Google Scholar
  142. 142.
    Dickins RS, Love CS, Puschmann H (2001) Chem Commun, p 2308 Google Scholar
  143. 143.
    Dickins RS, Badari A (2006) Dalton Trans 3088 Google Scholar
  144. 144.
    Yamada T, Shinoda S, Kikawa K, Ichimura A, Teraoka J, Takui T, Tsukube T (2000) Inorg Chem 39:3049 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Samir Mameri
    • 1
  • Satoshi Shinoda
    • 1
  • Hiroshi Tsukube
    • 1
    Email author
  1. 1.Department of ChemistryGraduate School of Science, Osaka City UniversityOsakaJapan

Personalised recommendations