Skip to main content

Fate of Transformation Products of Synthetic Chemicals

  • Chapter
  • First Online:
Transformation Products of Synthetic Chemicals in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC2,volume 2P))

Abstract

With increasing utilization of various synthetic chemicals, the adverse impact of these chemicals is of concern due to their occurrence in the environment. The subsequent transformation products pose considerable risk on the ecosystem and human health. However, for most currently used synthetic chemicals, the fate of their transformation products are yet to be elucidated, which forces most current risk assessment to focus on parent chemicals. In this article, general processes and principles of environmental fate of chemical transformation products are illustrated; various influential factors such as physiochemical properties of transformation products and conditions of the environmental media are described; a mass balance approach used to investigate the environmental fate is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corsolini S, Kannan K, Imagawa T, Focardi S, Giesy JP (2002) Polychloronaphthalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environ Sci Technol 36(16):3490–3496

    Article  CAS  Google Scholar 

  2. Fenner K, Scheringer M, Hungerbuhler K (2003) Joint persistence of transformation products in chemicals assessment: case studies and uncertainty analysis. Risk Anal 23(1):35–53

    Article  Google Scholar 

  3. Boxall ABA, Sinclair CJ, Fenner K, Kolpin D, Maud SJ (2004) When synthetic chemicals degrade in the environment. Environ Sci Technol 38(19):368a–375a

    Article  CAS  Google Scholar 

  4. Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 42(3):263–271

    Article  CAS  Google Scholar 

  5. Potter TL, Wauchope RD, Culbreath AK (2001) Accumulation and decay of chlorothalonil and selected metabolites in surface soil following foliar application to peanuts. Environ Sci Technol 35(13):2634–2639

    Article  CAS  Google Scholar 

  6. Tessier DM, Clark JM (1995) Quantitative assessment of the mutagenic potential of environmental degradative products of alachlor. J Agric Food Chem 43(9):2504–2512

    Article  CAS  Google Scholar 

  7. Somasundaram L, Coats JR (eds) (1991) Pesticide Transformation Products: Fate and Significance in the Environment. Pesticide transformation products in the environment. American Chemical Society, Washington, DC, pp 2–9

    Google Scholar 

  8. Matucha M, Gryndler M, Forczek ST, Uhlíová H, Fuksová K, Schröder P (2003) Chloroacetic acids in environmental processes. Environ Chem Lett 1:127–130

    Article  CAS  Google Scholar 

  9. Kruger EL, Somasundaram L, Kanwar RS, Coats JR (1993) Persistence and degradation of [C-14] atrazine and [C-14] deisopropylatrazine as affected by soil depth and moisture conditions. Environ Toxicol Chem 12(11):1959–1967

    Article  CAS  Google Scholar 

  10. Somasundaram L, Coats JR (1989) Enhance Biodegradation of Pesticides in the Environment. In: Racke AD, Coats JR (eds) Influence of pesticide metabolites on the development of enhanced biodegradation. American Chemical Society, Washington DC

    Google Scholar 

  11. Coats JR (1993) What happens to degradable pesticides? Chemtech 23:25–29

    CAS  Google Scholar 

  12. Fortin PD, MacPherson I, Neau DB, Bolin JT, Eltis LD (2005) Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J Biol Chem 280(51):42307–42314

    Article  CAS  Google Scholar 

  13. Rajagopal BS, Panda S, Sethunathan N (1986) Accelerated degradation of carbaryl and carbofuran in a flooded soil pretreated with hydrolysis products, 1-naphthol and carbofuran phenol. Bull Environ Contam Toxicol 36(6):827–32

    Article  CAS  Google Scholar 

  14. Ferris IG, Lichtenstein EP (1980) Interactions between agricultural chemicals and soil microflora and their effects on the degradation of [14C]parathion in a cranberry soil. J Agric Food Chem 28(5):1011–9

    Article  CAS  Google Scholar 

  15. Racke KR, Coats JR (1988) Comparative degradation of organophosphorus insecticides in soil: specificity of enhanced microbial degradation. J Agric Food Chem 36:193–196

    Article  CAS  Google Scholar 

  16. Racke KR, Coats JR (1987) Enhanced degradation of isofenphos by soil microorganisms. J Agric Food Chem 35:94–99

    Article  CAS  Google Scholar 

  17. Somasundaram L, Coats JR (1991) Pesticide Transformation Products: Fate and Significance in the Environment. In: Somasundaram L, Coats JR (eds) Pesticide transformation products in the environment. American Chemical Society, Washington, DC, pp 2–9

    Chapter  Google Scholar 

  18. Avidov E, Aharonson N, Katan J (1990) Involvement of soil microorganisms in the accelerated degradation of diphenamid. Weed Sci 38:186–193

    CAS  Google Scholar 

  19. Smelt JH, Crum SH, Teunissen W (1989) Accelerated degradation of methyl isothiocyanate in soil. J Environ Sci Health B24:437–455

    CAS  Google Scholar 

  20. Aharonson N, Katan J, Avidov E, Yarden O (1990) The role of fungi and bacteria in the enhanced degradation of the fungicide carbendazim and the herbicide diphenamid. In: Racke AD, Coats JR (eds) Enhanced Biodegradation of Pesticides in the Environment. American Chemical Society, Washington DC, pp 23–36

    Google Scholar 

  21. Roeth FW, Wilson RG, Martin AR, Shea PJ (1990) Enhanced carbamothioate herbicide degradation: research in Nebraska. In: Racke AD, Coats JR (eds) Enhanced Biodegradation of Pesticides in the Environment. American Chemical Society, Washington DC, pp 23–36

    Chapter  Google Scholar 

  22. Arthur EL, Anhalt JC, Anderson TA, Coats JR (1997) Enhanced degradation of deethylatrazine in an atrazine-history soil of Iowa. J Environ Sci Health B 32(5):599–620

    Article  CAS  Google Scholar 

  23. Miller GC, Crosby DG (1982) Pesticide Photoproducts – Generation and Significance. J Toxicol Clin Toxicol 19(6/7):707–735

    Article  CAS  Google Scholar 

  24. Bavcon Kralj M, Franko M, Trebse P (2006) Photodegradation of organophosphorus insecticides – Investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere 67(1):99–107

    Article  CAS  Google Scholar 

  25. Soderquist CJ, Crosby DG, Moilanen KW, Seiber JN, Woodrow JE (1975) Occurrence of trifluralin and its photoproducts in air. J Agric Food Chem 23(2):304–309

    Article  CAS  Google Scholar 

  26. Benezet HJ, Knowles CO (1982) Microbial-degradation of thidiazuron and its photoproduct. Arch Environ Contam Toxicol 11(1):107–110

    Article  CAS  Google Scholar 

  27. Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–189

    CAS  Google Scholar 

  28. Scribner EA, Battaglin WA, Dietze JE, Thurman EM (2003) Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 03–217. US Geological Survey, Reston, VA

    Google Scholar 

  29. Kolpin DW, Schnoebelen DJ, Thurman EM (2004) Transformation products provide insight to spatial and temporal trends of herbicides in ground water. Ground Water 42(4):601–608

    Article  CAS  Google Scholar 

  30. Kolpin DW, Thurman EM, Linhart SM (2001) Occurrence of cyanazine compounds in groundwater: Degradates more prevalent than the parent compound. Environ Sci Technol 35(6):1217–1222

    Article  CAS  Google Scholar 

  31. Boyd RA (2000) Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa. Sci Total Environ 248(2/3):241–253

    Article  CAS  Google Scholar 

  32. Somasundaram L, Coats JR, Racke KD, Shanbhag VM (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ Toxicol Chem 10(2):185–194

    Article  CAS  Google Scholar 

  33. Winkelmann DA, Klaine SJ (1991) Atrazine metabolite behavior in soil–core microcosm: formation, disappearance, and bound residues. Pesticide transformation products in the environment. In: Somasundaram L, Coats JR (eds) Pesticide Transformation Products: Fate and Significance in the Environment. American Chemical Society, Washington DC, pp 75–92

    Chapter  Google Scholar 

  34. Spencer WF, Cliath MM (1970) Vapor density and apparent vapor pressure of lindane (Gamma Bhc). J Agric Food Chem 18(3):529

    Article  CAS  Google Scholar 

  35. Shen L, Wania F, Lei YD, Teixeira C, Muir DCG, Bidleman TF (2005) Atmospheric distribution and long-range transport behavior of organochlorine pesticides in north America. Environ Sci Technol 39(2):409–420

    Article  CAS  Google Scholar 

  36. Goolsby DA, Thurman EM, Pomes ML, Meyer MT, Battaglin WA (1997) Herbicides and their metabolites in rainfall: Origin, transport, and deposition patterns across the midwestern and northeastern United States, 1990–1991. Environ Sci Technol 31(5):1325–1333

    Article  CAS  Google Scholar 

  37. Gevao B, Mordaunt C, Semple KT, Piearce TG, Jones KC (2001) Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environ Sci Technol 35(3):501–507

    Article  CAS  Google Scholar 

  38. Capriel P, Haisch A, Khan SU (1985) Distribution and nature of bound (nonextractable) residues of atrazine in a mineral soil 9 years after the herbicide application. J Agric Food Chem 33(4):567–569

    Article  CAS  Google Scholar 

  39. Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55(10):1339–1348

    Article  CAS  Google Scholar 

  40. Park JH, Feng YC, Ji PS, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69(6):3288–3298

    Article  CAS  Google Scholar 

  41. Khan SU (1982) Bound pesticide-residues in soil and plants. Residue Rev 84:1–25

    CAS  Google Scholar 

  42. Kruger EL, Zhu BL, Coats JR (1996) Relative mobilities of atrazine, five atrazine degradates, metolachlor, and simazine in soils of Iowa. Environ Toxicol Chem 15(5):691–695

    Article  CAS  Google Scholar 

  43. Prosen H, Zupančič-Krajl L (2005) Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environ Pollut 133(3):517–529

    Article  CAS  Google Scholar 

  44. Muller TA, Kohler HPE (2004) Chirality of pollutants – effects on metabolism and fate. Appl Microbiol Biotechnol 64(3):300–316

    Article  CAS  Google Scholar 

  45. Letcher RJ, Klasson-Wehler E, Bergman A (2000) Methyl sulfone and hydroxylated metabolites of polychlorinated biphenyls. Handb Environ Chem 3:315–359

    Article  CAS  Google Scholar 

  46. Mekenyan OG, Dimitrov SD, Pavlov TS, Veith GD (2004) A systematic approach to simulating metabolism in computational toxicology. I. The TIMES heuristic modelling framework. Curr Pharmaceut Des 10(11):1273–1293

    Article  CAS  Google Scholar 

  47. Henderson KL, Belden JB, Coatst JR (2007) Fate of atrazine in a grassed phytoremediation system. Environ Toxicol Chem 26(9):1836–1842

    Article  CAS  Google Scholar 

  48. Henderson KL, Belden JB, Coats JR (2007) Mass balance of metolachlor in a grassed phytoremediation system. Environ Sci Technol 41(11):4084–4089

    Article  CAS  Google Scholar 

  49. Orchard BJ, Doucette WJ, Chard JK, Bugbee B (2000) A novel laboratory system for determining fate of volatile organic compounds in planted systems. Environ Toxicol Chem 19(4):888–894

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingfei Hu .

Editor information

Alistair B. A. Boxall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, D., Henderson, K., Coats, J. (2009). Fate of Transformation Products of Synthetic Chemicals. In: Boxall, A.B.A. (eds) Transformation Products of Synthetic Chemicals in the Environment. The Handbook of Environmental Chemistry, vol 2P. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2_018

Download citation

Publish with us

Policies and ethics