Skip to main content

Photochemical Fate of Organic Booster Biocides in the Aquatic Environment

  • Chapter
  • First Online:
Antifouling Paint Biocides

Abstract

Considering the relevance and importance of photochemical processes in the environmental fate and behavior of organic micropollutants, the present review describes the state-of-the-art knowledge regarding the photodegradation of antifouling biocides in the aquatic environment. It includes data on photodegradation rates, primary and end photoproducts, and the pathways and mechanisms for most of the organic booster biocides (i.e., irgarol 1051, Sea-Nine 211, dichlofluanid, diuron, chlorothalonil, TCMTB, zinc and copper pyrithione, maneb, zineb, ziram, thiram, and triphenylboron-pyridine) used in antifouling paints.

Light-induced degradation took place both with direct or indirect (photosensitized) mechanisms via first-order kinetics. Direct photolysis in most cases seemed to be a minor event compared to photosensitized processes that usually enhanced the degradation. The composition of the water matrix is a key factor for the photofate of biocides in various natural waters. Half-lives ranged from a few minutes (zinc/copper pyrithiones) to several days (diuron and irgarol 1051) depending on the irradiation conditions as well as the constitution of the irradiated media. In most cases identified photoproducts were less toxic and innocuous than the parent compounds, however, the formation of more toxic compounds at the first degradation steps or synergistic effects among the transformation products should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3,4-DCA:

3,4-Dichloroaniline

APCI:

Atmospheric pressure chemical ionization

BT:

Benzothiazole

CDOM:

Colored dissolved organic matter

CPDU:

1-(3,4-Dichlorophenyl)-3,1-dimethylurea

CuPT:

Copper pyrithione

DCPMU:

1-(3,4-Dichlorophenyl)-3-methylurea

DCPU:

1-(3,4-Dichlorophenyl)urea

DMDC:

Dimethyldithiocarbamates

DMSA:

N,N-Dimethyl-N′-phenyl-sulfamide

DOM:

Dissolved organic matter

DTCs:

Dithiocarbamates

EBDC:

Ethylene(bis)dithiocarbamates

EBIS:

Ethylene(bis)isothiocyanate sulfide

EI-MS:

Electron impact–mass spectra

ETU:

Ethylenethiourea

EU:

Ethyleneurea

FA:

Fulvic acids

GC:

Gas chromatography

GS26575:

2-Methylthio-4-tert-butylamino-6-amino-s-triazine

HA:

Humic acids

IMO:

International Maritime Organization

LC:

Liquid chromatography

MBT:

2-Mercaptobenzothiazole

MBTS:

(bis)benzothiazolyl disulfide

MEPC:

Marine Environment Protection Committee

MS:

Mass spectrometry

MTBT:

2-(methylthio)benzothiazole

NHS:

Natural humic substances

NOS:

Natural occurring substances

OBT:

2(3H)-Benzothiazolone

OHBT:

2-hydroxybenzothiazole

PSA:

Pyridine-2-sulfonic-acid

SIM:

Selected ion monitoring

SPE:

Solid phase extraction

TBT:

Tri-butyl tin

TCMS pyridine:

2,3,5,6-Tetrachloro-4-(methyl sulphonyl) pyridine

TCMTB:

2-(thiocyanomethylthio)benzothiazole

TPBP:

Triphenylboron-pyridine

USEPA:

United States Environmental Protection Agency

UV:

Ultraviolet

ZnPT:

Zinc pyrithione

References

  1. Hugget RJ, Unger MA, Seligman PF, Valkiris AO (1993) Environ Sci Technol 26:232

    Article  Google Scholar 

  2. Alzieu C (2000) Sci Total Environ 258:99

    Article  CAS  Google Scholar 

  3. Thomas KV (1998) J Chromatogr A 825:29

    Article  CAS  Google Scholar 

  4. Thomas KV, Blake SJ, Waldock MJ (2000) Mar Pollut Bull 40:739

    Article  CAS  Google Scholar 

  5. Boxall ABA, Comber SD, Conrad AU, Howcroft J, Zaman N (2000) Mar Pollut Bull 40:898

    Article  CAS  Google Scholar 

  6. Martinez K, Ferrer I, Barcelo D (2000) J Chromatogr A 879:27

    Article  CAS  Google Scholar 

  7. Sakkas VA, Kontsantinou IK, Lambropoulou DA, Albanis TA (2002) Environ Sci Pollut Res 9:327

    CAS  Google Scholar 

  8. Fielding M, Barcelo D, Helweg A, Galassi S, Torstensson L, Van Zoonen P, Wolter R, Angeletti A (1992) Pesticides in ground and drinking water. Water pollution research report 27. European Commission, Brussels

    Google Scholar 

  9. Torrents A, Anderson BG, Bilbounian S, Jonhson WE, Hapeman CJ (1997) Environ Sci Technol 31:1476

    Article  CAS  Google Scholar 

  10. Zepp RG, Schlotzauer PF, Sink RM (1985) Environ Sci Technol 19:74

    Article  Google Scholar 

  11. Mill T, Hendry DG, Richardson H (1980) Science 207:886

    CAS  Google Scholar 

  12. Barrows HD, Canle L, Santaballa JA, Steenken S (2002) J Photochem Photobiol B: Biol 67:71

    Article  Google Scholar 

  13. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry. Marcel Dekker, New York

    Google Scholar 

  14. Krupa SV, Kickert RN, Jager HJ (1998) Elevated ultraviolet (UV)-B radiation and agriculture. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Vaughan PP, Blough NV (1998) Environ Sci Technol 32:2947

    Article  Google Scholar 

  16. Durand G, Barcelo D, Albaiges J, Mansour M (1990) Chromatographia 29:120

    Article  CAS  Google Scholar 

  17. Hirsch M, Hutzinger O (1989) Environ Sci Technol 23:1306

    Article  CAS  Google Scholar 

  18. Barrows HD, Ernestova LS, Kemp TJ, Skurlatov YI, Purmal AP, Yermakov AN (1998) Prog React Kin 23:145

    Google Scholar 

  19. Zepp RG, Hoigne J, Bader H (1987) Environ Sci Technol 21:443

    Article  CAS  Google Scholar 

  20. Lam MW, Tantuco K, Mabury SA (2003) Environ Sci Technol 37:899

    Article  CAS  Google Scholar 

  21. Larson RA, Zepp RG (1988) Environ Toxicol Chem 7:265

    CAS  Google Scholar 

  22. Huang J, Mabury SA (2000) Chemosphere 41:1775

    Article  CAS  Google Scholar 

  23. Mill T, Richardson H, Hendry DG (1978) Oxidation of organic compounds in aquatic systems: the free radical oxidation of cumene vol 1. Pergamon, New York

    Google Scholar 

  24. Zepp RG, Wolfe GL, Baughman GL, Hollis RC (1977) Nature 267:421

    Article  CAS  Google Scholar 

  25. Fischer AM, Winterle JS, Mill T (1987) In: Zika RG, Cooper WJ (eds) Photochemistry of environmental aquatic systems. ACS symposium series 327. American Chemical Society, Washington, DC, p 141

    Google Scholar 

  26. Larson RA, Weber EJ (1994) Reaction mechanisms in environmental organic chemistry. CRC, Boca Raton, Florida

    Google Scholar 

  27. Liao CH, Kang SF, Wu FA (2001) Chemosphere 44:1193

    Article  CAS  Google Scholar 

  28. Davies PE (1987) Bull Environ Contam Toxicol 4:405

    Google Scholar 

  29. Walker WW, Cripe CR, Prichard PH (1988) Chemosphere 17:2255

    Article  CAS  Google Scholar 

  30. Caux PY, Kent RA, Fan GT, Stephenson GL (1996) Crit Rev Environ Sci Technol 26:45

    Article  CAS  Google Scholar 

  31. Sakkas VA, Lambropoulou DA, Albanis TA (2002) Chemosphere 48:939

    Article  CAS  Google Scholar 

  32. Penuela GA, Barceló D (1998) J Chromatogr A 823:81

    Article  CAS  Google Scholar 

  33. Millet M, Palm WU, Zetzsch C (1996) Exotoxicol Environ Saf 41:44

    Article  Google Scholar 

  34. Sakkas VA (2002) PhD Thesis, University of Ioannina

    Google Scholar 

  35. Sakkas VA, Konstantinou IK, Albanis TA (2001) J Chromatogr A 930:135

    Article  CAS  Google Scholar 

  36. Callow ME, Finlay JA (1995) Biofouling 9:239

    Google Scholar 

  37. Thomas KV, McHugh M, Hilton M, Waldock M (2003) Environ Pollut 123:153

    Article  CAS  Google Scholar 

  38. Callow ME, Willingham GL (1996) Biofouling 10:239

    CAS  Google Scholar 

  39. Thomas KV (2001) Biofouling 17:73

    CAS  Google Scholar 

  40. Liu D, Maguire RJ, Lau YL, Pacepavicious GJ, Okamura H, Aoyama I (1997) Water Res 31:2363

    Article  CAS  Google Scholar 

  41. Liu D, Pacepavicious GJ, Maguire RJ, Lau YL, Okamura H, Aoyama I (1999) Water Res 33:155

    Article  CAS  Google Scholar 

  42. Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (1999) J Environ Sci Health B 34:225

    Google Scholar 

  43. Okamura H (2002) Chemosphere 48:43

    Article  CAS  Google Scholar 

  44. Hall LW, Giddings JM, Solomon KR, Balcomb R (1999) Crit Rev Toxicol 29:367

    CAS  Google Scholar 

  45. Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O, Maguire RJ, Liu D, Lau YL, Pacepavicious GJ (2000) Mar Pollut Bull 40:754

    Article  CAS  Google Scholar 

  46. Thomas KV, McHugh M, Hilton M, Waldock M (2002) Sci Total Environ 293:117

    Article  CAS  Google Scholar 

  47. Sakkas VA, Lambropoulou DA, Albanis TA (2002) J Photochem Photobiol A:Chem 147:135

    Article  CAS  Google Scholar 

  48. Okamura H, Sugiyama Y (2004) Chemosphere 57:739

    Article  CAS  Google Scholar 

  49. Frimmel FH, Hessler DP (1994) In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. CRC, Boca Raton, Florida, p 137

    Google Scholar 

  50. Khan SU, Gamble DS (1983) J Agric Food Chem 31:1099

    Article  CAS  Google Scholar 

  51. Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA (2001) Environ Sci Technol 35:398

    Article  CAS  Google Scholar 

  52. Torrents A, Anderson BG, Bilboulian S, Johnson WE, Hapeman C (1997) Environ Sci Technol 18:1476

    Article  Google Scholar 

  53. Lam KH, Lam MHW, Lam PKS, Qian T, Cai Z, Yu H, Cheung YH (2004) Mar Pollut Bull 49:336

    Google Scholar 

  54. Ogawa N, Okamura H, Hirai H, Nishida T (2004) Chemosphere 55:487

    Article  CAS  Google Scholar 

  55. Jacobson AH, Willingham GL (2000) Sci Total Environ 258:103

    Article  CAS  Google Scholar 

  56. Ranke J (2002) Environ Sci Technol 36:1539

    Article  CAS  Google Scholar 

  57. Willingham GL, Jacobson AH (1996) In: Devito SC, Garett RL (eds) Designing safer chemicals: Green chemistry for pollution prevention. ACS symposium series 640. American Chemical Society, Washington, p 224

    Google Scholar 

  58. Shade WD, Hurt SS, Jacobson AH, Reinert KH (1994) In: Gorsuch JW, Dwer FW, Ingersoll CM, LaPoint TW (eds) Ecological risk assessment of a novel marine antifoulant. Environmental toxicology and risk assessment, vol 2. American Society for Testing and Materials, Philadelphia, p 381

    Google Scholar 

  59. Willingham GL, Jacobson AH (1999) In: Proceedings of the third Asia-Pacific conference on paint research association, no 14. International Center for Coatings Technology, pp 1–13

    Google Scholar 

  60. Sakkas VA, Konstantinou IK, Albanis TA (2002) J Chromatogr A 959:215

    Article  CAS  Google Scholar 

  61. Jacobson A, Mazza LS, Thompson W (1999) Annual meeting of the Society of Environmental Toxicology and Chemistry (SETAC), Philadelphia, Pennsylvania

    Google Scholar 

  62. Kopecky J (1992) Organic photochemistry: A visual approach. Wiley, New York

    Google Scholar 

  63. Ramamurthy V, Schanze KS (1997) Molecular and supramolecular photochemistry. Marcel Dekker, New York

    Google Scholar 

  64. Rokach J, Hamel P (1979) JCS Chem Comm, p 786

    Google Scholar 

  65. Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PWM, Burt JP (1992) Rev Environ Toxicol 123:1

    CAS  Google Scholar 

  66. Mazellier P, Jirkovsky J, Bolte M (1997) Pest Sci 49:259

    Article  CAS  Google Scholar 

  67. Faure V, Boule P (1996) XXVI Congres, Groupe Français des Pesticides, Nancy, France

    Google Scholar 

  68. Bonnemoy F, Lavedrine B, Boulamh A (2004) Chemosphere 54:1183

    Article  CAS  Google Scholar 

  69. Jirkovsky J, Faure V, Boule P (1997) Pest Sci 50:42

    Article  CAS  Google Scholar 

  70. Faure V (1996) PhD Thesis, University of Clermont-Ferrand

    Google Scholar 

  71. Miller GC, Zisook R, Zepp R (1980) J Agric Food Chem 28:1053

    Article  CAS  Google Scholar 

  72. Othmen K, Boule P (1999) J Photochem Photobiol A:Chem 121:161

    Article  CAS  Google Scholar 

  73. European Commission, Scientific Committee on Toxicity, Ecotoxicity and the Environment (2002) Risk assessment of 3,4-dichloroaniline. CSTEE Report, Brussels

    Google Scholar 

  74. Lanyi K, Dinya B (2005) Microchem J 80:79

    Article  CAS  Google Scholar 

  75. Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H (2000) Pest Manag Sci 56:455

    Article  CAS  Google Scholar 

  76. Turley PA, Fenn RJ, Ritter JC (2000) Biofouling 15:175

    Article  CAS  Google Scholar 

  77. Galvin RM, Mellado JMR, Neihof RA (1998) Eur Water Manag 4:61

    Google Scholar 

  78. Neihof RA, Bailey CA, Patouillet C, Hannan PJ (1979) Environ Contam Toxicol 8:355

    Article  CAS  Google Scholar 

  79. Maraldo K, Dahllof I (2004) Mar Pollut Bull 48:894

    Article  CAS  Google Scholar 

  80. http://www.nra.gov.au/registration/prs.shtml

  81. http://www.pcimag.com/CDA/ArticleInformation/features/BNP__Features__Item/0,1846,12321,00.html

  82. Yamaguchi Y, Kumakura A, Ishigami M, Shibata K, Senda T, Yamada Y (2004) In: Shibata K, Senda T (eds) Proceedings of international symposium on antifouling paint and marine environment (InSAfE), Tokyo, Japan, p 228

    Google Scholar 

  83. Zepp RG, Cline DM (1977) Environ Sci Technol 11:359

    Article  CAS  Google Scholar 

  84. Polson G, Skoulis N, Ritter J (2005) In: Proceedings of 15th annual meeting of the Society of Environmental Toxicology and Chemistry (SETAC), Lille, France, p 145

    Google Scholar 

  85. Evans SM, Birchenough AC, Brancato MS (2000) Mar Pollut Bull 40:204

    Article  CAS  Google Scholar 

  86. Gruiskshan PA, Jarrow HC (1973) J Agric Food Chem 21:333

    Article  Google Scholar 

  87. http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGP/AGPP/Pesticid/JMPR/Download/96_eva/thiram.pdf

  88. US EPA (2002) Ziram: a preliminary HED risk assessment for the reregistration eligibility decision (RED) document. US EPA, Washington DC, 20460

    Google Scholar 

  89. Downing E (2000) Environmental fate of maneb. Environmental Monitoring and Pest Management, Department of Pesticide Regulation, Sacramento, CA 95814-3510

    Google Scholar 

  90. Xu S (2000) Environmental fate of ethylenethiourea. Environmental Monitoring and Pest Management, Department of Pesticide Regulation, Sacramento CA 95814-3510

    Google Scholar 

  91. Ros RD, Crosby DG (1973) J Agric Food Chem 21:335

    Article  Google Scholar 

  92. van Wezel AP, van Vlaardingen P (2001) Maximum permissible concentrations and negligible concentrations for antifouling substances. National Institute of Public Health and the Environment RIVM report 601501008. The Netherlands

    Google Scholar 

  93. Brownlee BG, Carey JH, MacInnis GA, Pellizzari IT (1992) Environ Toxicol Chem 11:1153

    CAS  Google Scholar 

  94. Fife TH, Hutchins JEC, Wang MS (1975) J Am Chem Soc 97:5878

    Article  CAS  Google Scholar 

  95. Konstantinou IK, Zarkadis AK, Albanis TA (2001) J Environ Qual 30:121

    Article  CAS  Google Scholar 

  96. Kirouani-Harani H (2003) PhD thesis, Technical University of Berlin

    Google Scholar 

  97. Párkányi C, Abdelhamid AO (1985) Heterocycles 23:2917

    Google Scholar 

  98. Abdou WM, Sidky MM, Wamhoff H (1987) Z Naturforsch 42:1153

    CAS  Google Scholar 

  99. Knight AR (1974) In: Patai S (ed) Chemistry of the thiol group, vol 1. Wiley, New York, p 445

    Google Scholar 

  100. Coyle JD (1986) Introduction of organic photochemistry. Wiley, p 159

    Google Scholar 

  101. Crank G, Mursyidi A (1982) Aust J Chem 35:775

    Article  CAS  Google Scholar 

  102. Foote CS (1979) In: Wasserman HH, Murray RW (eds) Singlet oxygen. Academic, New York, p 139

    Google Scholar 

  103. Foote CS, Peters GW (1971) J Am Chem Soc 93:3795

    Article  CAS  Google Scholar 

  104. Wamhoff H, Ertas M (1982) Angrew Chem 94:800

    CAS  Google Scholar 

  105. Suzuki N, Sano K, Tani N, Izawa Y (1981) Heterocycles 16:1133

    CAS  Google Scholar 

  106. Malouki MA, Richard C, Zertal A (2004) J Photochem Photobiol A:Chem 167:121

    Article  CAS  Google Scholar 

  107. Takahashi K, Yoshikawa E, Akiyama M, Kitaori K, Masuoka S (2004) In: Shibata K, Senda T (eds) Proceedings of international symposium on antifouling paint and marine environment (InSAfE), Tokyo, Japan, p 196

    Google Scholar 

  108. Amey RL, Waldron C (2004) In: Shibata K, Senda T (eds) Proceedings of international symposium on antifouling paint and marine environment (InSAfE), Tokyo, Japan, p 239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triantafyllos A. Albanis .

Editor information

Ioannis K. Konstantinou

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Sakkas, V.A., Konstantinou, I.K., Albanis, T.A. Photochemical Fate of Organic Booster Biocides in the Aquatic Environment. In: Konstantinou, I.K. (eds) Antifouling Paint Biocides. The Handbook of Environmental Chemistry, vol 5O. Springer, Berlin, Heidelberg . https://doi.org/10.1007/698_5_054

Download citation

Publish with us

Policies and ethics