Skip to main content

Mechanisms of Degradation of Synthetic Chemicals

  • Chapter
  • First Online:
  • 894 Accesses

Part of the book series: The Handbook of Environmental Chemistry ((HEC2,volume 2P))

Abstract

The fate of chemicals in the environment is largely dependent upon microbial biodegradation, or a lack thereof. Biodegradation derives from the extremely broad types of metabolic reactions catalyzed by microbes. Diverse microbial metabolism is represented in the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD), which is freely available on the Web. The UM-BBD encompasses metabolism of 60 organic functional groups. On average, there are four reaction types for each functional group. Each of these reaction types underlies a metabolic rule. Metabolic rules have formed the basis of a computational system used to predict the biodegradative pathways of chemicals. Many pathways may be predicted. To deal with pathway combinatorial explosion, a rule-prioritization system has been implemented. Additional tools are under development to better understand the underlying characteristics of biodegradative metabolism with the hope of improving biodegradation prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hogue J (2007) Chemical & Eng News 85:34

    Google Scholar 

  2. Brown MP, Bush B, Rhee GY, Shane L (1988) Science 240:1674

    Article  CAS  Google Scholar 

  3. Abramowicz D (1994) Res Microbiol 145:42

    Article  CAS  Google Scholar 

  4. Miller E, Wohlferth G, Diekert G (1998) Arch Microbiol 169:497

    Article  CAS  Google Scholar 

  5. Krasotkina J, Walters T, Maruya KA, Ragsdale SW (2001) J Biol Chem 276:40991

    Article  CAS  Google Scholar 

  6. Vogel TM, McCarty PL (1985) Appl Environ Microbiol 49:1080

    CAS  Google Scholar 

  7. Swaen GM, Duijts SF (2005) Epidemiologic evidence for the carcinogenicity of vinyl chloride monomer. Scand J Work Environ Health 31(3):233

    Google Scholar 

  8. Ellis LBM, Roe D, Wackett LP (2006) Nucl Acids Res 34:D517

    Article  CAS  Google Scholar 

  9. Yamada H, Shimizu S, Kobayashi M (2001) Chem Rec 1:152

    Article  CAS  Google Scholar 

  10. Hou BK, Wackett LP, Ellis LB (2003) J Chem Inf Comput Sci 43:1051

    CAS  Google Scholar 

  11. Di Lello P, Benison GC, Valafar H, Pitts KE, Summers AO, Legault P, Omichinski JG (2004) Biochemistry 43:8322

    Article  Google Scholar 

  12. Grumping R, Michalke K, Hirner AV, Hensel R (1999) Appl Environ Microbiol 65:2276

    CAS  Google Scholar 

  13. Negrete-Raymond AC, Weder B, Wackett LP (2003) Appl Environ Microbiol 69:4263

    Article  CAS  Google Scholar 

  14. Inoue H, Takimura O, Fuse H, Murakami K, Kamimura K, Yamaoka Y (2000) Appl Environ Microbiol 66:3492

    Article  CAS  Google Scholar 

  15. Wackett LP, Hershberger CD (2001) Biocatalysis and Biodegradation: Microbial Transformation of Organic Compounds. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  16. GOLD tables. GOLD, Genomes on-line. URL = http://www.genomesonline.org/gold.cgi

    Google Scholar 

  17. Ward N, Fraser CM (2005) Curr Opin Microbiol 8:564

    Article  CAS  Google Scholar 

  18. Babbitt PC (2003) Curr Opin Chem Biol 7:23

    Article  Google Scholar 

  19. Somerville CC, Nishino SF, Spain JC (1995) J Bacteriol 177:3837

    CAS  Google Scholar 

  20. Nishino SF, Spain JC (1993) Appl Environ Microbiol 59:2520

    CAS  Google Scholar 

  21. He Z, Nadeau LJ, Spain JC (2000) Eur J Biochem 267:1110

    Article  CAS  Google Scholar 

  22. Davis JK, Paoli GC, He Z, Nadeau LJ, Somerville CC, Spain JC (2000) Appl Environ Microbiol 66:2965

    Article  CAS  Google Scholar 

  23. Di Santo R, Costi R, Artico M, Massa S, Lampis G, Deidda D, Pompei R (1998) Bioorg Med Chem Lett 8:2931

    Article  Google Scholar 

  24. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker (2000) Nature 405:962

    Google Scholar 

  25. Murugasu-Oei B, Dick T (2000) J Antimicrob Chemother 46:917

    Article  CAS  Google Scholar 

  26. Fowden L (1956) Biochem J 64:323

    CAS  Google Scholar 

  27. Fowden L, Richmond MH (1963) Biochim Biophys Acta 71:459

    Article  CAS  Google Scholar 

  28. Scarpulla RC, Soffer RL (1978) J Biol Chem 253:5997

    CAS  Google Scholar 

  29. Dunnill PM, Fowden L (1965) Phytochemistry 4:445

    Article  CAS  Google Scholar 

  30. Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) J Mol Biol 361:1003

    Article  CAS  Google Scholar 

  31. Hou BK, Ellis LBM, Wackett LP (2004) J Ind Microbiol Biotechnol 31:261

    Article  CAS  Google Scholar 

  32. Dodge AG, Richman JR, Johnson G, Wackett LP (2006) Appl Environ Microbiol 72:7468

    Article  CAS  Google Scholar 

  33. Klopman G, Tu M (1997) Environ Toxicol Chem 16:1829

    Article  CAS  Google Scholar 

  34. Wackett LP, Ellis LBM, Speedie SM, Hershberger CD, Knackmuss H-J, Spormann AM, Walsh CT, Forney LJ, Punch WF, Kazic T, Kanehisa M, Berndt DJ (1999) ASM News 65:87

    Google Scholar 

  35. Jaworska J, Dimitrov S, Nikolova N, Mekenyan O (2002) SAR QSAR Environ Res 13:307

    Article  CAS  Google Scholar 

  36. DeSouza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ, Wackett LP (1998) Appl Environ Microbiol 64:178

    CAS  Google Scholar 

  37. Whitman WB, Coleman DC, Wiebe WJ (1998) Proc Nat Acad Sci USA 95:6578

    Article  CAS  Google Scholar 

  38. Gans J, Wolinsky M, Dunbar J (2005) Science 309:1387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Wackett .

Editor information

Alistair B. A. Boxall

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wackett, L.P., Ellis, L.B.M. (2008). Mechanisms of Degradation of Synthetic Chemicals. In: Boxall, A.B.A. (eds) Transformation Products of Synthetic Chemicals in the Environment. The Handbook of Environmental Chemistry, vol 2P. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2_014

Download citation

Publish with us

Policies and ethics