Skip to main content

Modeling Reaction Mechanism of Cocaine Hydrolysis and Rational Drug Design for Therapeutic Treatment of Cocaine Abuse

  • Chapter
  • First Online:
QSAR and Molecular Modeling Studies in Heterocyclic Drugs II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 4))

Abstract

Cocaine is a widely abused heterocyclic drug and there is no available anti-cocaine therapeutic. The disastrous medical and social consequences of cocaine addiction have made the development of an effective pharmacological treatment a high priority. An ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites. The main metabolic pathway of cocaine in the body is hydrolysis at its benzoyl ester group. State-of-the-art molecular modeling of the reaction mechanism for the hydrolysis of cocaine and the mechanism-based design of anti-cocaine therapeutics will be discussed. First of all, competing reaction pathways and the transition state stabilization of the spontaneous hydrolysis of cocaine in solution will be examined. It will be demonstrated that the information obtained about the transition states and their stabilization has been very useful in the rational design of stable analogs of the transition states of cocaine hydrolysis, in order to elicit anti-cocaine catalytic antibodies. Detailed molecular modeling of the reaction mechanism for cocaine hydrolysis catalyzed by human butyrylcholinesterase (BChE), the primary cocaine-metabolizing enzyme in body, will be examined. Then, we will describe the application of these mechanistic insights to the rational design of human BChE mutants as a new therapeutic treatment of cocaine abuse. Finally, future directions of the mechanism-based design of anti-cocaine therapeutics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

BCh:

Butyrylcholine

BChE:

Butyrylcholinesterase

QM:

Quantum mechanics

MM:

Molecular mechanics

QM/MM:

Quantum mechanics/molecular mechanics

MD:

Molecular dynamics

BE:

Benzoylecgonine

EME:

Ecgonine methyl ester

CNS:

Central nervous system

PET:

Positron emission tomography

BAC2:

Base-catalyzed, acyl-oxygen cleavage, bimolecular

IRC:

Intrinsic reaction coordinate

TSA:

Transition state analog

TS:

Transition state

TS1:

Transition state for the first reaction step

TS2:

Transition state for the second reaction step

TS3:

Transition state for the third reaction step

TS4:

Transition state for the fourth reaction step

INT:

Intermediate

INT1:

First intermediate

INT2:

Second intermediate

INT3:

Third intermediate

ES:

Prereactive enzyme–substrate complex

SCRF:

Self-consistent reaction field

SVPE:

Surface and volume polarization for electrostatic interactions

FPCM:

Fully polarizable continuum model

PCM:

Polarizable continuum model

HBR:

Hydrogen-bonded reactant complex

NPA:

Natural population analysis

HBE:

Hydrogen bonding energy

3D:

Three-dimensional

ZPVE:

Zero-point vibration energy

References

  1. Gawin FH, Ellinwood EHN Jr (1988) Eng J Med 318:1173

    Article  CAS  Google Scholar 

  2. Landry DW (1997) Sci Am 276:28

    Article  Google Scholar 

  3. Singh S (2000) Chem Rev 100:925

    CAS  Google Scholar 

  4. Sparenborg S, Vocci F, Zukin S (1997) Drug Alcohol Depend 48:149

    CAS  Google Scholar 

  5. Gorelick DA (1997) Drug Alcohol Depend 48:159

    CAS  Google Scholar 

  6. Gorelick DA, Gardner EL, Xi ZX (2004) Drugs 64:1547

    CAS  Google Scholar 

  7. Baird TJ, Deng SX, Landry DW, Winger G, Woods JH (2000) J Pharmacol Exp Ther 295:1127

    CAS  Google Scholar 

  8. Carrera MRA, Ashley JA, Wirsching P, Koob GF, Janda KD (2001) Proc Natl Acad Sci USA 98:1988

    CAS  Google Scholar 

  9. Deng SX, de Prada P, Landry DW (2002) J Immunol Methods 269:299

    CAS  Google Scholar 

  10. Kantak KM (2003) Expert Opin Pharmacother 4:213

    CAS  Google Scholar 

  11. Carrera MRA, Kaufmann GF, Mee JM, Meijler MM, Koob GF, Janda KD (2004) Proc Natl Acad Sci USA 101:10416

    CAS  Google Scholar 

  12. Dickerson TJ, Kaufmann GF, Janda KD (2005) Expert Opin Biol Ther 5:773

    CAS  Google Scholar 

  13. Meijler MM, Kaufmann GF, Qi LW, Mee JM, Coyle AR, Moss JA, Wirsching P, Matsushita M, Janda KD (2005) J Am Chem Soc 127:2477

    CAS  Google Scholar 

  14. Rogers CJ, Mee JM, Kaufmann GF, Dickerson TJ, Janda KD (2005) J Am Chem Soc 127:10016

    CAS  Google Scholar 

  15. Carrera MRA, Ashley JA, Parsons LH, Wirsching P, Koob GF, Janda KD (1995) Nature 378:727

    CAS  Google Scholar 

  16. Fox BS (1997) Drug Alcohol Depend 100:153

    Google Scholar 

  17. Carrera MRA, Ashley JA, Zhou B, Wirsching P, Koob GF, Janda KD (2000) Proc Natl Acad Sci USA 97:6202

    CAS  Google Scholar 

  18. Carrera MRA, Ashley JA, Wirsching P, Koob GF, Janda KD (2001) Proc Natl Acad Sci USA 98:1988

    CAS  Google Scholar 

  19. Carrera MRA, Trigo JM, Roberts AJ, Janda KD (2005) Pharmacol Biochem Behav 81:709

    CAS  Google Scholar 

  20. Fox BS, Kantak KM, Edwards MA, Black KM, Bollinger BK, Botka AJ, French TL, Thompson TL, Schad VC, Greenstein JL, Gefter ML, Exley MA, Swain PA, Briner TJ (1996) Nat Med 2:1129

    CAS  Google Scholar 

  21. Landry DW, Yang GXQ (1997) J Addict Dis 16:1

    CAS  Google Scholar 

  22. Landry DW, Zhao K, Yang GXQ, Glickman M, Georgiadis TM (1993) Science 259:1899

    CAS  Google Scholar 

  23. Matsushita M, Hoffman TZ, Ashley JA, Zhou B, Wirsching P, Janda KD (2001) Bioorg Med Chem Lett 11:87

    CAS  Google Scholar 

  24. Cashman JR, Berkman CE, Underiner GE (2000) J Pharm Exp Ther 293,952:961

    Google Scholar 

  25. Yang G, Chun J, Arakawa-Uramoto H, Wang X, Gawinowicz MA, Zhao K, Landry DW (1996) J Am Chem Soc 118:5881

    CAS  Google Scholar 

  26. Kamendulis LM, Brzezinski MR, Pindel EV, Bosron WF, Dean RA (1996) J Pharmacol Exp Ther 279:713

    CAS  Google Scholar 

  27. Poet TS, McQueen CA, Halpert JR (1996) Drug Metab Dispos 24:74

    CAS  Google Scholar 

  28. Pan WJ, Hedaya MA (1999) J Pharm Sci 88:468

    CAS  Google Scholar 

  29. Sukbuntherng J, Martin DK, Pak Y, Mayersohn M (1996) J Pharm Sci 85:567

    CAS  Google Scholar 

  30. Browne SP, Slaughter EA, Couch RA, Rudnic EM, McLean AM (1998) Biopharm Drug Dispos 19:309

    CAS  Google Scholar 

  31. Carmona GN, Baum I, Schindler CW, Goldberg SR, Jufer R (1996) Life Sci 59:939

    CAS  Google Scholar 

  32. Lynch TJ, Mattes CE, Singh A, Bradley RM, Brady RO, Dretchen KL (1997) Toxicol Appl Pharmacol 145:363

    CAS  Google Scholar 

  33. Mattes CE, Lynch TJ, Singh A, Bradley RM, Kellaris PA, Brady RO, Dretchen KL (1997) Toxicol Appl Pharmacol 145:372

    CAS  Google Scholar 

  34. Mattes CE, Belendiuk GW, Lynch TJ, Brady RO, Dretchen KL (1998) Addict Biol 3:171

    CAS  Google Scholar 

  35. Lockridge O, Blong RM, Masson P, Froment M-T, Millard CB, Broomfield CA (1997) Biochemistry 36:786

    CAS  Google Scholar 

  36. Gately SJ (1991) Biochem Pharmacol 41:1249

    Google Scholar 

  37. Gately SJ, MacGregor RR, Fowler JS, Wolf AP, Dewey SL, Schlyer DJ (1990) J Neurochem 54:720

    Google Scholar 

  38. Darvesh S, Hopkins DA, Geula C (2003) Nature Rev Neurosci 4:131

    CAS  Google Scholar 

  39. Giacobini E (ed) (2003) Butyrylcholinesterase: its function and inhibitors. Dunitz Martin, Great Britain

    Google Scholar 

  40. Lerner RA, Benkovic SJ, Schultz PG (1991) Science 252:659

    CAS  Google Scholar 

  41. Jones RAY (1979) Physical and Mechanistic organic chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  42. McMurry J (1988) Organic chemistry, 2nd edn. Cole, California

    Google Scholar 

  43. Lowry TH, Richardson KS (1987) Mechanism and Theory in organic chemistry, 3rd edn. Harper and Row, New York

    Google Scholar 

  44. Williams A (1987) In: Page MI, Williams A (eds) Enzyme mechanisms. Burlington, London, p 123

    Google Scholar 

  45. Li P, Zhao K, Deng S, Landry DW (1999) Helvetica Chim Acta 82:85

    CAS  Google Scholar 

  46. Zhan CG, Landry DW, Ornstein RL (2000) J Am Chem Soc 122:1522

    CAS  Google Scholar 

  47. Zhan CG, Landry DW, Ornstein RL (2000) J Am Chem Soc 122:2621

    CAS  Google Scholar 

  48. Zhan CG, Landry DW, Ornstein RL (2000) J Phys Chem A 104:7672

    CAS  Google Scholar 

  49. Bender ML, Thomas RJ (1961) J Am Chem Soc 83:4189

    CAS  Google Scholar 

  50. Bender ML, Matsui H, Thomas RJ, Tobey SW (1961) J Am Chem Soc 83:4193

    CAS  Google Scholar 

  51. Bender ML, Heck HA (1967) J Am Chem Soc 89:1211

    CAS  Google Scholar 

  52. Bender ML, Ginger RD, Unik JP (1958) J Am Chem Soc 80:1044

    CAS  Google Scholar 

  53. O'Leary MH, Marlier JF (1979) J Am Chem Soc 101:3300

    Google Scholar 

  54. Guthrie JP (1991) J Am Chem Soc 113:3941

    CAS  Google Scholar 

  55. Hengge A (1992) J Am Chem Soc 114:6575

    CAS  Google Scholar 

  56. Marlier JF (1993) J Am Chem Soc 115:5953

    CAS  Google Scholar 

  57. Sherer EC, Turner GM, Lively TN, Landry DW, Shields GC (1996) J Mol Model 2:62

    CAS  Google Scholar 

  58. Sherer EC, Yang G, Turner GM, Shields GC, Landry DW (1997) J Phys Chem A 101:8526

    CAS  Google Scholar 

  59. Sherer EC, Turner GM, Shields GC (1995) Int J Quantum Chem Quantum Biol Symp 22:83

    CAS  Google Scholar 

  60. Turner GM, Sherer EC, Shields GC (1995) Int J Quantum Chem Quantum Biol Symp 22:103

    CAS  Google Scholar 

  61. Fairclough RA, Hinshelwood CN (1937) J Chem Soc 538

    Google Scholar 

  62. Rylander PN, Tarbell DS (1950) J Am Chem Soc 72:3021

    CAS  Google Scholar 

  63. Zhan CG, Landry DW (2001) J Phys Chem A 105:1296

    CAS  Google Scholar 

  64. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  65. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  66. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    CAS  Google Scholar 

  67. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    CAS  Google Scholar 

  68. Tomasi J, Persico M (1994) Chem Rev 94:2027

    CAS  Google Scholar 

  69. Cramer CJ, Truhlar DG (1996) In: Tapia O, Bertran J (eds) Solvent effects and chemical reactions. Kluwer, Dordrecht, p 1

    Google Scholar 

  70. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161

    CAS  Google Scholar 

  71. Chipman DM (1997) J Chem Phys 106:10194

    CAS  Google Scholar 

  72. Chipman DM (1999) J Chem Phys 110:8012

    CAS  Google Scholar 

  73. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  74. Zhan CG, Bentley J, Chipman DM (1998) J Chem Phys 108:177

    CAS  Google Scholar 

  75. Zhan CG, Chipman DM (1998) J Chem Phys 109:10543

    CAS  Google Scholar 

  76. Zhan CG, Chipman DM (1999) J Chem Phys 110:1611

    CAS  Google Scholar 

  77. Zheng F, Zhan CG, Ornstein RL (2001) J Chem Soc Perkin Trans 2 2355

    Google Scholar 

  78. Zheng F, Zhan CG, Ornstein RL (2002) J Phys Chem B 106:717

    CAS  Google Scholar 

  79. Zhan CG, Dixon DA, Sabri MI, Kim MS, Spencer PS (2002) J Am Chem Soc 124:2744

    CAS  Google Scholar 

  80. Dixon DA, Feller D, Zhan CG, Francisco SF (2002) J Phys Chem A 106:3191

    CAS  Google Scholar 

  81. Zhan CG, Norberto de Souza O; Rittenhouse R, Ornstein RL (1999) J Am Chem Soc 121:7279

    CAS  Google Scholar 

  82. Zhan CG, Zheng F (2001) J Am Chem Soc 123:2835

    CAS  Google Scholar 

  83. Dixon DA, Feller D, Zhan CG, Francisco SF (2003) Int J Mass Spectrom 227:421

    CAS  Google Scholar 

  84. Zhan CG, Dixon DA, Spencer PS (2003) J Phys Chem B 107:2853

    CAS  Google Scholar 

  85. Zhan CG, Dixon DA, Spencer PS (2004) J Phys Chem B 108:6098

    CAS  Google Scholar 

  86. Chen X, Zhan CG (2004) J Phys Chem A 108:3789

    CAS  Google Scholar 

  87. Chen X, Zhan CG (2004) J Phys Chem A 108:6407

    CAS  Google Scholar 

  88. Xiong Y, Zhan CG (2004) J Org Chem 69:8451

    CAS  Google Scholar 

  89. Zhan CG, Deng SX, Skiba JG, Hayes BA, Tschampel SM, Shields GC, Landry DW (2005) J Comput Chem 26:980

    CAS  Google Scholar 

  90. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez AC, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, PA

    Google Scholar 

  91. Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411

    CAS  Google Scholar 

  92. Meadows ES, De Wall SL, Barbour LJ, Fronczek FR, Kim MS, Gokel GW (2000) J Am Chem Soc 122:3325

    CAS  Google Scholar 

  93. Vargas R, Garza J, Dixon DA, Hay BP (2000) J Am Chem Soc 122:4750

    CAS  Google Scholar 

  94. Deng S, Bharat N, de Prada P, Landry DW (2004) Org Biomol Chem 2:288

    CAS  Google Scholar 

  95. Mets B, Winger G, Cabrera C, Seo S, Jamdar S, Yang G, Zhao K, Briscoe RJ, Almonte R, Woods JH, Landry DW (1998) Proc Natl Acad Sci USA 95:10176

    CAS  Google Scholar 

  96. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) J Biol Chem 278:41141

    CAS  Google Scholar 

  97. Sun H, Yazal JE, Lockridge O, Schopfer LM, Brimijoin S, Pang YP (2001) J Biol Chem 276:9330

    CAS  Google Scholar 

  98. Sun H, Shen ML, Pang YP, Lockridge O, Brimijoin S (2002) J Pharmacol Exp Ther 302:710

    CAS  Google Scholar 

  99. Sun H, Pang YP, Lockridge O, Brimijoin S (2002) Mol Pharmacol 62:220

    CAS  Google Scholar 

  100. Zhan CG, Zheng F, Landry DW (2003) J Am Chem Soc 125:2462

    CAS  Google Scholar 

  101. Hamza A, Cho H, Tai HH, Zhan CG (2005) J Phys Chem B 109:4776

    CAS  Google Scholar 

  102. Bruice TC, Lightstone FC (1999) Acc Chem Res 32:127

    CAS  Google Scholar 

  103. Shurki A, Štrajbl M, Villá J, Warshel A (2002) J Am Chem Soc 124:4097

    CAS  Google Scholar 

  104. Masson P, Legrand P, Bartels CF, Froment M-T, Schopfer LM, Lockridge O (1997) Biochemistry 36:2266

    CAS  Google Scholar 

  105. Ekholm M, Konschin H (1999) J Mol Struct (THEOCHEM) 467:161

    CAS  Google Scholar 

  106. Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulie J, Silman I (1992) Proc Natl Acad Sci USA 89:10827

    CAS  Google Scholar 

  107. Masson P, Xie W, Froment MT, Levitsky V, Fortier PL, Albaret C, Lockridge O (1999) Biochim Biophys Acta 1433:281

    CAS  Google Scholar 

  108. Hu C-H, Brinck T, Hult K (1998) Int J Quantum Chem 69:89

    CAS  Google Scholar 

  109. Wlodek ST, Clark TW, Scott L, McCammon JA (1997) J Am Chem Soc 119:9513

    CAS  Google Scholar 

  110. Wlodek ST, Antosiewicz J, Briggs JM (1997) J Am Chem Soc 119:8159

    CAS  Google Scholar 

  111. Zhou HX, Wlodek ST, McCammon JA (1998) Proc Natl Acad Sci USA 95:9280

    CAS  Google Scholar 

  112. Malany S, Sawai M, Sikorski RS, Seravalli J, Quinn DM, Radic Z, Taylor P, Kronman C, Velan B, Shafferman A (2000) J Am Chem Soc 122:2981

    CAS  Google Scholar 

  113. Zhan CG, Gao D (2005) Biophys J 89:3863

    CAS  Google Scholar 

  114. Gao Y, Atanasova E, Sui N, Pancook JD, Watkins JD, Brimijoin S (2005) Mol Pharmacol 67:204

    CAS  Google Scholar 

  115. Gao D, Zhan CG (2006) Proteins 62:99

    CAS  Google Scholar 

  116. Gao D, Zhan CG (2005) J Phys Chem B 109:23070

    CAS  Google Scholar 

  117. Pan Y, Gao D, Yang W, Cho H, Yang GF, Tai HH, Zhan CG (2005) Proc Natl Acad Sci USA 102:16656

    CAS  Google Scholar 

  118. Gao D, Cho H, Yang W, Pan Y, Yang GF, Tai HH, Zhan CG (2006) Angew Chem Int Ed 45:653

    CAS  Google Scholar 

  119. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    CAS  Google Scholar 

  120. Zhang Y, Kua J, McCammon JA (2002) J Am Chem Soc 124:10572

    CAS  Google Scholar 

  121. Tai K, Shen T, Börjesson U, Philippopoulos M, McCammon JA (2001) Biophys J 81:715

    Article  CAS  Google Scholar 

  122. Kua J, Zhang YK, Eslami AC, Butler JR, McCammon JA (2003) Protein Science 12:2675

    CAS  Google Scholar 

  123. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535

    CAS  Google Scholar 

  124. Rosenberry TL (1975) Proc Nat Acad Sci USA 72:3834

    CAS  Google Scholar 

  125. Alvarez-Idaboy JR, Galano A, Bravo-Pérez G, Ruíz ME (2001) J Am Chem Soc 123:8387

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Institute on Drug Abuse (NIDA) of the National Institutes of Health (NIH) (grant R01 DA013930) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Guo Zhan .

Editor information

Satya Prakash Gupta

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Zhan, CG. Modeling Reaction Mechanism of Cocaine Hydrolysis and Rational Drug Design for Therapeutic Treatment of Cocaine Abuse. In: Gupta, S.P. (eds) QSAR and Molecular Modeling Studies in Heterocyclic Drugs II. Topics in Heterocyclic Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_024

Download citation

Publish with us

Policies and ethics