Skip to main content

The Role of Chromatin Structure and Nuclear Architecture in the Cellular Response to DNA Double-Strand Breaks

  • Chapter
  • First Online:

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 1))

Abstract

The processes involved in the repair of DNA double-strand breaks (DSB) were thoroughly investigated at the genetic and biochemical level. The importance of chromatin structure and nuclear architecture in the outcome of repair has, however, only slowly emerged. Important recent developments in the field comprise the characterization of passive and active chromatin alterations following DSB induction, the function of chromatin modifying complexes and chromatin remodeling complexes in DSB processing, and the role of histone H2AX in the recruitment of these complexes. In addition, the development of new technologies, such as in vivo fluorescence labeling of chromatin and proteins, and the localized induction of breaks by use of endonucleases and microirradiation, has allowed insights to be gained into the mobility of damaged chromatin regions in the nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Halim HI, Natarajan AT, Mullenders LH, Boei JJ (2005) Mitomycin C-induced pairing of heterochromatin reflects initiation of DNA repair and chromatid exchange formation. J Cell Sci 118:1757–1767

    Article  PubMed  CAS  Google Scholar 

  2. Abdel-Halim HI, Imam SA, Badr FM, Natarajan AT, Mullenders LH, Boei JJ (2004) Ionizing radiation-induced instant pairing of heterochromatin of homologous chromosomes in human cells. Cytogenet Genome Res 104:193–199

    Article  PubMed  CAS  Google Scholar 

  3. Abraham RT, Tibbetts RS (2005) Cell biology. Guiding ATM to broken DNA. Science 308:510–511

    Article  PubMed  CAS  Google Scholar 

  4. Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, Kanaar R (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303:92–95

    Article  PubMed  CAS  Google Scholar 

  5. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  PubMed  CAS  Google Scholar 

  6. Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118:9–17

    Article  PubMed  CAS  Google Scholar 

  7. Belmont AS (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11:250–257

    Article  PubMed  CAS  Google Scholar 

  8. Belmont AS, Dietzel S, Nye AC, Strukov YG, Tumbar T (1999) Large-scale chromatin structure and function. Curr Opin Cell Biol 11:307–311

    Article  PubMed  CAS  Google Scholar 

  9. Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419:411–415

    Article  PubMed  CAS  Google Scholar 

  10. Blanton J, Gaszner M, Schedl P (2003) Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev 17:664–675

    Article  PubMed  CAS  Google Scholar 

  11. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467

    Article  PubMed  CAS  Google Scholar 

  12. Byrd K, Corces VG (2003) Visualization of chromatin domains created by the gypsy insulator of Drosophila. J Cell Biol 162:565–574

    Article  PubMed  CAS  Google Scholar 

  13. Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386

    Article  PubMed  CAS  Google Scholar 

  14. Capelson M, Corces VG (2004) Boundary elements and nuclear organization. Biol Cell 96:617–629

    Article  PubMed  CAS  Google Scholar 

  15. Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD (2003) The Mre11 complex is required for ATM activation and the G2=M checkpoint. EMBO J 22:6610–6620

    Article  PubMed  CAS  Google Scholar 

  16. Cornforth MN, Greulich-Bode KM, Loucas BD, Arsuaga J, Vazquez M, Sachs RK, Bruckner M, Molls M, Hahnfeldt P, Hlatky L, Brenner DJ (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 159:237–244

    Article  PubMed  CAS  Google Scholar 

  17. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  Google Scholar 

  18. Dehghani H, Dellaire G, Bazett-Jones DP (2005) Organization of chromatin in the interphase mammalian cell. Micron 36:95–108

    Article  PubMed  Google Scholar 

  19. Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    Article  PubMed  CAS  Google Scholar 

  20. Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16:979–990

    Article  PubMed  CAS  Google Scholar 

  21. Ehrenhofer-Murray AE (2004) Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem 271:2335–2349

    Article  PubMed  CAS  Google Scholar 

  22. Essers J, Houtsmuller AB, van Veelen L, Paulusma C, Nigg AL, Pastink A, Vermeulen W, Hoeijmakers JH, Kanaar R (2002) Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J 21:2030–2037

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez-Capetillo O, Allis CD, Nussenzweig A (2004a) Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med 199:1671–1677

    Google Scholar 

  24. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004b) H2AX: the histone guardian of the genome. DNA Repair 3:959–967

    Google Scholar 

  25. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    Article  PubMed  CAS  Google Scholar 

  26. Fourel G, Magdinier F, Gilson E (2004) Insulator dynamics and the setting of chromatin domains. Bioessays 26:523–532

    Article  PubMed  CAS  Google Scholar 

  27. Friedl AA (2004) Topological factors in radiation biology. In: Kiefer J (ed) Life Sciences and Radiation. Springer, Berlin Heidelberg New York, pp 69–77

    Google Scholar 

  28. Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing radiation-dependent γ-H2AX focus formation requires ATM and ATR. Mol Biol Cell 16:2566–2576

    Article  PubMed  CAS  Google Scholar 

  29. Green CM, Almouzni G (2002) When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep 3:28–33

    Article  PubMed  CAS  Google Scholar 

  30. Haaf T, Golub EI, Reddy G, Radding CM, Ward DC (1995) Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA 92:2298–2302

    Article  PubMed  CAS  Google Scholar 

  31. Haering CH, Nasmyth K (2003) Building and breaking bridges between sister chromatids. Bioessays 25:1178–1191

    Article  PubMed  CAS  Google Scholar 

  32. Harvey AC, Jackson SP, Downs JA (2005) Saccharomyces cerevisiae Histone H2A Ser122 facilitates DNA repair. Genetics, in press

    Google Scholar 

  33. Hauptner A, Dietzel S, Drexler GA, Reichart P, Krücken R, Cremer T, Friedl AA, Dollinger G (2004) Microirradiation of cells with energetic heavy ions. Radiat Environ Biophys 42:237–245

    Article  PubMed  CAS  Google Scholar 

  34. Helleday T (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 532:103–115

    PubMed  CAS  Google Scholar 

  35. Heng HH, Krawetz SA, Lu W, Bremer S, Liu G, Ye CJ (2001) Re-defining the chromatin loop domain. Cytogenet Cell Genet 93:155–161

    Article  PubMed  CAS  Google Scholar 

  36. Horejsi Z, Falck J, Bakkenist CJ, Kastan MB, Lukas J, Bartek J (2004) Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 23:3122–3127

    Article  PubMed  CAS  Google Scholar 

  37. Horn PJ, Peterson CL (2002) Molecular biology. Chromatin higher order folding–wrapping up transcription. Science 297:1824–1827

    Article  PubMed  CAS  Google Scholar 

  38. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411

    Article  PubMed  CAS  Google Scholar 

  39. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473

    Article  PubMed  CAS  Google Scholar 

  40. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109:551–562

    Article  PubMed  CAS  Google Scholar 

  41. Jakob B, Scholz M, Taucher-Scholz G (2003) Biological imaging of heavy charged-particle tracks. Radiat Res 159:676–684

    Article  PubMed  CAS  Google Scholar 

  42. Jazayeri A, McAinsh AD, Jackson SP (2004) Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci USA 101:1644–1649

    Article  PubMed  CAS  Google Scholar 

  43. Karlsson KH, Stenerlow B (2004) Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiat Res 161:517–527

    Article  PubMed  CAS  Google Scholar 

  44. Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ (2003) Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol 160:1017–1027

    Article  PubMed  CAS  Google Scholar 

  45. Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP (2004) DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14:2096–2106

    Article  PubMed  CAS  Google Scholar 

  46. Kim JS, Krasieva TB, LaMorte V, Taylor AMR, Yokomori K (2002) Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 277:45149–45153

    Article  PubMed  CAS  Google Scholar 

  47. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB (2004) Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18:1423–1438

    Article  PubMed  CAS  Google Scholar 

  48. Koundrioukoff S, Polo S, Almouzni G (2004) Interplay between chromatin and cell cycle checkpoints in the context of ATR=ATM-dependent checkpoints. DNA Repair 3:969–978

    Article  PubMed  CAS  Google Scholar 

  49. Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087

    Article  PubMed  CAS  Google Scholar 

  50. Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154

    Article  PubMed  CAS  Google Scholar 

  51. Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, Wilson SH, Yasui A (2004) In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc Natl Acad Sci USA 101:13738–13743

    Article  PubMed  Google Scholar 

  52. Lankenau DH, Peluso MV, Lankenau S (2000) The Su(Hw) chromatin insulator protein alters double-strand break repair frequencies in the Drosophila germ line. Chromosoma 109:148–160

    Article  PubMed  CAS  Google Scholar 

  53. Lavin MF, Birrell G, Chen P, Kozlov S, Scott S, Gueven N (2005) ATM signaling and genomic stability in response to DNA damage. Mutat Res 569:123–132

    PubMed  CAS  Google Scholar 

  54. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11=Rad50= Nbs1 complex. Science 304:93–96

    Article  PubMed  CAS  Google Scholar 

  55. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 compex. Science 308:551–554

    Article  PubMed  CAS  Google Scholar 

  56. Leitch AR, Brown JK, Mosgoller W, Schwarzacher T, Heslop-Harrison JS (1994) The spatial localization of homologous chromosomes in human fibroblasts at mitosis. Hum Genet 93:275–280

    Article  PubMed  CAS  Google Scholar 

  57. Lisby M, Rothstein R (2004) DNA repair: keeping it together. Curr Biol 14:R994-R996

    Article  PubMed  CAS  Google Scholar 

  58. Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5:572–576

    Article  PubMed  CAS  Google Scholar 

  59. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713

    Article  PubMed  CAS  Google Scholar 

  60. Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112

    Article  PubMed  CAS  Google Scholar 

  61. Lucknik AN, Hisamutdinov TA, Georgiev GP (1988) Inhibition of transcription in eukaryotic cells by X-irradiation: relation to loss of topological constraints on closed DNA loops. Nucleic Acids Res 16:5175–5184

    Google Scholar 

  62. Meister P, Poidevin M, Francesconi S, Tratner I, Zarzov P, Baldacci G (2003) Nuclear factories for signalling and repairing DNA double strand breaks in living fission yeast. Nucleic Acids Res 31:5064–5073

    Article  PubMed  CAS  Google Scholar 

  63. Monajembashi S, Rapp A, Schmitt E, Dittmar H, Greulich KO, Hausmann M (2005) Spatial association of homologous pericentric regions in human lymphocyte nuclei during repair. Biophys J 88:2309–2322

    Article  PubMed  CAS  Google Scholar 

  64. Mone MJ, Bernas T, Dinant C, Goedvree FA, Manders EM, Volker M, Houtsmuller AB, Hoeijmakers JH, Vermeulen W, van Driel R (2004) In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair. Proc Natl Acad Sci USA 101:15933–15937

    Article  PubMed  CAS  Google Scholar 

  65. Moore JD, Krebs JE (2004) Histone modification and DNA double-strand break repair. Biochem Cell Biol 82:446–452

    CAS  Google Scholar 

  66. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775

    Article  PubMed  CAS  Google Scholar 

  67. Morrison AJ, Shen X (2005) DNA repair in the context of chromatin. Cell Cycle 4:568–571

    PubMed  CAS  Google Scholar 

  68. Münkel C, Eils R, Dietzel S, Zink D, Mehring C, Wedemann G, Cremer T, Langowski J (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285:1053–1065

    Article  PubMed  Google Scholar 

  69. Nazarov IB, Smirnova AN, Krutilina RI, Svetlova MP, Solovjeva LV, Nikiforov AA, Oei SL, Zalenskaya IA, Yau PM, Bradbury EM, Tomilin NV (2003) Dephosphorylation of histone gamma-H2AX during repair of DNA double-strand breaks in mammalian cells and its inhibition by calyculin A. Radiat Res 160:309–317

    Article  PubMed  CAS  Google Scholar 

  70. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 3:349–404

    Google Scholar 

  71. Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J (2003) DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 31:6819–6827

    Article  PubMed  CAS  Google Scholar 

  72. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  73. Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22:8353–8565

    Article  PubMed  CAS  Google Scholar 

  74. Riedel CG, Gregan J, Gruber S, Nasmyth K (2004) Is chromatin remodeling required to build sister-chromatid cohesion? Trends Biochem Sci 29:389–392

    Article  PubMed  CAS  Google Scholar 

  75. Rodi CP, Sauerbier W (1989) Structure of transcriptionally active chromatin: radiological evidence for requirement of torsionally constrained DNA. J Cell Physiol 141:346–352

    Article  PubMed  CAS  Google Scholar 

  76. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  77. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  PubMed  CAS  Google Scholar 

  78. Rong YS, Golic KG (2003) The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165:1831–1842

    CAS  Google Scholar 

  79. Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed  CAS  Google Scholar 

  80. Sadoni N, Cardoso MC, Stelzer EH, Leonhardt H, Zink D (2004) Stable chromosomal units determine the spatial and temporal organization of DNA replication. J Cell Sci 117:5353–5365

    Article  PubMed  CAS  Google Scholar 

  81. Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119:603–614

    Article  PubMed  CAS  Google Scholar 

  82. Savage JR (2000) Cancer. Proximity matters. Science 290:62–63

    Article  PubMed  CAS  Google Scholar 

  83. Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544

    Article  PubMed  CAS  Google Scholar 

  84. Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14:1703–1711

    Article  PubMed  CAS  Google Scholar 

  85. Sjögren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995

    Article  PubMed  Google Scholar 

  86. Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S (2001) Scc1=Rad21=Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1:759–770

    Article  PubMed  CAS  Google Scholar 

  87. Stark JM, Jasin M (2003) Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Mol Cell Biol 23:733–743

    Article  PubMed  CAS  Google Scholar 

  88. Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396

    Article  PubMed  CAS  Google Scholar 

  89. Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair 3:845–854

    Article  PubMed  CAS  Google Scholar 

  90. Ström L, Sjögren C (2005) DNA damage-induced cohesion. Cell Cycle 4:536–539

    PubMed  Google Scholar 

  91. Ström L, Lindroos HB, Shirahige K, Sjögren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015

    Article  PubMed  Google Scholar 

  92. Tamburini BA, Tyler JK (2005) Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25:4903–4913

    Article  PubMed  CAS  Google Scholar 

  93. Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99:4424–4429

    Article  PubMed  CAS  Google Scholar 

  94. Ünal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    Article  PubMed  Google Scholar 

  95. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621

    Article  PubMed  CAS  Google Scholar 

  96. van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788

    Article  PubMed  Google Scholar 

  97. Warren CD, Eckley DM, Lee MS, Hanna JS, Hughes A, Peyser B, Jie C, Irizarry R, Spencer FA (2004) S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell 15:1724–1735

    Article  PubMed  CAS  Google Scholar 

  98. Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11:130–135

    Article  PubMed  CAS  Google Scholar 

  99. Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, Alt FW, Scully R (2004) Control of sister chromatid recombination by histone H2AX. Mol Cell 16:1017–1025

    Article  PubMed  CAS  Google Scholar 

  100. Yamada K, Ariyoshi M, Morikawa K (2004) Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 14:130–137

    Article  PubMed  CAS  Google Scholar 

  101. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13:291–298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the author's laboratory is supported by grants from Bundesamt für Strahlenschutz, Bundesministerium für Bildung und Forschung, and European Science Foundation. I thank all lab members and my collaborators for discussions and ideas. I apologize to all those whose work could not be cited for reasons of space and focus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Friedl .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedl, A.A. (2005). The Role of Chromatin Structure and Nuclear Architecture in the Cellular Response to DNA Double-Strand Breaks. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_001

Download citation

Publish with us

Policies and ethics