Skip to main content

Fate of Pyrethroids in Freshwater and Marine Environments

  • Chapter
  • First Online:
Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

Abstract

As a consequence of their increasing use, pyrethroid insecticides are recognized as a threat for nontarget species and ecosystem health. The present chapter gives a state-of-art overview of individual pyrethroid occurrence in waters and sediments worldwide, together with recent reports of their quantification in the atmospheric gas and aerosol phases. Degradation rates, transport processes, and partitioning of pyrethroids between environmental phases are reviewed. River flow efficiently transports pyrethroids to river mouths and estuaries, while pyrethroid impact on the marine environment remains difficult to appraise due to lack of comprehensive studies. Nevertheless, aquaculture arises as an important but poorly understood environmental burden. Owing to their large organic carbon pool, sediments may act as a sink for pyrethroids and impair nontarget aquatic species. Partitioning potential of pyrethroids is compared to that of other well-known legacy pollutants in the light of their position in the phase space defined by key physicochemical properties (KOW and H′). The transport and partition of pyrethroids away from their source are strongly dependent on their half-life, but their quasi constant emissions in urban and agricultural area may compensate for their degradation, therefore sustaining the occurrence and behavior of some individual pyrethroids as “quasi persistent organic pollutants.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aznar-Alemany Ø, Eljarrat E (2020) Introduction to pyrethroid insecticides: chemical structures, properties, mode of action and use. In: The handbook of environmental chemistry. Springer, Berlin. https://doi.org/10.1007/698_2019_435

  2. Wolfram J, Stehle S, Bub S, Petschick LL, Schulz R (2018) Meta-analysis of insecticides in United States surface waters: status and future implications. Environ Sci Techol 53:3634–3644. https://doi.org/10.1021/acs.est.8b05833

    Article  CAS  Google Scholar 

  3. Bondarenko S, Putt A, Kavanaugh S, Poletika N, Gan J (2006) Time dependence of phase distribution of pyrethroid insecticides in sediment. Environ Toxicol Chem 25(12):3148–3154

    Article  CAS  Google Scholar 

  4. Aznar-Alemany Ø, Eljarrat E (2020) Bioavailability and bioaccumulation of pyrethroid insecticides in wildlife and humans. In: The handbook of environmental chemistry. Springer, Berlin. https://doi.org/10.1007/698_2020_466

  5. Ernst W, Doe K, Cook K, Burridge L, Lalonde B, Jackman P, Aubé JG, Page F (2014) Dispersion and toxicity to non-target crustaceans of azamethiphos and deltamethrin after sea lice treatments on farmed salmon, Salmo salar. Aquaculture 424–425:104–112. https://doi.org/10.1016/j.aquaculture.2013.12.017

    Article  CAS  Google Scholar 

  6. Tucca F, Barra R (2020) Environmental risks of synthetic pyrethroids used by the Salmon industry in Chile. In: The handbook of environmental chemistry. Springer, Berlin. https://doi.org/10.1007/698_2019_431

  7. Li H, Cheng F, Wei Y, Lydy MJ, You J (2017) Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324:258–271. https://doi.org/10.1016/j.jhazmat.2016.10.056

    Article  CAS  Google Scholar 

  8. Campo J, Masia A, Blasco C, Pico Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River basins. J Hazard Mater 263:146–157. https://doi.org/10.1016/j.jhazmat.2013.09.061

    Article  CAS  Google Scholar 

  9. Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32:2460–2468. https://doi.org/10.1002/etc.2338

    Article  CAS  Google Scholar 

  10. Ng CM, Weston DP, You J, Lydy MJ (2008) Patterns of pyrethroid contamination and toxicity in agricultural and urban stream segments. In: Gan J, Spurlock F, Hendley P, Weston D (eds) Synthetic pyrethroids: occurrence and behavior in aquatic environments. ACS symposium series, vol 991. American Chemical Society, Washington, pp 355–369. https://doi.org/10.1021/bk-2008-0991.ch016

    Chapter  Google Scholar 

  11. Siegler K, Phillips BM, Anderson BS, Voorhees JP, Tjeerdema RS (2015) Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds. Environ Pollut 206:1–6. https://doi.org/10.1016/j.envpol.2015.06.028

    Article  CAS  Google Scholar 

  12. Weston DP, Lydy MJ (2012) Stormwater input of pyrethroid insecticides to an urban river. Environ Toxicol Chem 31:1579–1586. https://doi.org/10.1002/etc.1847

    Article  CAS  Google Scholar 

  13. Weston DP, Chen D, Lydy MJ (2015) Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. Sci Total Environ 527–528:18–25. https://doi.org/10.1016/j.scitotenv.2015.04.095

    Article  CAS  Google Scholar 

  14. Domagalski JL, Weston DP, Zhang M, Hladik M (2010) Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA. Environ Toxicol Chem 29(4):813–823. https://doi.org/10.1002/etc.106

    Article  CAS  Google Scholar 

  15. Bacey J, Spurlock F, Starner K, Feng H, Hsu J, White J, Tran DM (2005) Residues and toxicity of esfenvalerate and permethrin in water and sediment, in tributaries of the Sacramento and San Joaquin Rivers, California, USA. Bull Environ Contam Toxicol 74:864–871. https://doi.org/10.1007/s00128-005-0661-8

    Article  CAS  Google Scholar 

  16. Biales AD, Denton DL, Riordan D, Breuer R, Batt AL, Crane DB, Schoenfuss HL (2015) Complex watersheds, collaborative teams: assessing pollutant presence and effects in the San Francisco Delta. Integr Environ Assess Manag 11(4):674–688. https://doi.org/10.1002/ieam.1633

    Article  Google Scholar 

  17. Ensminger M, Bergin R, Spurlock F, Goh KS (2011) Pesticide concentrations in water and sediment and associated invertebrate toxicity in Del Puerto and Orestimba Creeks, California, 2007–2008. Environ Monit Assess 175:573–587. https://doi.org/10.1007/s10661-010-1552-y

    Article  CAS  Google Scholar 

  18. Ng CN, Weston DP, Lydy MJ (2012) Pyrethroid insecticide transport into Monterey Bay through riverine suspended solids. Arch Environ Contam Toxicol 63:461–470. https://doi.org/10.1007/s00244-012-9796-x

    Article  CAS  Google Scholar 

  19. Anderson BS, Phillips BM, Voorhees JP, Deng X, Geraci J, Worcester K, Tjeerdemay RS (2017) Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions. Integr Environ Assess Manag 14(2):270–281. https://doi.org/10.1002/ieam.2005

    Article  CAS  Google Scholar 

  20. Sengupta A, Lyons JM, Smith DJ, Drewes JE, Snyder SA, Heil A, Maruya KA (2014) The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environ Toxicol Chem 33(2):350–358. https://doi.org/10.1002/etc.2457

    Article  CAS  Google Scholar 

  21. Wolfand JM, Seller C, Bell CD, Cho Y-M, Oetjen K, Hogue TS, Luthy RG (2019) Occurrence of urban-use pesticides and management with enhanced stormwater control measures at the watershed scale. Environ Sci Technol 53:3634–3644. https://doi.org/10.1021/acs.est.8b05833

    Article  CAS  Google Scholar 

  22. Elfman L, Tooke NE, Patring JDM (2011) Detection of pesticides used in rice cultivation in streams on the island of Leyte in the Philippines. Agric Water Manag 101:81–87. https://doi.org/10.1016/j.agwat.2011.09.005

    Article  Google Scholar 

  23. Hanh DT, Kadokami K, Matsuura N, Trung NQ (2012) Screening analysis of a thousand micro-pollutants in Vietnamese rivers. Southeast Asian Water Environ 5:195–202. https://www.researchgate.net/profile/Hanh_Duong3/publication/268209904_Screening_analysis_of_a_thousand_micro-pollutants_in_Vietnamese_Rivers/links/5630293808aefac54d8f156a.pdf

  24. Xue N, Xu X (2006) Composition, distribution, and characterization of suspected endocrine-disrupting pesticides in Beijing GuanTing Reservoir (GTR). Arch Environ Contam Toxicol 50:463–473. https://doi.org/10.1007/s00244-005-1097-1

    Article  CAS  Google Scholar 

  25. Li H, Wei Y, Lydy MJ, You J (2014) Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment. Environ Pollut 190:19–26. https://doi.org/10.1016/j.envpol.2014.03.013

    Article  CAS  Google Scholar 

  26. Riaz G, Tabinda AB, Kashif M, Yasar A, Mahmood A, Rasheed R, Khan MI, Iqbal J, Siddique S, Mahfooz Y (2018) Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environ Sci Pollut R 25:22584–22597. https://doi.org/10.1007/s11356-018-1963-9

    Article  CAS  Google Scholar 

  27. House WA, Long JLA, Rae JE, Parker A, Orr DR (2000) Occurrence and mobility of the insecticide permethrin in rivers in the Southern Humber catchment, UK. Pest Manag Sci 56:597–606

    Article  CAS  Google Scholar 

  28. Feo ML, Ginebreda A, Eljarrat E, Barceló D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162. https://doi.org/10.1016/j.jhydrol.2010.08.012

    Article  CAS  Google Scholar 

  29. Feo ML, Eljarrat E, Barceló D (2010) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217:2248–2253. https://doi.org/10.1016/j.chroma.2010.02.018

    Article  CAS  Google Scholar 

  30. Aznar R, Sánchez-Brunete C, Albero B, Moreno-Ramón H, Tadeo JL (2017) Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling. Paddy Water Environ 15:307–316. https://doi.org/10.1007/s10333-016-0550-2

    Article  Google Scholar 

  31. Bereswill R, Streloke M, Schulz R (2013) Current-use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements. Environ Toxicol Chem 32(6):1254–1263. https://doi.org/10.1002/etc.2170

    Article  CAS  Google Scholar 

  32. Hook SE, Doan H, Gonzago D, Musson D, Du J, Kookana R, Sellars MJ, Kumar A (2018) The impacts of modern-use pesticides on shrimp aquaculture: an assessment for north eastern Australia. Ecotoxicol Environ Saf 148:770–780. https://doi.org/10.1016/j.ecoenv.2017.11.028

    Article  CAS  Google Scholar 

  33. Gadelha JR, Rocha AC, Camacho C, Eljarrat E, Peris A, Aminot Y, Readman JW, Boti V, Nannou C, Kapsi M, Albanis T, Rocha F, Machado A, Bordalo A, Valente LMP, Nunes ML, Marques A, Almeida CMR (2019) Persistent and emerging pollutants assessment on aquaculture oysters (Crassostrea gigas) from NW Portuguese coast (Ria De Aveiro). Sci Total Environ 666:731–742. https://doi.org/10.1016/j.scitotenv.2019.02.280

    Article  CAS  Google Scholar 

  34. Bollmohr S, Day JA, Schulz R (2007) Temporal variability in particle-associated pesticide exposure in a temporarily open estuary, Western Cape, South Africa. Chemosphere 68:479–488. https://doi.org/10.1016/j.chemosphere.2006.12.078

    Article  CAS  Google Scholar 

  35. Tucca F, Moya H, Barra R (2014) Ethylene vinyl acetate polymer as a tool for passive sampling monitoring of hydrophobic chemicals in the salmon farm industry. Mar Pollut Bull 88:174–179. https://doi.org/10.1016/j.marpolbul.2014.09.009

    Article  CAS  Google Scholar 

  36. Langford K, Bæk K, Kringstad A, Rundberget T, Øxnevad S, Thomas KV (2015) Screening of the sea lice medications azamethiphos, deltamethrin and cypermethrin. Norwegian Environment Agency’s – environmental monitoring M-345

    Google Scholar 

  37. Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27(4):953–962

    Article  CAS  Google Scholar 

  38. Anderson BS, Phillips BM, Voorhees JP, Hunt JW, Worchester K, Adams M, Kapellas N, Tjeerdema RS (2006) Evidence of pesticide impacts in the Santa Maria river watershed, California, USA. Environ Toxicol Chem 25(4):1160–1170

    Article  CAS  Google Scholar 

  39. Phillips BM, Anderson BS, Hunt JW, Huntley SA, Tjeerdema RS, Kapellas N, Worcester K (2006) Solid-phase sediment toxicity identification evaluation in an agricultural stream. Environ Toxicol Chem 25(6):1671–1676

    Article  CAS  Google Scholar 

  40. Bondarenko S, Spurlock F, Gan J (2007) Analysis of pyrethroids in sediment pore water by solid-phase microextraction. Environ Toxicol Chem 26(12):2587–2593

    Article  CAS  Google Scholar 

  41. Wang JZ, Li HZ, You J (2012) Distribution and toxicity of current-use insecticides in sediment of a lake receiving waters from areas in transition to urbanization. Environ Pollut 161:128–133. https://doi.org/10.1016/j.envpol.2011.10.020

    Article  CAS  Google Scholar 

  42. Xu EG, Bui C, Lamerdin C, Schlenk D (2016) Spatial and temporal assessment of environmental contaminants in water, sediments and fish of the Salton Sea and its two primary tributaries, California, USA, from 2002 to 2012. Sci Total Environ 559:130–140. https://doi.org/10.1016/j.scitotenv.2016.03.144

    Article  CAS  Google Scholar 

  43. Kuivila KM, Hladik ML, Ingersoll CG, Kemble NE, Moran PW, Calhoun DL, Nowell LH, Gilliom RJ (2012) Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ Sci Technol 46:4297–4303. https://doi.org/10.1021/es2044882

    Article  CAS  Google Scholar 

  44. Crane JL (2019) Distribution, toxic potential, and influence of land use on conventional and emerging contaminants in urban stormwater pond sediments. Arch Environ Contam Toxicol 76:265–294. https://doi.org/10.1007/s00244-019-00598-w

    Article  CAS  Google Scholar 

  45. Mac Loughlin TM, Peluso L, Marino DJG (2017) Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina. Sci Total Environ 598:572–580. https://doi.org/10.1016/j.scitotenv.2017.04.116

    Article  CAS  Google Scholar 

  46. Müller JF, Duquesne S, Ng J, Shaw GR, Krrishnamohan K, Manonmanii K, Hodge M, Eaglesham GF (2000) Pesticides in sediments from Queensland irrigation channels and drains. Mar Pollut Bull 41(7–12):294–301

    Article  Google Scholar 

  47. Duong HT, Kadokami K, Pan SY, Matsuura N, Nguyen TQ (2014) Screening and analysis of 940 organic micro-pollutants in river sediments in Vietnam using an automated identification and quantification database system for GC–MS. Chemosphere 107:462–472. https://doi.org/10.1016/j.chemosphere.2014.01.064

    Article  CAS  Google Scholar 

  48. Elfman L, Tooke NB, Patring JDM (2011) Detection of pesticides used in rice cultivation in streams on the island of Leyte in the Philippines. Agric Water Manag 101:81–87. https://doi.org/10.1016/j.agwat.2011.09.005

    Article  Google Scholar 

  49. Cheng F, Li H, Qi H, Han Q, You J (2017) Contribution of pyrethroids in large urban rivers to sediment toxicity assessed with benthic invertebrates Chironomus dilutus: a case study in South China. Environ Toxicol Chem 36(12):3367–3375. https://doi.org/10.1002/etc.3919

    Article  CAS  Google Scholar 

  50. Xue N, Li F, Hou H, Li B (2008) Occurrence of endocrine-disrupting pesticide residues in wetland sediments from Beijing, China. Environ Toxicol Chem 27(5):1055–1062

    Article  CAS  Google Scholar 

  51. He Y, Xu J, Guo C, Lv J, Zhang Y, Meng W (2016) Bioassay-directed identification of toxicants in sediments of Liaohe River, Northeast China. Environ Pollut 219:663–671. https://doi.org/10.1016/j.envpol.2016.06.052

    Article  CAS  Google Scholar 

  52. Lao W, Tsukada D, Greenstein DJ, Bay SM, Maruya KA (2010) Analysis, occurrence, and toxic potential of pyrethroids, and fipronil in sediments from an urban estuary. Environ Toxicol Chem 29(4):843–851. https://doi.org/10.1002/etc.116

    Article  CAS  Google Scholar 

  53. Lao W, Tiefenthaler L, Greenstein DJ, Maruya KA, Bay SM, Ritter K, Schiff K (2012) Pyrethroids in southern California coastal sediments. Environ Toxicol Chem 31(7):1649–1656. https://doi.org/10.1002/etc.1867

    Article  CAS  Google Scholar 

  54. Li H, Sun B, Chen X, Lydy MJ, You J (2013) Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: application in an urban stream in China. Environ Pollut 178:135–141. https://doi.org/10.1016/j.envpol.2013.03.022

    Article  CAS  Google Scholar 

  55. Pintado-Herrera MG, Wang C, Luc Y, Chang YP, Chen W, Li X, Lara-Martín PA (2016) Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.02.046

  56. Burkhard LP (2000) Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol 34:4663–4668. https://doi.org/10.1021/es001269I

    Article  CAS  Google Scholar 

  57. Van Geest JL, Burridge LE, Kidd KA (2014) Toxicity of two pyrethroid-based anti-sea lice pesticides, AlphaMax® and Excis®, to a marine amphipod in aqueous and sediment exposures. Aquaculture 434:233–240. https://doi.org/10.1016/j.aquaculture.2014.08.025

    Article  CAS  Google Scholar 

  58. Rain-Franco A, Rojas C, Fernandez C (2018) Potential effect of pesticides currently used in salmon farming on photo and chemoautotrophic carbon uptake in Central-Southern Chile. Aquaculture 486:271–284. https://doi.org/10.1016/j.aquaculture.2017.12.048

    Article  CAS  Google Scholar 

  59. Moran PW, Nowell LH, Kemble NE, Mahler BJ, Waite IR, Van Metre PC (2017) Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA. Sci Total Environ 599–600:1469–1478. https://doi.org/10.1016/j.scitotenv.2017.05.035

    Article  CAS  Google Scholar 

  60. Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. PNAS 112(18):5750–5755. https://doi.org/10.1073/pnas.1500232112

  61. Li H, Sun B, Lydy MJ, You J (2013) Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns. Environ Toxicol Chem 32(5):1040–1047. https://doi.org/10.1002/etc.2147

    Article  CAS  Google Scholar 

  62. Massei R, Busch W, Wolschke H, Schinkel L, Bitsch M, Schulze T, Krauss M, Brack W (2018) Screening of pesticide and biocide patterns as risk drivers in sediments of major European River mouths: ubiquitous or river basin-specific contamination? Environ Sci Technol 52:2251–2260. https://doi.org/10.1021/acs.est.7b04355

    Article  CAS  Google Scholar 

  63. Cycoń M, Piotrowska-Seget Z (2016) Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front Microbiol 7:1463. https://doi.org/10.3389/fmicb.2016.01463

    Article  Google Scholar 

  64. Gajendiran A, Abraham J (2018) An overview of pyrethroid insecticides. Front Biol 13(2):79–90. https://doi.org/10.1007/s11515-018-1489-z

    Article  CAS  Google Scholar 

  65. Gan J, Lee SJ, Liu WP, Haver DL, Kabashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34:836–841. https://doi.org/10.2134/jeq2004.0240

    Article  CAS  Google Scholar 

  66. Van den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH, Linden AMA (1999) Emission of pesticides into the air. Water Air Soil Pollut 115:195–218. https://doi.org/10.1023/A:1005234329622.

    Article  Google Scholar 

  67. Voutsas E, Vavva C, Magoulas K, Tassios D (2005) Estimation of the volatilization of organic compounds from soil surfaces. Chemosphere 58:751–758. https://doi.org/10.1016/j.chemosphere.2004.09.057

    Article  CAS  Google Scholar 

  68. Macguire RJ (1991) Kinetics of pesticide volatilization from the surface of water. J Agric Food Chem 39:1674–1678

    Article  Google Scholar 

  69. Eisenreich SJ, Looney BB, Thornton JD (1981) Airborne organic contaminants in the Great Lakes ecosystem. Environ Sci Technol 15:30–38

    Article  CAS  Google Scholar 

  70. Guida YS, Meire RO, Machado Torres JP, Malm O (2018) Air contamination by legacy and current-use pesticides in Brazilian mountains: an overview of national regulations by monitoring pollutant presence in pristine areas. Environ Pollut 242:19–30. https://doi.org/10.1016/j.envpol.2018.06.061

    Article  CAS  Google Scholar 

  71. Li H, Mad H, Lydy MJ, You J (2014) Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and pyrethroid pesticides in an urban community in South China. Chemosphere 95:363–369. https://doi.org/10.1016/j.chemosphere.2013.09.046

    Article  CAS  Google Scholar 

  72. Sulaiman N, Fong TL, Samat HA, Sahid I, Othman R, Abdullah M (2007) Concentration of insecticides cypermethrin isomer in total suspended particulate in air of Cameron Highlands, Pahang, Malaysia. Sains Malaysiana 36(2):97–103

    CAS  Google Scholar 

  73. Nascimento MM, da Rocha GO, de Andrade JB (2007) Pesticides in fine airborne particles: from a green analysis method to atmospheric characterization and risk assessment. Sci Rep 7:2267. https://doi.org/10.1038/s41598-017-02518-1

    Article  CAS  Google Scholar 

  74. Casal P, Casas G, Vila-Costa M, Cabrerizo A, Pizarro M, Jiménez B, Dachs J (2019) Snow amplification of persistent organic pollutants at coastal Antarctica. Environ Sci Technol 53(15):8872–8882. https://doi.org/10.1021/acs.est.9b03006

    Article  CAS  Google Scholar 

  75. Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research directions. Environ Pollut 150:150–165. https://doi.org/10.1016/j.envpol.2007.06.051

    Article  CAS  Google Scholar 

  76. Galbán-Malagón C, Berrojalbiz N, Ojeda MJ, Dachs J (2012) The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun 3:862. https://doi.org/10.1038/ncomms1858

    Article  CAS  Google Scholar 

  77. González-Gaya B, Fernández-Pinos MC, Morales L, Méjanelle L, Abad E, Piña B, Duarte CM, Jiménez B, Dachs J (2016) High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nat Geosci 9:438–442. https://doi.org/10.1038/ngeo2714

    Article  CAS  Google Scholar 

  78. Galbán-Malagón C, Cabrerizo A, Caballero G, Dachs J (2013) Atmospheric occurrence and deposition of hexachlorobenzene and hexachlorocyclohexanes in the Southern Ocean and Antarctic peninsula. Atmos Environ 80:41–49. https://doi.org/10.1016/j.atmosenv.2013.07.061

    Article  CAS  Google Scholar 

  79. Feo ML (in revision) Analytical methods for determining pyrethroid insecticides in environmental and food matrices. In: The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  80. Fosu PO, Donkor A, Ziwu C, Dubey B, Kingsford-Adaboh R, Asante I, Nyarko S, Tawiah R, Nazzah N (2017) Surveillance of pesticide residues in fruits and vegetables from Accra Metropolis markets, Ghana, 2010–2012: a case study in Sub-Saharan Africa. Environ Sci Pollut Res 24(20):17187–17205. https://doi.org/10.1007/s11356-017-9287-8

    Article  CAS  Google Scholar 

  81. Blankson GK, Osei-Fosu P, Adeendze EA, Ashie D (2016) Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra, Ghana. Food Control 68:S174–S180. https://doi.org/10.1016/j.foodcont.2016.03.045

    Article  CAS  Google Scholar 

  82. Mohammed S, Lamoree M, Ansa-Asare OD, de Boer J (2019) Review of the analysis of insecticide residues and their levels in different matrices in Ghana. Ecotoxicol Environ Saf 171:361–372. https://doi.org/10.1016/j.ecoenv.2018.12.049

    Article  CAS  Google Scholar 

  83. Machekano H, Wellington M, Mvumi B, Nyamukondiwa C (2019) Cabbage or ‘pesticide’ on the platter? Chemical analysis reveals multiple and excessive residues in African vegetable markets. Int J Food Contam 6. https://doi.org/10.1186/s40550-019-0072-y

Download references

Acknowledgements

We acknowledge partial financial support from the International Associated Laboratories MORFUN and MAST (Marine Biogeochemistry and Functional Ecology) and from COPAS Sur-Austral CONICYT PIA APOYO CCTE AFB170006. BJ was supported by CONICYT-PFCHA/Doctorado Nacional/2015-21150103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Méjanelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Méjanelle, L., Jara, B., Dachs, J. (2020). Fate of Pyrethroids in Freshwater and Marine Environments. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_433

Download citation

Publish with us

Policies and ethics