Skip to main content

Evolution of Models of Homologous Recombination

  • Chapter
  • First Online:
Recombination and Meiosis

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 3))

Abstract

With the elucidation of the structure of DNA in 1953, it became possible to think in molecular terms about how recombination occurs and how it relates to the repair of DNA damage. Early molecular models, most notably the seminal model of Holliday in 1964, have been followed by a succession of other proposals to account for increasingly more detailed molecular biological information about the intermediates of recombination and for the results of more sophisticated genetic tests. Our current picture, far from definitive, includes several distinct mechanisms of DNA repair and recombination in both somatic and meiotic cells, based on the idea that most recombination is initiated by double-strand breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allers T, Lichten M (2001a) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57

    PubMed  CAS  Google Scholar 

  2. Allers T, Lichten M (2001b) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell 8:225–231

    PubMed  CAS  Google Scholar 

  3. Amundsen SK, Neiman AM, Thibodeaux SM, Smith GR (1990) Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics 126:25–40

    PubMed  CAS  Google Scholar 

  4. Anderson DG, Kowalczykowski SC (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90:77–86

    PubMed  CAS  Google Scholar 

  5. Anraku N, Tomizawa J (1965) Molecular mechanisms of genetic recombination of bacteriophage. V. Two kinds of joining of parental DNA molecules. J Mol Biol 12:805–815

    Article  PubMed  CAS  Google Scholar 

  6. Arcangioli B (2000) Fate of mat1 DNA strands during mating-type switching in fission yeast. EMBO Rep 1:145–150

    PubMed  CAS  Google Scholar 

  7. Arcangioli B, de Lahondes R (2000) Fission yeast switches mating type by a replication-recombination coupled process. EMBO J 19:1389–1396

    PubMed  CAS  Google Scholar 

  8. Argueso JL, Wanat J, Gemici Z, Alani E (2004) Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168:1805–1816

    PubMed  CAS  Google Scholar 

  9. Aylon Y, Kupiec M (2004) New insights into the mechanism of homologous recombination in yeast. Mutat Res 566:231–248

    PubMed  CAS  Google Scholar 

  10. Bell L, Byers B (1979) Occurrence of crossed strand-exchange forms in yeast DNA during meiosis. Proc Natl Acad Sci USA 76:3445–3449

    PubMed  CAS  Google Scholar 

  11. Bell LR, Byers B (1983) Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb Symp Quant Biol 47 Pt 2:829–840

    Google Scholar 

  12. Belling J (1933) Crossing over and gene rearrangement in flowering plants. Genetics 18:388–413

    PubMed  CAS  Google Scholar 

  13. Bennett RJ, West SC (1995) Structural analysis of the RuvC-Holliday junction complex reveals an unfolded junction. J Mol Biol 252:213–226

    PubMed  CAS  Google Scholar 

  14. Bidnenko V, Lestini R, Michel B (2006) The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol Microbiol 62:382–396

    PubMed  CAS  Google Scholar 

  15. Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    PubMed  CAS  Google Scholar 

  16. Boddy MN, Gaillard PH, McDonald WH, Shanahan P, Yates JR III, Russell P (2001) Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107:537–548

    PubMed  CAS  Google Scholar 

  17. Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  18. Borts RH, Haber JE (1987) Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237:1459–1465

    PubMed  CAS  Google Scholar 

  19. Borts RH et al (1990) Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics 124:573–584

    PubMed  CAS  Google Scholar 

  20. Borts RH, Lichten M, Haber JE (1986) Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113:551–567

    PubMed  CAS  Google Scholar 

  21. Borts RH, Lichten M, Hearn M, Davidow LS, Haber JE (1984) Physical monitoring of meiotic recombination in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 49:67–76

    PubMed  CAS  Google Scholar 

  22. Bosco G, Haber JE (1998) Chromosome break-induced DNA replication leads to non-reciprocal translocations and telomere capture. Genetics 150:1037–1047

    PubMed  CAS  Google Scholar 

  23. Brewer BJ, Fangman WL (1991) Mapping replication origins in yeast chromosomes. Bioessays 13:317–322

    PubMed  CAS  Google Scholar 

  24. Broker TR, Lehman IR (1971) Branched DNA molecules: intermediates in T4 recombination. J Mol Biol 60:131–149

    PubMed  CAS  Google Scholar 

  25. Cahill D, Connor B, Carney JP (2006) Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 11:1958–1976

    PubMed  CAS  Google Scholar 

  26. Champoux JJ (1977) Renaturation of complementary single-stranded DNA circles: complete rewinding facilitated by the DNA untwisting enzyme. Proc Natl Acad Sci USA 74:5328–5332

    PubMed  CAS  Google Scholar 

  27. Chen YK et al (2004) Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc Natl Acad Sci USA 101:10572–10577

    PubMed  CAS  Google Scholar 

  28. Churchill JJ, Anderson DG, Kowalczykowski SC (1999) The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi, resulting in constitutive recombination activation. Genes Dev 13:901–911

    PubMed  CAS  Google Scholar 

  29. Collins I, Newlon CS (1994) Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76:65–75

    PubMed  CAS  Google Scholar 

  30. Connolly B et al (1991) Resolution of Holliday junctions in vitro requires the Escherichia coli ruvC gene product. Proc Natl Acad Sci USA 88:6063–6067

    PubMed  CAS  Google Scholar 

  31. Connolly B, White CI, Haber JE (1988) Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol Cell Biol 8:2342–2349

    PubMed  CAS  Google Scholar 

  32. Constantinou A, Chen XB, McGowan CH, West SC (2002) Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J 21:5577–5585

    PubMed  CAS  Google Scholar 

  33. Cox MM (2003) The bacterial RecA protein as a motor protein. Annu Rev Microbiol 57:551–577

    PubMed  CAS  Google Scholar 

  34. Creighton HB, McClintock B (1931) A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci USA 17:492–497

    PubMed  CAS  Google Scholar 

  35. Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR (2006) Single Holliday junctions are intermediates of meiotic recombination. Cell 127:1167–1178

    PubMed  CAS  Google Scholar 

  36. Dabert P, Smith GR (1997) Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by Chi sites. Genetics 145:877–889

    PubMed  CAS  Google Scholar 

  37. Davis AP, Symington LS (2004) RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24:2344–2351

    PubMed  CAS  Google Scholar 

  38. de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:81–94

    Google Scholar 

  39. de los Santos T, Loidl J, Larkin B, Hollingsworth NM (2001) A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae. Genetics 159:1511–1525

    Google Scholar 

  40. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    PubMed  CAS  Google Scholar 

  41. Dixon DA, Kowalczykowski SC (1993) The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73:87–96

    PubMed  CAS  Google Scholar 

  42. Dresser ME et al. (1997) DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147:533–544

    PubMed  CAS  Google Scholar 

  43. Dressler D, Potter H (1982) Molecular mechanisms in genetic recombination. Annu Rev Biochem 51:727–761

    PubMed  CAS  Google Scholar 

  44. Duckett DR, Murchie AI, Diekmann S, von Kitzing E, Kemper B, Lilley DM (1988) The structure of the Holliday junction, and its resolution. Cell 55:79–89

    PubMed  CAS  Google Scholar 

  45. Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26:447–450

    PubMed  CAS  Google Scholar 

  46. Eldredge N, Gould SJ (1997) On punctuated equilibria. Science 276:338–341

    PubMed  CAS  Google Scholar 

  47. Elliott B, Richardson C, Jasin M (2005) Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17:885–894

    PubMed  CAS  Google Scholar 

  48. Ferguson DO, Holloman WK (1996) Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc Natl Acad Sci USA 93:5419–5424

    PubMed  CAS  Google Scholar 

  49. Fishman-Lobell J, Rudin N, Haber JE (1992) Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12:1292–1303

    PubMed  CAS  Google Scholar 

  50. Fogel S, Hurst DD (1967) Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57:455–481

    PubMed  CAS  Google Scholar 

  51. Fogel S, Mortimer R, Lusnak K, Tavares F (1979) Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol 43:1325–1341

    PubMed  CAS  Google Scholar 

  52. Fogel S, Mortimer RK (1969) Informational transfer in meiotic gene conversion. Proc Natl Acad Sci USA 62:96–103

    PubMed  CAS  Google Scholar 

  53. Formosa T, Alberts BM (1986) DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47:793–806

    PubMed  CAS  Google Scholar 

  54. Freese E (1957) The correlation effect for a histidine locus of Neurospora crassa. Genetics 42:671–684

    PubMed  CAS  Google Scholar 

  55. Friedl AA, Liefshitz B, Steinlauf R, Kupiec M (2001) Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat Res 486:137–146

    PubMed  CAS  Google Scholar 

  56. Gaillard PH, Noguchi E, Shanahan P, Russell P (2003) The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Mol Cell 12:747–759

    PubMed  CAS  Google Scholar 

  57. Gangloff S, Soustelle C, Fabre F (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25:192–194

    PubMed  CAS  Google Scholar 

  58. Gloor GB, Nassif NA, Johnson-Schlitz DM, Preston CR, Engels WR (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253:1110–1117

    PubMed  CAS  Google Scholar 

  59. Gutz H (1971) Site-specific induction of gene conversion in Schizosaccharomyces pombe. Genetics 69:317–337

    PubMed  CAS  Google Scholar 

  60. Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24:271–275

    PubMed  CAS  Google Scholar 

  61. Haber JE (2002) Switching of Saccharomyces cerevisiae mating-type genes. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC, pp 927–952

    Google Scholar 

  62. Haber JE (2006) Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair (Amst) 5:998–1009

    Google Scholar 

  63. Haber JE (2007) Decisions, decisions: donor preference during budding yeast mating-type switching. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, pp 159–170

    Google Scholar 

  64. Haber JE, Leung WY (1996) Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc Natl Acad Sci USA 93:13949–13954

    PubMed  CAS  Google Scholar 

  65. Haber JE, Ray BL, Kolb JM, White CI (1993) Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc Natl Acad Sci USA 90:3363–3367

    PubMed  CAS  Google Scholar 

  66. Hagemann AT, Rosenberg SM (1991) Chain bias in Chi-stimulated heteroduplex patches in the lambda ren gene is determined by the orientation of lambda cos. Genetics 129:611–621

    PubMed  CAS  Google Scholar 

  67. Hamza H, Haedens V, Mekki-Berrada A, Rossignol JL (1981) Hybrid DNA formation during meiotic recombination. Proc Natl Acad Sci USA 78:7648–7651

    PubMed  CAS  Google Scholar 

  68. Hastings PJ (1988) Recombination in the eukaryotic nucleus. Bioessays 9:61–64

    PubMed  CAS  Google Scholar 

  69. Hayase A, Takagi M, Miyazaki T, Oshiumi H, Shinohara M, Shinohara A (2004) A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119:927–940

    PubMed  CAS  Google Scholar 

  70. Henry JM et al (2006) Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol Cell Biol 26:2913–2923

    PubMed  CAS  Google Scholar 

  71. Henson JD et al (2005) A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res 11:217–225

    PubMed  CAS  Google Scholar 

  72. Hershey AD, Chase M (1951) Genetic recombination and heterozygosis in bacteriophage. Cold Spring Harb Symp Quant Biol 16:471–479

    PubMed  CAS  Google Scholar 

  73. Heyer WD (2004) Recombination: Holliday junction resolution and crossover formation. Curr Biol 14:R56–58

    PubMed  CAS  Google Scholar 

  74. Hoffmann ER, Borts RH (2005) Trans events associated with crossovers are revealed in the absence of mismatch repair genes in Saccharomyces cerevisiae. Genetics 169:1305–1310

    PubMed  CAS  Google Scholar 

  75. Hoffmann ER, Eriksson E, Herbert BJ, Borts RH (2005) MLH1 and MSH2 promote the symmetry of double-strand break repair events at the HIS4 hotspot in Saccharomyces cerevisiae. Genetics 169:1291–1303

    PubMed  CAS  Google Scholar 

  76. Holliday R (1962) Effect of photoreactivation on ultra-violet-induced segregation of heterozygous diploids. Nature 193:95–96

    PubMed  CAS  Google Scholar 

  77. Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Google Scholar 

  78. Holzen TM, Shah PP, Olivares HA, Bishop DK (2006) Tid1/Rdh54 promotes dissociation of Dmc1 from nonrecombinogenic sites on meiotic chromatin. Genes Dev 20:2593–2604

    PubMed  CAS  Google Scholar 

  79. Hotchkiss RD (1971) Toward a general theory of genetic recombination in DNA. Adv Genet 16:325–348

    PubMed  CAS  Google Scholar 

  80. Hotchkiss RD (1974) Molecular basis for genetic recombination. Genetics 78:247–257

    PubMed  CAS  Google Scholar 

  81. Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106:59–70

    PubMed  CAS  Google Scholar 

  82. Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    PubMed  CAS  Google Scholar 

  83. Ira G, Satory D, Haber JE (2006) Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol Cell Biol 26:9424–9429

    PubMed  CAS  Google Scholar 

  84. Ivanov EL, Haber JE (1995) RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15:2245–2251

    PubMed  CAS  Google Scholar 

  85. Janssens FA (1909) La théorie de la chiasmatypie. Nouvelle interpretation des cinèses de maturation. Cellule 22:387–411

    Google Scholar 

  86. Jayaram M, Crain KL, Parsons RL, Harshey RM (1988) Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein. Proc Natl Acad Sci USA 85:7902–7906

    PubMed  CAS  Google Scholar 

  87. Jensen R, Sprague GF, Herskowitz I (1983) Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proc Natl Acad Sci USA 80:3035–3039

    PubMed  CAS  Google Scholar 

  88. Jessop L, Rockmill B, Roeder GS, Lichten M (2006) Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of Sgs1. PLoS Genet 2:e155

    PubMed  Google Scholar 

  89. Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    PubMed  CAS  Google Scholar 

  90. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    PubMed  CAS  Google Scholar 

  91. Keeney S, Neale MJ (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34:523–525

    PubMed  CAS  Google Scholar 

  92. Kellenberger G, Zichichi ML, Weigle JJ (1961) Exchange of DNA in the recombination of bacteriophage lambda. Proc Natl Acad Sci USA 47:869–878

    PubMed  CAS  Google Scholar 

  93. Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM (2000) Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156:617–630

    PubMed  CAS  Google Scholar 

  94. Kerzendorfer C et al (2006) The Arabidopsis thaliana MND1 homolog plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci 119:2486–2496

    PubMed  CAS  Google Scholar 

  95. Kitani Y (1978) Absence of interference in association with gene conversion in Sordaria fimicola, and presence of interference in association with ordinary recombination. Genetics 89:467–497

    PubMed  CAS  Google Scholar 

  96. Kitani Y, Olive LS, El-Ani AS (1962) Genetics of Sordaria fimicola V. aberrant segregation at the G locus. Am J Bot 49:697–706

    Google Scholar 

  97. Kogoma T (1996) Recombination by replication. Cell 85:625–627

    PubMed  CAS  Google Scholar 

  98. Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238

    PubMed  CAS  Google Scholar 

  99. Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 10:1433–1442

    PubMed  CAS  Google Scholar 

  100. Kramer W, Kramer B, Williamson MS, Fogel S (1989) Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol 171:5339–5346

    PubMed  CAS  Google Scholar 

  101. Krejci L et al (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    PubMed  CAS  Google Scholar 

  102. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    PubMed  CAS  Google Scholar 

  103. Kunz C, Schar P (2004) Meiotic recombination: sealing the partnership at the junction. Curr Biol 14:R962–964

    PubMed  CAS  Google Scholar 

  104. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813

    PubMed  CAS  Google Scholar 

  105. Kuzminov A, Stahl FW (1999) Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev 13:345–356

    PubMed  CAS  Google Scholar 

  106. Lam ST, Stahl MM, McMilin KD, Stahl FW (1974) Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity. Genetics 77:425–433

    PubMed  CAS  Google Scholar 

  107. Langin T, Haedens V, Rossignol JL (1988a) Hybrid DNA extension and reciprocal exchanges: alternative issues of an early intermediate during meiotic recombination? Genetics 119:337–344

    PubMed  CAS  Google Scholar 

  108. Langin T, Hamza H, Haedens V, Rossignol JL (1988b) Reciprocal exchanges instigated by large heterologies in the b2 gene of Ascobolus are not associated with long adjacent hybrid DNA stretches. Genetics 119:329–336

    PubMed  CAS  Google Scholar 

  109. Lankenau DH (1995) Genetics of genetics in Drosophila: P elements serving the study of homologous recombination, gene conversion and targeting. Chromosoma 103:659–668

    PubMed  CAS  Google Scholar 

  110. Le S, Moore JK, Haber JE, Greider C (1999) RAD50 and RAD51 define two different pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152:143–152

    PubMed  CAS  Google Scholar 

  111. Leblon G (1972a) Mechanism of gene conversion in Ascobolus immersus I. Existence of a correlation between the origin of mutants induced by different mutagens and their conversion spectrum. Mol Gen Genet 115:36–48

    Google Scholar 

  112. Leblon G (1972b) Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b1 or b2 mutants and their conversion spectrum. Mol Gen Genet 116:322–335

    PubMed  CAS  Google Scholar 

  113. Levinthal C (1954) Recombination in phage T2: Its relationship to heterozygosis and growth. Genetics 39:169–184

    PubMed  CAS  Google Scholar 

  114. Lichten M et al (1990) Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc Natl Acad Sci USA 87:7653–7657

    PubMed  CAS  Google Scholar 

  115. Lin F-LM, Sperle K, Sternberg N (1990) Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a non-conservative pathway that leads to crossover. Mol Cell Biol 10:103–112

    PubMed  CAS  Google Scholar 

  116. Lin FL, Sperle K, Sternberg N (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4:1020–1034

    PubMed  CAS  Google Scholar 

  117. Lindegren CC (1953) Gene conversion in Saccharomyces. J Genet 51:625–637

    Google Scholar 

  118. Lindegren CC (1958) Priority in gene-conversion. Experientia 14:444–445

    PubMed  CAS  Google Scholar 

  119. Lissouba P, Mosseau J, Rizet G, Rossignol JL (1962) Fine structure of genes in the Ascomycete Ascobolus immersus. Adv Genet 11:343–380

    Google Scholar 

  120. Liu Y, Masson JY, Shah R, O'Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303:243–246

    PubMed  CAS  Google Scholar 

  121. Lopes M, Cotta-Ramusino C, Liberi G, Foiani M (2003) Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol Cell 12:1499–1510

    PubMed  CAS  Google Scholar 

  122. Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73:347–360

    PubMed  CAS  Google Scholar 

  123. Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71:71–100

    PubMed  CAS  Google Scholar 

  124. Lydeard JT, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication and telomere maintenance without telomerase require Pol32. Nature 448:820–823

    PubMed  CAS  Google Scholar 

  125. Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 93:7131–7136

    PubMed  CAS  Google Scholar 

  126. Malkova A, Klein F, Leung W-Y, Haber JE (2000) HO endonuclease-induced recombination in yeast meiosis resembles Spo11-induced events. Proc Natl Acad Sci USA 97:14500–14505

    PubMed  CAS  Google Scholar 

  127. Malkova A, Naylor M, Yamaguchi M, Ira G, Haber JE (2005) RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25:933–944

    PubMed  CAS  Google Scholar 

  128. Malkova A et al (2001) RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev 15:1055–1160

    PubMed  CAS  Google Scholar 

  129. Maryon E, Carroll D (1991) Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol Cell Biol 11:3278–3287

    PubMed  CAS  Google Scholar 

  130. McEntee K, Weinstock GM, Lehman IR (1979) Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli. Proc Natl Acad Sci USA 76:2615–2619

    PubMed  CAS  Google Scholar 

  131. McKim KS et al (1998) Meiotic synapsis in the absence of recombination. Science 279:876–878

    PubMed  CAS  Google Scholar 

  132. McKinney SA, Declais AC, Lilley DM, Ha T (2003) Structural dynamics of individual Holliday junctions. Nat Struct Biol 10:93–97

    PubMed  CAS  Google Scholar 

  133. McKinney SA, Freeman AD, Lilley DM, Ha T (2005) Observing spontaneous branch migration of Holliday junctions one step at a time. Proc Natl Acad Sci USA 102:5715–5720

    PubMed  CAS  Google Scholar 

  134. McPherson JP et al (2004) Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 304:1822–1826

    PubMed  CAS  Google Scholar 

  135. Meselson M, Weigle J (1961) Chromosome breakage accompanying recombination in bacteriophage. Proc Natl Acad Sci USA 47:857–868

    PubMed  CAS  Google Scholar 

  136. Meselson MM, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72:358–361

    PubMed  CAS  Google Scholar 

  137. Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25:173–178

    PubMed  CAS  Google Scholar 

  138. Michel B, Grompone G, Flores MJ, Bidnenko V (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783–12788

    PubMed  CAS  Google Scholar 

  139. Mitchell MB (1955) Aberrant recombination of pyridoxine mutants of Neurospora. Proc Natl Acad Sci USA 41:215–220

    PubMed  CAS  Google Scholar 

  140. Morrow DM, Connelly C, Hieter P (1997) ‘Break copy’ duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382

    PubMed  CAS  Google Scholar 

  141. Mortimer RK, Fogel S (1974) Genetical interference and gene conversion. In: Grell RF (ed) Mechanisms in recombination. Plenum Press, New-York, London, pp 263–275

    Google Scholar 

  142. Mosig G (1987) The essential role of recombination in phage T4 growth. Annu Rev Genet 21:347–371

    PubMed  CAS  Google Scholar 

  143. Motamedi MR, Szigety SK, Rosenberg SM (1999) Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev 13:2889–2903

    PubMed  CAS  Google Scholar 

  144. Muller HJ (1916) The mechanism of crossing-over. Am Naturalist 50:193–221

    Google Scholar 

  145. Muller HJ (1922) Variation due to change in the individual genes. Am Naturalist 56:32–50

    Google Scholar 

  146. Muller HJ, Altenburg E (1930) The frequency of translocations produced by X-rays in Drosophila. Genetics 15:283–311

    PubMed  CAS  Google Scholar 

  147. Munz P (1994) An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 137:701–707

    PubMed  CAS  Google Scholar 

  148. Nag DK, White MA, Petes TD (1989) Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340:318–320

    PubMed  CAS  Google Scholar 

  149. Nassif N, Penney J, Pal S, Engels WR, Gloor GB (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14:1613–1625

    PubMed  CAS  Google Scholar 

  150. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    PubMed  CAS  Google Scholar 

  151. O'Driscoll M, Jeggo PA (2006) The role of double-strand break repair—insights from human genetics. Nat Rev Genet 7:45–54

    PubMed  Google Scholar 

  152. Ogawa T, Wabiko H, Tsurimoto T, Horii T, Masukata H, Ogawa H (1979) Characteristics of purified recA protein and the regulation of its synthesis in vivo. Cold Spring Harb Symp Quant Biol 43 Pt 2:909–915

    Google Scholar 

  153. Oh SD, Lao JP, Hwang PY, Taylor AF, Smith GR, Hunter N (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130:259–272

    PubMed  CAS  Google Scholar 

  154. Okada T, Keeney S (2005) Homologous recombination: needing to have my say. Curr Biol 15:R200–202

    PubMed  CAS  Google Scholar 

  155. Olive LS (1959) Aberrant tetrads in Sordaria fimicola. Proc Natl Acad Sci USA 45:727–732

    PubMed  CAS  Google Scholar 

  156. Orr WT, Szostak JW (1983) Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci USA 80:4417–4421

    Google Scholar 

  157. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA 78:6354–6358

    PubMed  CAS  Google Scholar 

  158. Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    PubMed  CAS  Google Scholar 

  159. Ozenberger BA, Roeder GS (1991) A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol Cell Biol 11:1222–1231

    PubMed  CAS  Google Scholar 

  160. Panoli AP et al (2006) AtMND1 is required for homologous pairing during meiosis in Arabidopsis. BMC Mol Biol 7:24

    PubMed  Google Scholar 

  161. Pâques F, Bucheton B, Wegnez M (1996) Rearrangements involving repeated sequences within a P element preferentially occur between units close to the transposon extremities. Genetics 142:459–470

    PubMed  Google Scholar 

  162. Pâques F, Leung WY, Haber JE (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol 18:2045–2054

    PubMed  Google Scholar 

  163. Paquette N, Rossignol JL (1978) Gene conversion spectrum of 15 mutants giving post-meiotic segregation in the b2 locus of Ascobolus immersus. Mol Gen Genet 163:313–326

    Google Scholar 

  164. Paszewski A (1970) Gene conversion: observations on the DNA hybrid models. Genet Res 15:55–64

    Article  PubMed  CAS  Google Scholar 

  165. Plessis A, Dujon B (1993) Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination. Gene 134:41–50

    PubMed  CAS  Google Scholar 

  166. Plessis A, Perrin A, Haber JE, Dujon B (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460

    PubMed  CAS  Google Scholar 

  167. Ponticelli AS, Smith GR (1989) Meiotic recombination-deficient mutants of Schizosaccharomyces pombe. Genetics 123:45–54

    PubMed  CAS  Google Scholar 

  168. Potter H, Dressler D (1976) On the mechanism of genetic recombination: electron microscopic observation of recombination intermediates. Proc Natl Acad Sci USA 73:3000–3004

    PubMed  CAS  Google Scholar 

  169. Raji H, Hartsuiker E (2006) Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast 23:963–976

    PubMed  CAS  Google Scholar 

  170. Ray BL, White CI, Haber JE (1991) Heteroduplex formation and mismatch repair of the ‘stuck’ mutation during mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 11:5372–5380

    PubMed  CAS  Google Scholar 

  171. Resnick MA (1976) The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol 59:97–106

    PubMed  CAS  Google Scholar 

  172. Richardson C, Jasin M (2000) Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20:9068–9075

    PubMed  CAS  Google Scholar 

  173. Rosenberg SM, Hastings PJ (1991) The split-end model for homologous recombination at double-strand breaks and at Chi. Biochimie 73:385–397

    PubMed  CAS  Google Scholar 

  174. Rossignol JL (1969) Existence of homogeneous categories of mutants exhibiting various conversion patterns in gene 75 of Ascobolus immersus. Genetics 63:795–805

    PubMed  CAS  Google Scholar 

  175. Rossignol JL, Nicolas A, Hamza H, Langin T (1984) Origins of gene conversion and reciprocal exchange in Ascobolus. Cold Spring Harb Symp Quant Biol 49:13–21

    PubMed  CAS  Google Scholar 

  176. Rossignol JL, Paquette N (1979) Disparity of gene conversion in frameshift mutants located in locus b2 of Ascobolus immersus. Proc Natl Acad Sci USA 76:2871–2875

    PubMed  CAS  Google Scholar 

  177. Rossignol JL, Paquette N, Nicolas A (1979) Aberrant 4:4 asci, disparity in the direction of conversion, and frequencies of conversion in Ascobolus immersus. Cold Spring Harb Symp Quant Biol 43:1343–1352

    PubMed  Google Scholar 

  178. Rudin N, Haber JE (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8:3918–3928

    PubMed  CAS  Google Scholar 

  179. Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534

    PubMed  CAS  Google Scholar 

  180. Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    PubMed  CAS  Google Scholar 

  181. Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791

    PubMed  CAS  Google Scholar 

  182. Shah R, Bennett RJ, West SC (1994) Genetic recombination in E. coli: RuvC protein cleaves Holliday junctions at resolution hotspots in vitro. Cell 79:853–864

    PubMed  CAS  Google Scholar 

  183. Shibata T, DasGupta C, Cunningham RP, Radding CM (1979) Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc Natl Acad Sci USA 76:1638–1642

    PubMed  CAS  Google Scholar 

  184. Shinagawa H, Iwasaki H (1995) Molecular mechanisms of Holliday junction processing in Escherichia coli. Adv Biophys 31:49–65

    PubMed  CAS  Google Scholar 

  185. Shinagawa H, Iwasaki H (1996) Processing the holliday junction in homologous recombination. Trends Biochem Sci 21:107–111

    PubMed  CAS  Google Scholar 

  186. Shinohara A, Gasior S, Ogawa T, Kleckner N, Bishop DK (1997) Saccharomyces cerevisiae recA homologs RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2:615–629

    PubMed  CAS  Google Scholar 

  187. Shinohara M, Sakai K, Shinohara A, Bishop DK (2003) Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163:1273–1286

    PubMed  CAS  Google Scholar 

  188. Sigal N, Alberts B (1972) Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. J Mol Biol 71:789–793

    PubMed  CAS  Google Scholar 

  189. Signon L, Malkova A, Naylor M, Haber JE (2001) Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol 21:2048–2056

    PubMed  CAS  Google Scholar 

  190. Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB (2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187–193

    PubMed  CAS  Google Scholar 

  191. Skalka A (1974) A replicator's view of recombination (and repair). Plenum, New York

    Google Scholar 

  192. Smith CE, Llorente B, Symington LS (2007) Template switching during break-induced replication. Nature 447:102–105

    PubMed  CAS  Google Scholar 

  193. Smith GR (2001) Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet 35:243–274

    PubMed  CAS  Google Scholar 

  194. Smith GR, Boddy MN, Shanahan P, Russell P (2003) Fission yeast Mus81–Eme1 Holliday junction resolvase is required for meiotic crossing over but not for gene conversion. Genetics 165:2289–2293

    PubMed  CAS  Google Scholar 

  195. Smith GR, Kunes SM, Schultz DW, Taylor A, Triman KL (1981) Structure of chi hotspots of generalized recombination. Cell 24:429–436

    PubMed  CAS  Google Scholar 

  196. Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15:437–451

    PubMed  CAS  Google Scholar 

  197. Sobell HM (1972) Molecular mechanism for genetic recombination. Proc Natl Acad Sci USA 69:2483–2487

    PubMed  CAS  Google Scholar 

  198. Sonoda E et al (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608

    PubMed  CAS  Google Scholar 

  199. Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC (2003) A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114:647–654

    PubMed  CAS  Google Scholar 

  200. Stadler DR, Towe AM (1963) Recombination of allelic cysteine mutants in Neurospora. Genetics 48:1323–1344

    PubMed  CAS  Google Scholar 

  201. Stadler DR, Towe AM (1971) Evidence for meiotic recombination in Ascobolus involving only one member of a tetrad. Genetics 68:401–413

    PubMed  CAS  Google Scholar 

  202. Stahl F (1996) Meiotic recombination in yeast: coronation of the double-strand-break repair model. Cell 87:965–968

    PubMed  CAS  Google Scholar 

  203. Stahl FW (1979) Recombination: thinking about it in phage and fungi. Freeman, San Francisco

    Google Scholar 

  204. Stahl FW, Foss HM (2007) But see Kitani (1978). Genetics (in press)

    Google Scholar 

  205. Stahl FW, Foss HM, Young LS, Borts RH, Abdullah MF, Copenhaver GP (2004) Does crossover interference count in Saccharomyces cerevisiae? Genetics 168:35–48

    PubMed  CAS  Google Scholar 

  206. Stahl FW, Stahl MM, Malone RE, Crasemann JM (1980) Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda. Genetics 94:235–248

    PubMed  CAS  Google Scholar 

  207. Stahl MM, Kobayashi I, Stahl FW, Huntington SK (1983) Activation of Chi, a recombinator, by the action of an endonuclease at a distant site. Proc Natl Acad Sci USA 80:2310–2313

    PubMed  CAS  Google Scholar 

  208. Stern C (1931) Zytologisch-genetische Untersuchungen als Beweis für die Morganische Theorie des Faktorenaustauschs. Biol Zentbl 51:547–587

    Google Scholar 

  209. Strathern JN et al (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192

    PubMed  CAS  Google Scholar 

  210. Sturtevant AH (1915) The behavior of the chromosomes as studied through linkage. Z Indukt Abst Vererb 13:238–287

    Google Scholar 

  211. Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20:5300–5309

    PubMed  CAS  Google Scholar 

  212. Sugawara N, Paques F, Colaiacovo M, Haber JE (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94:9214–9219

    PubMed  CAS  Google Scholar 

  213. Sugawara N, Wang X, Haber JE (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12:209–219

    PubMed  CAS  Google Scholar 

  214. Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    PubMed  CAS  Google Scholar 

  215. Sun H, Treco D, Szostak JW (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161

    PubMed  CAS  Google Scholar 

  216. Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750

    PubMed  CAS  Google Scholar 

  217. Sym M, Roeder GS (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292

    PubMed  CAS  Google Scholar 

  218. Szostak JW, Orr WT, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    PubMed  CAS  Google Scholar 

  219. Taylor AF, Schultz DW, Ponticelli AS, Smith GR (1985) RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell 41:153–163

    PubMed  CAS  Google Scholar 

  220. Teng S, Chang J, McCowan B, Zakian VA (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6:947–952

    PubMed  CAS  Google Scholar 

  221. Teng SC, Zakian VA (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19:8083–8093

    PubMed  CAS  Google Scholar 

  222. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135

    PubMed  CAS  Google Scholar 

  223. Thaler DS, Stahl MM, Stahl FW (1987) Tests of the double-strand-break repair model for Red-mediated recombination of phage lambda and plasmid lambda dv. Genetics 116:501–511

    PubMed  CAS  Google Scholar 

  224. Thomas CA Jr (1966) Recombination of DNA molecules. Prog Nucleic Acid Res Mol Biol 5:315–337

    PubMed  Google Scholar 

  225. Tsubouchi H, Roeder GS (2004) The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination. Genetics 168:1219–1230

    PubMed  CAS  Google Scholar 

  226. Ulrich HD (2001) The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res 29:3487–3494

    PubMed  CAS  Google Scholar 

  227. VanHulle K et al (2007) Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27:2601–2614

    PubMed  CAS  Google Scholar 

  228. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    PubMed  CAS  Google Scholar 

  229. Vengrova S, Dalgaard JZ (2005) The Schizosaccharomyces pombe imprint–nick or ribonucleotide(s)? Curr Biol 15:R326–327; author reply R327

    PubMed  CAS  Google Scholar 

  230. Voelkel-Meiman K, Roeder GS (1990) Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics 126:851–867

    PubMed  CAS  Google Scholar 

  231. West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31:213–244

    PubMed  CAS  Google Scholar 

  232. Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    PubMed  CAS  Google Scholar 

  233. White CI, Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9:663–673

    PubMed  CAS  Google Scholar 

  234. White JH, Lusnak K, Fogel S (1985) Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature 315:350–352

    PubMed  CAS  Google Scholar 

  235. White RL, Fox MS (1975) Heterozygosity in unreplicated bacteriophage lambda recombinants. Genetics 81:33–50

    PubMed  CAS  Google Scholar 

  236. Whitehouse HL (1963) A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature 199:1034–1040

    PubMed  CAS  Google Scholar 

  237. Williamson MS, Game JC, Fogel S (1985) Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110:609–646

    PubMed  CAS  Google Scholar 

  238. Wilson JH (1979) Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem. Proc Natl Acad Sci USA 76:3641–3645

    PubMed  CAS  Google Scholar 

  239. Wolner B, van Komen S, Sung P, Peterson CL (2003) Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12:221–232

    PubMed  CAS  Google Scholar 

  240. Wu L, Hickson ID (2003) The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874

    PubMed  CAS  Google Scholar 

  241. Wu X, Wu C, Haber JE (1997) Rules of donor preference in Saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147:399–407

    PubMed  CAS  Google Scholar 

  242. Yamada K et al (2002) Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Mol Cell 10:671–681

    PubMed  CAS  Google Scholar 

  243. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718

    PubMed  CAS  Google Scholar 

  244. Zinn AR, Butow RA (1984) Kinetics and intermediates of yeast mitochondrial DNA recombination. Cold Spring Harb Symp Quant Biol 49:115–121

    PubMed  CAS  Google Scholar 

  245. Zinn AR, Butow RA (1985) Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Cell 40:887–895

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Haber .

Editor information

Richard Egel Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haber, J.E. (2007). Evolution of Models of Homologous Recombination. In: Egel, R., Lankenau, DH. (eds) Recombination and Meiosis. Genome Dynamics and Stability, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_2007_037

Download citation

Publish with us

Policies and ethics