Skip to main content

Mechanisms of Non-Homologous DNA End Joining:Aspects of In Vitro Assays

  • Chapter
  • First Online:
  • 662 Accesses

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 1))

Abstract

Double-strand breaks (DSB) in genomic DNA are a major threat to cell survival and chromosome integrity. In vertebrate cells, non-homologous DNA end joining (NHEJ) is the major pathway of DSB repair. Genetic studies in yeast, human and rodent cell lines displaying increased IR sensitivity and defects in DSB repair have provided insight in the genes involved in NHEJ. These genetic data have been confirmed and complemented by in vitro assays which have played a significant role in the elucidation and the dissection of the basic mechanisms underlying NHEJ. In vitro assays utilize model DNA substrates that carry defined DSB and thus provide information on the efficiency and fidelity of NHEJ in different cell systems. In contrast to investigations in living cells, in vitro assays facilitate the investigation of the functions of single proteins in the repair process itself so that their impact on the rejoining of different DNA end structures can be studied directly without interference by other cellular processes such as cell cycle and replication. In this chapter, we summarize the basic features of in vitro assays and give an overview over the different available cell-free systems which have facilitated the detailed analysis of NHEJ mechanisms in different vertebrate cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117–55126

    Article  PubMed  CAS  Google Scholar 

  2. Barnes DE (2002) DNA damage: air-breaks? Curr Biol 12:R262–R264

    Article  PubMed  CAS  Google Scholar 

  3. Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T (1998) Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8:1395–1398

    Article  PubMed  CAS  Google Scholar 

  4. Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal VJ recombination. Cell 109 Suppl:S45–S55

    Google Scholar 

  5. Baumann P, West SC (1998) DNA end-joining catalyzed by human cell-free extracts. Proc Natl Acad Sci USA 95:14066–14070 Bennett RA, Gu XY, Povirk LF (1996) Construction of a vector containing a site-specific DNA double-strand break with 3′-phosphoglycolate termini and analysis of the products of end-joining in CV-1 cells. Int J Radiat Biol 70:623–636

    Article  PubMed  CAS  Google Scholar 

  6. Beyert N, Reichenberger S, Peters M, Hartung M, Göttlich B, Goedecke W, Vielmetter W, Pfeiffer P (1994) Nonhomologous DNA end joining of synthetic hairpin substrates in Xenopus laevis egg extracts. Nucleic Acids Res 22:1643–1650

    Article  PubMed  CAS  Google Scholar 

  7. Blanco MG, Boan F, Gomez-Marquez J (2004) A paradox in the in vitro end-joining assays. J Biol Chem 279:26797–26801

    Article  PubMed  CAS  Google Scholar 

  8. Boe SO, Sodroski J, Helland DE, Farnet CM (1995) DNA end-joining in extracts from human cells. Biochem Biophys Res Commun 215:987–993

    Article  PubMed  CAS  Google Scholar 

  9. Chen S, Inamdar KV, Pfeiffer P, Feldmann E, Hannah MF, Yu Y, Lee JW, Zhou T, Lees-Miller SP, Povirk LF (2001) Accurate in vitro end joining of a DNA double strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini: effect of Ku on repair fidelity. J Biol Chem 276:24323–24330

    Article  PubMed  CAS  Google Scholar 

  10. Cheong N, Iliakis G (1997) In vitro rejoining of double strand breaks induced in cellular DNA by bleomycin and restriction endonucleases. Int J Radiat Biol 71:365–375

    Article  PubMed  CAS  Google Scholar 

  11. Cheong N, Okayasu R, Shah S, Ganguly T, Mammen P, Iliakis G (1996) In vitro rejoining of double-strand breaks in cellular DNA by factors present in extracts of HeLa cells. Int J Radiat Biol 69:665–677

    Article  PubMed  CAS  Google Scholar 

  12. Cheong N, Perrault AR, Iliakis G (1998) In vitro rejoining of DNA double strand breaks: a comparison of genomic-DNA with plasmid-DNA-based assays. Int J Radiat Biol 73:481–493

    Article  PubMed  CAS  Google Scholar 

  13. Cheong N, Perrault AR, Wang H, Wachsberger P, Mammen P, Jackson I, Iliakis G (1999) DNA-PK-independent rejoining of DNA double-strand breaks in human cell extracts in vitro. Int J Radiat Biol 75:67–81

    Article  PubMed  CAS  Google Scholar 

  14. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    Article  PubMed  CAS  Google Scholar 

  15. Daza P, Reichenberger S, Göttlich B, Hagmann M, Feldmann E, Pfeiffer P (1996) Mechanisms of nonhomologous DNA end-joining in frogs, mice and men. Biol Chem 377:775–786

    PubMed  CAS  Google Scholar 

  16. Daza P, Schüßler H, McMillan TJ, Girod SC, Pfeiffer P (1997) Radiosensitivity and double-strand break rejoining in tumorigenic and non-tumorigenic human epithelial cell lines. Int J Radiat Biol 72:91–100

    Article  PubMed  CAS  Google Scholar 

  17. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135

    Article  PubMed  Google Scholar 

  18. Derbyshire MK, Epstein LH, Young CS, Munz PL, Fishel R (1994) Nonhomologous recombination in human cells. Mol Cell Biol 14:156–169

    PubMed  CAS  Google Scholar 

  19. DiBiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ Jr, Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60:1245–1253

    PubMed  CAS  Google Scholar 

  20. Diggle CP, Bentley J, Kiltie AE (2003) Development of a rapid, small-scale DNA repair assay for use on clinical samples. Nucleic Acids Res 31:e83

    Article  PubMed  Google Scholar 

  21. Dresser ME (2000) Meiotic chromosome behavior in Saccharomyces cerevisiae and (mostly) mammals. Mutat Res 451:107–127

    PubMed  CAS  Google Scholar 

  22. Fairman MP, Johnson AP, Thacker J (1992) Multiple components are involved in the efficient joining of double stranded DNA breaks in human cell extracts. Nucleic Acids Res 20:4145–4152

    Article  PubMed  CAS  Google Scholar 

  23. Featherstone C, Jackson SP (1999a) DNA-dependent protein kinase gets a break: its role in repairing DNA and maintaining genomic integrity. Br J Cancer 80 Suppl 1:14–19

    Google Scholar 

  24. Featherstone C, Jackson SP (1999b) Ku, a DNA repair protein with multiple cellular functions? Mutat Res 434:3–15

    Google Scholar 

  25. Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 28:2585–2596

    Article  PubMed  CAS  Google Scholar 

  26. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967

    Article  CAS  Google Scholar 

  27. Ganguly T, Iliakis G (1995) A cell-free assay using cytoplasmic cell extracts to study rejoining of radiation-induced DNA double-strand breaks in human cell nuclei. Int J Radiat Biol 68:447–457

    Article  PubMed  CAS  Google Scholar 

  28. Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ, Sekiguchi JM, Rathbun GA, Swat W, Wang J, Bronson RT, Malynn BA, Bryans M, Zhu C, Chaudhuri J, Davidson L, Ferrini R, Stamato T, Orkin SH, Greenberg ME, Alt FW (1998) A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95:891–902

    Article  PubMed  CAS  Google Scholar 

  29. Göttlich B, Reichenberger S, Feldmann E, Pfeiffer P (1998) Rejoining of DNA double-strand breaks in vitro by single-strand annealing. Eur J Biochem 258:387–395

    Article  PubMed  Google Scholar 

  30. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495

    Article  PubMed  CAS  Google Scholar 

  31. Grawunder U, Zimmer D, Kulesza P, Lieber MR (1998) Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type VJ recombination and DNA double-strand break repair in vivo. J Biol Chem 273:24708–24714

    Article  PubMed  CAS  Google Scholar 

  32. Gu XY, Bennett RA, Povirk LF (1996) End-joining of free radical-mediated DNA double-strand breaks in vitro is blocked by the kinase inhibitor wortmannin at a step preceding removal of damaged 3′ termini. J Biol Chem 271:19660–19663

    Article  PubMed  CAS  Google Scholar 

  33. Gu XY, Weinfeld MA, Povirk LF (1998) Implication of DNA-dependent protein kinase in an early, essential, local phosphorylation event during end-joining of DNA double-strand breaks in vitro. Biochemistry 37:9827–9835

    Article  PubMed  CAS  Google Scholar 

  34. Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24:271–275

    Article  PubMed  CAS  Google Scholar 

  35. Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4:639–648

    CAS  Google Scholar 

  36. Honjo T, Kinoshita K, Muramatsu M (2002) Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165–196

    Article  PubMed  CAS  Google Scholar 

  37. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  PubMed  CAS  Google Scholar 

  38. Jackson SP, Jeggo PA (1995) DNA double-strand break repair and VJ recombination: involvement of DNA-PK. Trends Biochem Sci 20:412–415

    Article  PubMed  CAS  Google Scholar 

  39. Jeggo PA, O'Neill P (2002) The Greek Goddess, Artemis, reveals the secrets of her cleavage. DNA Repair (Amst) 1:771–777

    Article  CAS  Google Scholar 

  40. Jeggo PA (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 150:S80–S91

    Article  PubMed  CAS  Google Scholar 

  41. Jeggo PA, Lobrich M (2005) Artemis links ATM to double strand break rejoining. Cell Cycle 4:359–362

    Article  PubMed  CAS  Google Scholar 

  42. Johnson AP, Fairman MP (1996) The identification and characterization of mammalian proteins involved in the rejoining of DNA double-strand breaks in vitro. Mutat Res 364:103–116

    PubMed  CAS  Google Scholar 

  43. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407

    Article  PubMed  CAS  Google Scholar 

  44. Johnson RD, Jasin M (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29:196–201

    Article  PubMed  CAS  Google Scholar 

  45. Kawabata M, Kawabata T, Nishibori M (2005) Role of recA/RAD51 family proteins in mammals. Acta Med Okayama 59:1–9

    PubMed  CAS  Google Scholar 

  46. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  47. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386:761, 763

    CAS  Google Scholar 

  48. Kurz EU, Lees-Miller SP (2004) DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 3:889–900

    Article  CAS  Google Scholar 

  49. Labhart P (1999a) Ku-dependent nonhomologous DNA end joining in Xenopus egg extracts. Mol Cell Biol 19:2585–2593

    Google Scholar 

  50. Labhart P (1999b) Nonhomologous DNA end joining in cell-free systems. Eur J Biochem 265:849–861

    Google Scholar 

  51. Lakshmipathy U, Campbell C (1999) Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res 27:1198–1204

    Article  PubMed  CAS  Google Scholar 

  52. Lee JW, Yannone SM, Chen DJ, Povirk LF (2003) Requirement for XRCC4 and DNA ligase IV in alignment-based gap filling for nonhomologous DNA end joining in vitro. Cancer Res 63:22–24

    PubMed  CAS  Google Scholar 

  53. Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF (2004) Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279:805–811

    Article  PubMed  CAS  Google Scholar 

  54. Lehman CW, Trautman JK, Carroll D (1994) Illegitimate recombination in Xenopus: characterization of end-joined junctions. Nucleic Acids Res 22:434–442

    Article  PubMed  CAS  Google Scholar 

  55. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720

    Article  PubMed  CAS  Google Scholar 

  56. Lundberg R, Mavinakere M, Campbell C (2001) Deficient DNA end joining activity in extracts from fanconi anemia fibroblasts. J Biol Chem 276:9543–9549

    Article  PubMed  CAS  Google Scholar 

  57. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and VJ recombination. Cell 108:781–794

    Article  PubMed  CAS  Google Scholar 

  58. Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O, Hsieh CL, Schwarz K, Lieber MR (2004) A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 16:701–713

    Article  PubMed  CAS  Google Scholar 

  59. Ma Y, Schwarz K, Lieber MR (2005) The Artemis: DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst) 4:845–851

    Article  CAS  Google Scholar 

  60. Mahajan KN, Gangi-Peterson L, Sorscher DH, Wang J, Gathy KN, Mahajan NP, Reeves WH, Mitchell BS (1999) Association of terminal deoxynucleotidyl transferase with Ku. Proc Natl Acad Sci USA 96:13926–13931

    Article  PubMed  CAS  Google Scholar 

  61. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA (2002) Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 22:5194–5202

    Article  PubMed  CAS  Google Scholar 

  62. Mason RM, Thacker J, Fairman MP (1996) The joining of non-complementary DNA double-strand breaks by mammalian extracts. Nucleic Acids Res 24:4946–4953

    Article  PubMed  CAS  Google Scholar 

  63. Merel P, Prieur A, Pfeiffer P, Delattre O (2002) Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 21:5654–5659

    Article  PubMed  CAS  Google Scholar 

  64. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I, Sanal O, Bertrand Y, Philippe N, Fischer A, de Villartay JP (2001) Artemis, a novel DNA double-strand break repair/VJ recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186

    Article  PubMed  CAS  Google Scholar 

  65. Nicolas AL, Young CS (1994) Characterization of DNA end joining in a mammalian cell nuclear extract: junction formation is accompanied by nucleotide loss, which is limited and uniform but not site specific. Mol Cell Biol 14:170–180

    PubMed  CAS  Google Scholar 

  66. Nicolas AL, Munz PL, Young CS (1995) A modified single-strand annealing model best explains the joining of DNA double-strand breaks mammalian cells and cell extracts. Nucleic Acids Res 23:1036–1043

    Article  PubMed  CAS  Google Scholar 

  67. North P, Ganesh A, Thacker J (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res 18:6205–6210

    Article  PubMed  CAS  Google Scholar 

  68. Odersky A, Panyutin IV, Panyutin IG, Schunck C, Feldmann E, Goedecke W, Neumann RD, Obe G, Pfeiffer P (2002) Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts. J Biol Chem 277:11756–11764

    Article  PubMed  CAS  Google Scholar 

  69. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  70. Paull TT, Lee JH (2005) The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle 4:737–740

    Article  PubMed  CAS  Google Scholar 

  71. Perrault R, Wang H, Wang M, Rosidi B, Iliakis G (2004) Backup pathways of NHEJ are suppressed by DNA-PK. J Cell Biochem 92:781–794

    Article  PubMed  CAS  Google Scholar 

  72. Pfeiffer P, Vielmetter W (1988) Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res 16:907–924

    Article  PubMed  CAS  Google Scholar 

  73. Pfeiffer P, Thode S, Hancke J, Keohavong P, Thilly WG (1994a) Resolution and conservation of mismatches in DNA end joining. Mutagenesis 9:527–535

    Google Scholar 

  74. Pfeiffer P, Thode S, Hancke J, Vielmetter W (1994b) Mechanisms of overlap formation in nonhomologous DNA end joining. Mol Cell Biol 14:888–895

    Google Scholar 

  75. Pfeiffer P, Goedecke W, Obe G (2000) Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 15:289–302

    Article  PubMed  CAS  Google Scholar 

  76. Pfeiffer P, Goedecke W, Kuhfittig-Kulle S, Obe G (2004) Pathways of DNA double-strand break repair and their impact on the prevention and formation of chromosomal aberrations. Cytogenet Genome Res 104:7–13

    Article  PubMed  CAS  Google Scholar 

  77. Pfeiffer P, Feldmann E, Odersky A, Kuhfittig-Kulle S, Goedecke W (2005) Analysis of DNA double-strand break repair by nonhomologous end joining in cell-free extracts from mammalian cells. Methods Mol Biol 291:351–371

    PubMed  CAS  Google Scholar 

  78. Pospiech H, Rytkonen AK, Syvaoja JE (2001) The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 29:3277–3288

    Article  PubMed  CAS  Google Scholar 

  79. Reichenberger S, Pfeiffer P (1998) Cloning, purification and characterization of DNA polymerase beta from Xenopus laevis – studies on its potential role in DNA-end joining. Eur J Biochem 251:81–90

    Article  PubMed  CAS  Google Scholar 

  80. Reichenberger S, Brüll N, Feldmann E, Göttlich B, Vielmetter W, Pfeiffer P (1996) A novel nuclease activity from Xenopus laevis releases short oligomers from 5′-ends of double- and single-stranded DNA. Genes Cells 1:355–367

    Article  PubMed  CAS  Google Scholar 

  81. Reynaud CA, Aoufouchi S, Faili A, Weill JC (2003) What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol 4:631–638

    Article  PubMed  CAS  Google Scholar 

  82. Rothkamm K, Kruger I, Thompson LH, Löbrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  83. Sathees CR, Raman MJ (1999) Mouse testicular extracts process DNA double-strand breaks efficiently by DNA end-to-end joining. Mutat Res 433:1–13

    PubMed  CAS  Google Scholar 

  84. Shechter D, Costanzo V, Gautier J (2004) Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 3:901–908

    Article  CAS  Google Scholar 

  85. Shivji MK, Venkitaraman AR (2004) DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst) 3:835–843

    Article  CAS  Google Scholar 

  86. Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3:845–854

    Article  CAS  Google Scholar 

  87. Surralles J, Jackson SP, Jasin M, Kastan MB, West SC, Joenje H (2004) Molecular cross-talk among chromosome fragility syndromes. Genes Dev 18:1359–1370

    Article  PubMed  CAS  Google Scholar 

  88. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135

    CAS  Google Scholar 

  89. Thacker J, Zdzienicka MZ (2003) The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2:655–672

    CAS  Google Scholar 

  90. Thacker J, Zdzienicka MZ (2004) The XRCC genes: expanding roles in DNA double-strand break repair. DNA Repair (Amst) 3:1081–1090

    Article  CAS  Google Scholar 

  91. Thode S, Schäfer A, Pfeiffer P, Vielmetter W (1990) A novel pathway of DNA end-to-end joining. Cell 60:921–928

    Article  PubMed  CAS  Google Scholar 

  92. Thacker J, Chalk J, Ganesh A, North P (1992) A mechanism for deletion formation in DNA by human cell extracts: the involvement of short sequence repeats. Nucleic Acids Res 20:6183–6188

    Article  PubMed  CAS  Google Scholar 

  93. Ting NS, Lee WH (2004) The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst) 3:935–944

    Article  CAS  Google Scholar 

  94. Udayakumar D, Bladen CL, Hudson FZ, Dynan WS (2003) Distinct pathways of nonhomologous end joining that are differentially regulated by DNA-dependent protein kinase-mediated phosphorylation. J Biol Chem 278:41631–41635

    Article  PubMed  CAS  Google Scholar 

  95. van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  Google Scholar 

  96. Venkitaraman AR (2001) Chromosome stability, DNA recombination and the BRCA2 tumour suppressor. Curr Opin Cell Biol 13:338–343

    Article  PubMed  CAS  Google Scholar 

  97. Wang H, Zeng ZC, Bui TA, Sonoda E, Takata M, Takeda S, Iliakis G (2001a) Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene 20:2212–2224

    Google Scholar 

  98. Wang H, Zeng ZC, Perrault AR, Cheng X, Qin W, Iliakis G (2001b) Genetic evidence for the involvement of DNA ligase IV in the DNA-PK-dependent pathway of non-homologous end joining in mammalian cells. Nucleic Acids Res 29:1653–1660

    Google Scholar 

  99. Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G (2003) Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31:5377–5388

    Article  PubMed  CAS  Google Scholar 

  100. Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G (2005) DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65:4020–4030

    Article  PubMed  CAS  Google Scholar 

  101. Wang X, D'Andrea AD (2004) The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst) 3:1063–1069

    Article  CAS  Google Scholar 

  102. Wilson TE, Topper LM, Palmbos PL (2003) Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem Sci 28:62–66

    Article  PubMed  CAS  Google Scholar 

  103. Yaneva M, Kowalewski T, Lieber MR (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J 16:5098–5112

    Article  PubMed  CAS  Google Scholar 

  104. Zdzienicka MZ (1999) Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 81:107–116

    Article  PubMed  CAS  Google Scholar 

  105. Zhang X, Paull TT (2005) The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair (Amst) 4:1281–1294

    Article  CAS  Google Scholar 

  106. Zhong Q, Boyer TG, Chen PL, Lee WH (2002) Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res 62:3966–3970

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies performed in the Pfeiffer laboratory were supported by grants of Wilhelm Sander Stiftung für Krebsforschung to P.P. (96.053.1-3 and 2002.108.1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Pfeiffer .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeiffer, P., Kuhfittig-Kulle, S., Goedecke, W. (2005). Mechanisms of Non-Homologous DNA End Joining:Aspects of In Vitro Assays. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_008

Download citation

Publish with us

Policies and ethics