Skip to main content

The Ecological and Evolutionary Implications of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity

  • Chapter
  • First Online:
Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

Abstract

Pyrethroids are one of the most heavily used insecticide classes globally because they have low mammalian toxicity. However, they are highly toxic to arthropods. Pyrethroids are ubiquitous in the aquatic environment as a result of urban (landscaping, structural pest control, home, and garden) and agricultural runoff and spray drift, often at levels that exceed water quality benchmarks established for the protection of aquatic life. Pyrethroids also enter the aquatic compartment through direct application to treat crustacean parasites in commercial fisheries. Here, we briefly review the acute and sublethal toxicities of pyrethroids with a focus on aquatic invertebrates. Our primary focus is on evidence of the evolution of adaptive pyrethroid resistance in aquatic invertebrates (sea lice (Lepeophtheirus salmonis), mosquitoes (Anopheles gambiae and A. coluzzi) black flies (Simulium spp.), and amphipods (Hyalella azteca)) driven by target and nontarget applications of pyrethroids in the aquatic environment. We explore the human health, evolutionary, ecological, and risk assessment implications of the evolution of pyrethroid resistance and suggest using resistance in the model invertebrate H. azteca to further our understanding of evolutionary toxicology in wild populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brander SM, Jeffries KM, Cole BJ, DeCourten BM, White JW, Hasenbein S, Fangue NA, Connon RE (2016) Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. Aquat Toxicol 174:247–260. https://doi.org/10.1016/j.aquatox.2016.02.014

    Article  CAS  Google Scholar 

  2. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

    Article  CAS  Google Scholar 

  3. Sanders HJ, Taff AW (1954) Staff-industry collaborative report: Allethrin. Ind Eng Chem 46(3):414–426. https://doi.org/10.1021/ie50531a018

    Article  CAS  Google Scholar 

  4. Elliot M, Farnham AW, Janes NF, Needham PH, Pulman DA, Stevenson JH (1973) A photostable pyrethroid. Nature 246:169–170. https://doi.org/10.1038/246169a0

    Article  Google Scholar 

  5. Barr DB, Olsson AO, Wong L-Y, Udunka S, Baker SE, Whitehead RD Jr, Magsumbol MS, Williams BL, Needham LL (2010) Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999–2002. Environ Health Perspect 118(6):742–748. https://doi.org/10.1289/ehp.0901275

    Article  CAS  Google Scholar 

  6. Werner I, Moran K (2008) Effects of pyrethroid insecticides on aquatic organisms. In: Synthetic pyrethroids. ACS symposium series. ACS Publication, Washington, pp 310–334. https://doi.org/10.1021/bk-2008-0991.ch014

    Chapter  Google Scholar 

  7. Booij K, Hofmans HE, Fischer CV, van Weerlee EM (2003) Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 37:361–366. https://doi.org/10.1021/es025739i

    Article  CAS  Google Scholar 

  8. van den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, Hii J, Dash AP, Ejov M (2012) Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect 120(4):577–582. https://doi.org/10.1289/ehp.1104340

    Article  Google Scholar 

  9. Sabaliunas D, Ellington J, Sabaliuniene I (1999) Screening bioavailable hydrophobic toxicants in surface water with semipermeable membrane devices: role of inherent oleic acid in toxicity evaluations. Ecotoxicol Environ Saf 44(2):160–167. https://doi.org/10.1006/eesa.1999.1802

    Article  CAS  Google Scholar 

  10. Lee PCS, Zaveri RA, Easter RC, Peters LK (1999) Technical note on the parallelization of global climate-chemistry modeling system. Atmos Environ 33:675–681

    Article  CAS  Google Scholar 

  11. Burr SA, Ray DE (2004) Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol Sci 77(2):341–346. https://doi.org/10.1093/toxsci/kfh027

    Article  Google Scholar 

  12. Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE (2019) Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). Aquat Toxicol 206:1–13. https://doi.org/10.1016/j.aquatox.2018.10.014

    Article  CAS  Google Scholar 

  13. Frank DF, Miller GW, Harvey DJ, Brander SM, Geist J, Connon RE, Lein PJ (2018) Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat Toxicol 200:50–61. https://doi.org/10.1016/j.aquatox.2018.04.003

    Article  CAS  Google Scholar 

  14. Lawrence LJ, Casida JE (1982) Pyrethroid toxicology: mouse intracerebral structure-toxicity relationships. Pestic Biochem Physiol 18:9–14. https://doi.org/10.1016/0048-3575(82)90082-7

    Article  CAS  Google Scholar 

  15. Soderlund DM (2012) Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol 86(2):165–181. https://doi.org/10.1007/s00204-011-0726-x

    Article  CAS  Google Scholar 

  16. Gammon DW, Brown MA, Casida JE (1981) Two classes of pyrethroid action in the cockroach. Pestic Biochem Physiol 15(2):181–191. https://doi.org/10.1016/0048-3575(81)90084-5

    Article  CAS  Google Scholar 

  17. Narahashi T (1986) Nerve membrane ionic channels as the target of toxicants. In: Chambers CM, Chambers PL, Tuomisto J (eds) Toxic interfaces of neurones, smoke and genes. Archives of toxicology, vol 9. Springer, Cham, pp 3–13. https://doi.org/10.1007/978-3-642-71248-7_1

    Chapter  Google Scholar 

  18. Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. White paper for the interagency ecological program. San Francisco Estuary Institute, Oakland

    Google Scholar 

  19. Werner I, Young TM (2018) Pyrethroid insecticides – exposure and impacts in the aquatic environment. In: Encyclopedia of the anthropocene. Elsevier, Amsterdam, pp 119–126. https://doi.org/10.1016/b978-0-12-809665-9.09992-4

    Chapter  Google Scholar 

  20. Bondarenko S, Putt A, Kavanaugh S, Poletika N, Gan J (2006) Time dependence of phase distribution of pyrethroid insecticides in sediment. Environ Toxicol Chem 25(12):3148–3154. https://doi.org/10.1897/06-017R.1

    Article  CAS  Google Scholar 

  21. Leahey JP (1985) The pyrethroid insecticides. Taylor & Francis, London, 440 pp

    Google Scholar 

  22. Brander SM, He G, Smalling KL, Denison MS, Cherr GN (2012) The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. Environ Toxicol Chem 31(12):2848–2855. https://doi.org/10.1002/etc.2019

    Article  CAS  Google Scholar 

  23. Alonso MB, Feo ML, Corcellas C, Vidal LG, Bertozzi CP, Marigo J, Secchi ER, Bassoi M, Azevedo AF, Dorneles PR, Torres JP, Lailson-Brito J, Malm O, Eljarrat E, Barcelo D (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106. https://doi.org/10.1016/j.envint.2012.06.010

    Article  CAS  Google Scholar 

  24. Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116. https://doi.org/10.1016/j.envint.2014.11.007

    Article  CAS  Google Scholar 

  25. Kuivila KM, Hladik ML, Ingersoll CG, Kemble NE, Moran PW, Calhoun DL, Nowell LH, Gilliom RJ (2012) Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ Sci Technol 46(8):4297–4303. https://doi.org/10.1021/es2044882

    Article  CAS  Google Scholar 

  26. Brander SM, Mosser CM, Geist J, Hladik ML, Werner I (2012) Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata. Ecotoxicology 21(8):2409–2418. https://doi.org/10.1007/s10646-012-0996-y

    Article  CAS  Google Scholar 

  27. Stehle S, Bub S, Schulz R (2018) Compilation and analysis of global surface water concentrations for individual insecticide compounds. Sci Total Environ 639:516–525. https://doi.org/10.1016/j.scitotenv.2018.05.158

    Article  CAS  Google Scholar 

  28. Carpenter KD, Kuivila KM, Hladik ML, Haluksa T, Cole MB (2016) Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages. Environ Monit Assess 188:345. https://doi.org/10.1007/s10661-016-5215-5

    Article  CAS  Google Scholar 

  29. Siegler K, Phillips BM, Anderson BS, Voorhees JP, Tjeerdema RS (2015) Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds. Environ Pollut 206:1–6. https://doi.org/10.1016/j.envpol.2015.06.028

    Article  CAS  Google Scholar 

  30. Delgado-Moreno L, Lin K, Veiga-Nascimento R, Gan J (2011) Occurrence and toxicity of three classes of insecticides in water and sediment in two Southern California coastal watersheds. J Agric Food Chem 59(17):9448–9456. https://doi.org/10.1021/jf202049s

    Article  CAS  Google Scholar 

  31. Rogers HA, Schmidt TS, Dabney BL, Hladik ML, Mahler BJ, Van Metre PC (2016) Bifenthrin causes trophic cascade and altered insect emergence in mesocosms: implications for small streams. Environ Sci Technol 50(21):11974–11983. https://doi.org/10.1021/acs.est.6b02761

    Article  CAS  Google Scholar 

  32. Centers for Disease Control and Prevention (2009) Fourth National Report on human exposure to environmental chemicals. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  33. Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32(11):2460–2468. https://doi.org/10.1002/etc.2338

    Article  CAS  Google Scholar 

  34. Mulla MS, Navvab-Gojrati HA, Darwazeh HA (1978) Biological activity and longevity of synthetic pyrethroids against mosquitoes and some nontarget insects. Mosq News 38(1):90–96

    CAS  Google Scholar 

  35. Mulla MS, Darwazeh HA, Ede L (1982) Evaluation of new pyrethroids against immature mosquitoes and their effects on nontarget organisms. Mosq News 42:583–590

    CAS  Google Scholar 

  36. McMahon JP (1967) A review of the control of Simulium vectors of onchocerciasis. Bull World Health Organ 37:415–430

    CAS  Google Scholar 

  37. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306(1–4):7–23. https://doi.org/10.1016/j.aquaculture.2010.05.020

    Article  CAS  Google Scholar 

  38. Graslund S, Holmstrom K, Wahlstrom A (2003) A field survey of chemicals and biological products used in shrimp farming. Mar Pollut Bull 46:81–90. https://doi.org/10.1016/S0025-326X(02)00320-X

    Article  CAS  Google Scholar 

  39. Jiang W, Luo Y, Conkle JL, Li J, Gan J (2016) Pesticides on residential outdoor surfaces: environmental impacts and aquatic toxicity. Pest Manag Sci 72(7):1411–1420. https://doi.org/10.1002/ps.4168

    Article  CAS  Google Scholar 

  40. Weston DP, Moschet C, Young TM, Johanif N, Poynton HC, Major KM, Connon RE, Hasenbein S (in revision) Chemical and toxicological impacts to Cache Slough following storm-driven contaminant inputs. San Francisco Estuary and Watershed Science 17(3):1–29. https://doi.org/10.15447/sfews.2019v17iss3art3

  41. Brander SM, Werner I, White JW, Deanovic LA (2009) Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations. Environ Toxicol Chem 28(7):1493–1499. https://doi.org/10.1897/08-374.1

    Article  CAS  Google Scholar 

  42. Weston DP, Lydy MJ (2012) Stormwater input of pyrethroid insecticides to an urban river. Environ Toxicol Chem 31(7):1579–1586. https://doi.org/10.1002/etc.1847

    Article  CAS  Google Scholar 

  43. Hasenbein S, Connon RE, Lawler SP, Geist J (2015) A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus. Environ Sci Pollut Res Int 22:11327. https://doi.org/10.1007/s11356-015-4374-1

    Article  CAS  Google Scholar 

  44. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706. https://doi.org/10.1021/es051407c

    Article  CAS  Google Scholar 

  45. Holmes RW, Anderson BS, Phillips BM, Hunt JW, Crane DB, Mekebri A, Connor V (2008) Statewide investigation of the role of pyrethroid pesticides in sediment toxicity in California’s urban waterways. Environ Sci Technol 42:7003–7009. https://doi.org/10.1021/es801346g

    Article  CAS  Google Scholar 

  46. Phillips BM, Anderson BS, Hunt JW, Siegler K, Voorhees JP, Tjeerdema RS, McNeill K (2012) Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA). Environ Toxicol Chem 31(7):1595–1603. https://doi.org/10.1002/etc.1860

    Article  CAS  Google Scholar 

  47. Huff Hartz KE, Nutile SA, Fung CY, Sinche FL, Moran PW, van Metre PC, Nowell LH, Lydy MJ (2019) Survey of bioaccessible pyrethroid insecticides and sediment toxicity in urban streams of the Northeast United States. Environ Pollut 254:112931. https://doi.org/10.1016/j.envpol.2019.07.099

    Article  CAS  Google Scholar 

  48. Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in Central Texas. Environ Pollut 157(1):110–116. https://doi.org/10.1016/j.envpol.2008.07.023

    Article  CAS  Google Scholar 

  49. Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39(24):9778–9784. https://doi.org/10.1021/es0506354

    Article  CAS  Google Scholar 

  50. Weston DP, Holmes RW, Lydy MJ (2009) Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ Pollut 157(1):287–294. https://doi.org/10.1016/j.envpol.2008.06.037

    Article  CAS  Google Scholar 

  51. Lettieri T, Chirico N, Carvalho RN, Napierska D, Loos R, Sanseverino I, Marinov D, Ceriani L, Umlauf G (2016) Modelling-based strategy for the prioritisation exercise under the water framework directive. European Commission Directorate General Joint Research Centre, Varese

    Google Scholar 

  52. Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS (2014) Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol 50:1–17. https://doi.org/10.1016/j.ibmb.2014.03.012

    Article  CAS  Google Scholar 

  53. Rinkevich FD, Du Y, Dong K (2013) Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic Biochem Physiol 106(3):93–100. https://doi.org/10.1016/j.pestbp.2013.02.007

    Article  CAS  Google Scholar 

  54. Ffrench-Constant RH (2013) The molecular genetics of insecticide resistance. Genetics 194(4):807–815. https://doi.org/10.1534/genetics.112.141895

    Article  CAS  Google Scholar 

  55. Feyereisen R, Dermauw W, van Leeuwen T (2015) Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic Biochem Physiol 121:61. https://doi.org/10.1016/j.pestbp.2015.01.004

    Article  CAS  Google Scholar 

  56. Diabate A, Baldet T, Chandre F, Akogbeto M, Guiguemde RT, Darriet F, Brengues C, Guillet P, Hemingway J, Small GJ, Hougard JM (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae S. L. in Burkina Faso. Am J Trop Med Hyg 67(6):617–622. https://doi.org/10.4269/ajtmh.2002.67.617

    Article  CAS  Google Scholar 

  57. Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci U S A 110(41):16532–16537. https://doi.org/10.1073/pnas.1302023110

    Article  Google Scholar 

  58. Major KM, Weston DP, Lydy MJ, Wellborn GA, Poynton HC (2018) Unintentional exposure to terrestrial pesticides drives widespread and predictable evolution of resistance in freshwater crustaceans. Evol Appl 11(5):748–761. https://doi.org/10.1111/eva.12584

    Article  CAS  Google Scholar 

  59. Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabire R, Aikpon R, Boko M, Glitho I, Akogbeto M (2011) Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasit Vectors 4:60–70. https://doi.org/10.1186/1756-3305-4-60

    Article  Google Scholar 

  60. Montagna CM, Gauna LE, de D’Angelo AP, Anguiano OL (2012) Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina. Mem Inst Oswaldo Cruz 107(4):458–465. https://doi.org/10.1590/s0074-02762012000400003

    Article  CAS  Google Scholar 

  61. Montagna CM, Anguiano OL, Gauna LE, de D’Angelo AMP (2003) Mechanisms of resistance to DDT and pyrethroid in Patagonian populations of Simulium blackflies. Med Vet Entomol 17:95–101. https://doi.org/10.1046/j.1365-2915.2003.00401.x

    Article  CAS  Google Scholar 

  62. Montagna CM, Anguiano OL, Gauna LE, de D’Angelo AMP (1999) Resistance to pyrethroids and DDT in a field-mixed population of Argentinean black flies (Diptera: Simuliidae). J Econ Entomol 92(6):1243–1245. https://doi.org/10.1093/jee/92.6.1243

    Article  CAS  Google Scholar 

  63. Hien AS, Soma DD, Hema O, Bayili B, Namountougou M, Gnankine O, Baldet T, Diabate A, Dabire KR (2017) Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa. PLoS One 12(3):e0173098. https://doi.org/10.1371/journal.pone.0173098

    Article  CAS  Google Scholar 

  64. Antwi FB, Reddy GV (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40(3):915–923. https://doi.org/10.1016/j.etap.2015.09.023

    Article  CAS  Google Scholar 

  65. Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen F (ed) Insecticides – advances in integrated pest management. BoD–Books on Demand, Norderstedt. https://doi.org/10.5772/29495

    Chapter  Google Scholar 

  66. Mian LS, Milla MS (1992) Effects of pyrethroid insecticides on nontarget invertebrates in aquatic ecosystems. J Agric Entomol 9(2):73–98

    CAS  Google Scholar 

  67. Hill IR, Shaw JL, Maund SJ (1994) Review of aquatic field tests with pyrethriod insecticides. In: Hill IR (ed) Freshwater field tests for hazard assessment of chemicals. Lewis Publisher, Boca Raton, pp 249–271

    Google Scholar 

  68. Giddings JM, Wirtz J, Campana D, Dobbs M (2019) Derivation of combined species sensitivity distributions for acute toxicity of pyrethroids to aquatic animals. Ecotoxicology 28(2):242–250. https://doi.org/10.1007/s10646-019-02018-0

    Article  CAS  Google Scholar 

  69. Ernst W, Jackman P, Doe K, Page F, Julien G, Mackay K, Sutherland T (2001) Dispersion and toxicity to non-target aquatic organisms of pesticides to treat sea lice on salmon in net pen enclosures. Mar Pollut Bull 42(6):433–444. https://doi.org/10.1016/S0025-326X(00)00177-6

    Article  CAS  Google Scholar 

  70. Hasenbein S, Poynton H, Connon RE (2018) Contaminant exposure effects in a changing climate: how multiple stressors can multiply exposure effects in the amphipod Hyalella azteca. Ecotoxicology 27(7):845–859. https://doi.org/10.1007/s10646-018-1912-x

    Article  CAS  Google Scholar 

  71. Saranjampour P, Vebrosky EN, Armbrust KL (2017) Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents. Environ Toxicol Chem 36(9):2274–2280. https://doi.org/10.1002/etc.3784

    Article  CAS  Google Scholar 

  72. Li H, Cheng F, Wei Y, Lydy MJ, You J (2017) Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324(Pt B):258–271. https://doi.org/10.1016/j.jhazmat.2016.10.056

    Article  CAS  Google Scholar 

  73. Weston DP, Chen D, Lydy MJ (2015) Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. Sci Total Environ 527-528:18–25. https://doi.org/10.1016/j.scitotenv.2015.04.095

    Article  CAS  Google Scholar 

  74. Sancho E, Banegas S, Villarroel MJ, Ferrando D (2018) Impaired reproduction and individual growth of the water flea Daphnia magna as consequence of exposure to the non-ester pyrethroid etofenprox. Environ Sci Pollut R 25(7):6209–6217. https://doi.org/10.1007/s11356-017-0952-8

    Article  CAS  Google Scholar 

  75. Goedkoop W, Spann N, Akerblom N (2010) Sublethal and sex-specific cypermethrin effects in toxicity tests with the midge Chironomus riparius Meigen. Ecotoxicology 19(7):1201–1208. https://doi.org/10.1007/s10646-010-0505-0

    Article  CAS  Google Scholar 

  76. DeCourten BM, Brander SM (2017) Combined effects of increased temperature and endocrine disrupting pollutants on sex determination, survival, and development across generations. Sci Rep 7:9310

    Article  Google Scholar 

  77. Rosa R, Bordalo MD, Soares AM, Pestana JL (2016) Effects of the pyrethroid esfenvalerate on the oligochaete, Lumbriculus variegatus. Bull Environ Contam Toxicol 96(4):438–442. https://doi.org/10.1007/s00128-015-1718-y

    Article  CAS  Google Scholar 

  78. Ray S, Mukherjee S, Bhunia NS, Bhunia AS, Ray M (2015) Immunotoxicological threats of pollutants in aquatic invertebrates. In: Emerging pollutants in the environment – current and further implications. BoD–Books on Demand, Norderstedt. https://doi.org/10.5772/60216

    Chapter  Google Scholar 

  79. Lidova J, Buric M, Kouba A, Velisek J (2019) Acute toxicity of two pyrethroid insecticides for five non-indigenous crayfish species in Europe. Vet Med-Czech 64:125–133. https://doi.org/10.17221/136/2018-vetmed

    Article  CAS  Google Scholar 

  80. Tu HT, Silvestre F, Meulder BD, Thome JP, Phuong NT, Kestemont P (2012) Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere 86(1):83–91. https://doi.org/10.1016/j.chemosphere.2011.09.022

    Article  CAS  Google Scholar 

  81. Toumi H, Boumaiza M, Immel F, Sohm B, Felten V, Férard J-F (2014) Effect of deltamethrin (pyrethroid insecticide) on two clones of Daphnia magna (Crustacea, Cladocera): a proteomic investigation. Aquat Toxicol 148:40–47. https://doi.org/10.1016/j.aquatox.2013.12.022

    Article  CAS  Google Scholar 

  82. Hasenbein S, Holland EB, Connon RE (2019) Eyes to the future: approaches to assess pesticide impact on surface waters in a changing climate. In: Pesticides in surface water: monitoring, modeling, risk assessment, and management. ACS symposium series. American Chemical Society, Washington, pp 189–214. https://doi.org/10.1021/bk-2019-1308.ch010

    Chapter  Google Scholar 

  83. DeCourten BM, Connon RE, Brander SM (2019) Direct and indirect parental exposure to endocrine disruptors and elevated temperature influences gene expression across generations in a euryhaline model fish. PeerJ 7:e6156. https://doi.org/10.7717/peerj.6156

    Article  CAS  Google Scholar 

  84. Georghiou GP (1990) Overview of insecticide resistance. In: Managing resistance to agrochemicals. ACS symposium series, vol 421. American Chemical Society, Washington, pp 18–41. https://doi.org/10.1021/bk-1990-0421.ch002

    Chapter  Google Scholar 

  85. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293(5536):1786–1790. https://doi.org/10.1126/science.293.5536.1786

    Article  CAS  Google Scholar 

  86. Amiard-Triquet C, Rainbow PS, Romeo M (2011) Tolerance to environmental contaminants. In: Environmental and ecological risk assessment. CRC Press, Boca Raton

    Google Scholar 

  87. Nacci DE, Gleason TR, Munns WRJ (2002) Evolutionary and ecological effects of multi-generational exposures to anthropogenic stressors. Hum Ecol Risk Assess 8(1):91–97. https://doi.org/10.1080/20028091056746

    Article  Google Scholar 

  88. Arnold SJ (1994) Multivariate inheritance and evolution: a review of concepts. In: Boake CRB (ed) Quantitative genetic studies of behavioral evolution. University of Chicago Press, Chicago, pp 17–48

    Google Scholar 

  89. Lin H (2000) Maternal transfer of cadmium tolerance in larval Oreochromis mossambicus. J Fish Biol 57(1):239–249

    Article  CAS  Google Scholar 

  90. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176. https://doi.org/10.1086/598822

    Article  Google Scholar 

  91. Brevik K, Lindstrom L, McKay SD, Chen YH (2018) Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Curr Opin Insect Sci 26:34–40. https://doi.org/10.1016/j.cois.2017.12.007

    Article  Google Scholar 

  92. Skinner MK, Guerrero-Bosagna C, Haque MM (2015) Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 10(8):762–771. https://doi.org/10.1080/15592294.2015.1062207

    Article  Google Scholar 

  93. Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR (2013) Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS One 8(7):e66318. https://doi.org/10.1371/journal.pone.0066318

    Article  CAS  Google Scholar 

  94. Brander SM, Biales AD, Connon RE (2017) The role of epigenomics in aquatic toxicology. Environ Toxicol Chem 36(10):2565–2573. https://doi.org/10.1002/etc.3930

    Article  CAS  Google Scholar 

  95. Kronholm I, Collins S (2016) Epigenetic mutations can both help and hinder adaptive evolution. Mol Ecol 25(8):1856–1868. https://doi.org/10.1111/mec.13296

    Article  CAS  Google Scholar 

  96. Powell CL, Ferdin ME, Busman M, Kvitek RG, Doucette GJ (2002) Development of a protocol for determination of domoic acid in the sand crab (Emerita analoga): a possible new indicator species. Toxicon 40:485–492. https://doi.org/10.1016/S0041-0101(01)00236-7

    Article  CAS  Google Scholar 

  97. Bickham JW (2011) The four cornerstones of evolutionary eoxicology. Ecotoxicology 20(3):497–502. https://doi.org/10.1007/s10646-011-0636-y

    Article  CAS  Google Scholar 

  98. Oziolor EM, Bickham JW, Matson CW (2017) Evolutionary toxicology in an omics world. Evol Appl 10(8):752–761. https://doi.org/10.1111/eva.12462

    Article  Google Scholar 

  99. Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D (2017) When evolution is the solution to pollution: key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations. Evol Appl 10(8):762–783. https://doi.org/10.1111/eva.12470

    Article  Google Scholar 

  100. Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Sunderland

    Google Scholar 

  101. Ffrench-Constant RH, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20(3):163–170. https://doi.org/10.1016/j.tig.2004.01.003

    Article  CAS  Google Scholar 

  102. Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicol Lett 82:83:83–83:90. https://doi.org/10.1016/0378-4274(95)03470-6

    Article  Google Scholar 

  103. Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14(11):751–764. https://doi.org/10.1038/nrg3483

    Article  CAS  Google Scholar 

  104. Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, Hemingway J, Paine MJ, Ranson H, Donnelly MJ (2012) Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A 109(16):6147–6152. https://doi.org/10.1073/pnas.1203452109

    Article  CAS  Google Scholar 

  105. Safi NH, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, Enayati A, Hemingway J (2017) Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J 16(1):100. https://doi.org/10.1186/s12936-017-1744-9

    Article  CAS  Google Scholar 

  106. Insecticide Resistance Action Committee (2017) IRAC mode of action classification scheme. www.irac-online.org

  107. Oppold A-M, Müller R (2017) Epigenetics: a hidden target of insecticides. In: Advances in insect physiology, vol 53. Elsevier, Amsterdam, pp 313–324. https://doi.org/10.1016/bs.aiip.2017.04.002

    Chapter  Google Scholar 

  108. Field LM, Devonshire AL, ffrench-Constant RH, Forde BG (1989) Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett 243(2):323–327. https://doi.org/10.1016/0014-5793(89)80154-1

    Article  CAS  Google Scholar 

  109. Field LM, Blackman RL (2003) Insecticide resistance in the aphid Myzus persicae (Suzler): chromosome location and epigenetic effects on esterase gene expression and clonal lineages. Biol J Linnean Soc 79:107–113. https://doi.org/10.1046/j.1095-8312.2003.00178.x

    Article  Google Scholar 

  110. Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51. https://doi.org/10.1016/j.ibmb.2014.05.003

    Article  CAS  Google Scholar 

  111. Oppold A, Kress A, Vanden Bussche J, Diogo JB, Kuch U, Oehlmann J, Vandegehuchte MB, Muller R (2015) Epigenetic alterations and decreasing insecticide sensitivity of the Asian tiger mosquito Aedes albopictus. Ecotoxicol Environ Saf 122:45–53. https://doi.org/10.1016/j.ecoenv.2015.06.036

    Article  CAS  Google Scholar 

  112. Strachecka A, Borsuk G, Olszewski K, Paleolog J (2015) A new detection method for a newly revealed mechanism of pyrethroid resistance development in Varroa destructor. Parasitol Res 114(11):3999–4004. https://doi.org/10.1007/s00436-015-4627-4

    Article  Google Scholar 

  113. Hart JL, Thacker JR, Braidwood JC, Fraser NR, Matthews JE (1997) Novel cypermethrin formulation for the control of sea lice on salmon (Salmo salar). Vet Rec 140(7):179–181

    Article  CAS  Google Scholar 

  114. Roth M (2000) The availability and use of chemotherapeutic sea lice control products. Contrib Zool 69:109–118

    Article  Google Scholar 

  115. Carmona-Antonanzas G, Helgesen KO, Humble JL, Tschesche C, Bakke MJ, Gamble L, Bekaert M, Bassett DI, Horsberg TE, Bron JE, Sturm A (2019) Mutations in voltage-gated sodium channels from pyrethroid resistant salmon lice (Lepeophtheirus salmonis). Pest Manag Sci 75(2):527–536. https://doi.org/10.1002/ps.5151

    Article  CAS  Google Scholar 

  116. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89(2):101–115. https://doi.org/10.1006/enrs.2002.4352

    Article  CAS  Google Scholar 

  117. Boxaspen K (2006) A review of the biology and genetics of sea lice. ICES J Mar Sci 63(7):1304–1316. https://doi.org/10.1016/j.icesjms.2006.04.017

    Article  CAS  Google Scholar 

  118. Helgesen KO, Bravo S, Sevatdal S, Mendoza J, Horsberg TE (2014) Deltamethrin resistance in the sea louse Caligus rogercresseyi (Boxhall and Bravo) in Chile: bioassay results and usage data for antiparasitic agents with references to Norwegian conditions. J Fish Dis 37(10):877–890. https://doi.org/10.1111/jfd.12223

    Article  CAS  Google Scholar 

  119. Urbina MA, Cumillaf JP, Paschke K, Gebauer P (2019) Effects of pharmaceuticals used to treat salmon lice on non-target species: evidence from a systematic review. Sci Total Environ 649:1124–1136. https://doi.org/10.1016/j.scitotenv.2018.08.334

    Article  CAS  Google Scholar 

  120. Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 31(2):72–81. https://doi.org/10.1016/j.pt.2014.12.006

    Article  CAS  Google Scholar 

  121. Jackson D, Moberg O, Stenevik Djupevag EM, Kane F, Hareide H (2018) The drivers of sea lice management policies and how best to integrate them into a risk management strategy: an ecosystem approach to sea lice management. J Fish Dis 41(6):927–933. https://doi.org/10.1111/jfd.12705

    Article  CAS  Google Scholar 

  122. Sevatdal S, Copley L, Wallace C, Jackson D, Horsberg TE (2005) Monitoring of the sensitivity of sea lice (Lepeophtheirus salmonis) to pyrethroids in Norway, Ireland and Scotland using bioassays and probit modelling. Aquaculture 244(1–4):19–27. https://doi.org/10.1016/j.aquaculture.2004.11.009

    Article  CAS  Google Scholar 

  123. Carmona-Antonanzas G, Humble JL, Carmichael SN, Heumann J, Christie HR, Green DM, Bassett DI, Bron JE, Sturm A (2016) Time-to-response toxicity analysis as a method for drug susceptibility assessment in salmon lice. Aquaculture 464:570–575. https://doi.org/10.1016/j.aquaculture.2016.08.007

    Article  CAS  Google Scholar 

  124. Carmona-Antonanzas G, Bekaert M, Humble JL, Boyd S, Roy W, Bassett DI, Houston RD, Gharbi K, Bron JE, Sturm A (2017) Maternal inheritance of deltamethrin resistance in the salmon louse Lepeophtheirus salmonis (Kroyer) is associated with unique mtDNA haplotypes. PLoS One 12(7):e0180625. https://doi.org/10.1371/journal.pone.0180625

    Article  CAS  Google Scholar 

  125. Fallang A, Denholm I, Horsberg TE, Williamson MS (2005) Novel point mutation in the sodium channel gene of pyrethroid-resistant sea lice Lepeophtheirus salmonis (Crustacea: Copepoda). Dis Aquat Org 65:129–136. https://doi.org/10.3354/dao065129

    Article  CAS  Google Scholar 

  126. Bakke MJ, Agusti C, Bruusgaard JC, Sundaram AYM, Horsberg TE (2018) Deltamethrin resistance in the salmon louse, Lepeophtheirus salmonis (Kroyer): maternal inheritance and reduced apoptosis. Sci Rep 8(1):8450. https://doi.org/10.1038/s41598-018-26420-6

    Article  CAS  Google Scholar 

  127. Hopkins BW, Pietrantonio PV (2010) The Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) voltage-gated sodium channel and mutations associated with pyrethroid resistance in field-collected adult males. Insect Biochem Mol Biol 40(5):385–393. https://doi.org/10.1016/j.ibmb.2010.03.004

    Article  CAS  Google Scholar 

  128. Usherwood PN, Davies TG, Mellor IR, O’Reilly AO, Peng F, Vais H, Khambay BP, Field LM, Williamson MS (2007) Mutations in DIIS5 and the DIIS4-S5 linker of Drosophila melanogaster sodium channel define binding domains for pyrethroids and DDT. FEBS Lett 581(28):5485–5492. https://doi.org/10.1016/j.febslet.2007.10.057

    Article  CAS  Google Scholar 

  129. O’Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG (2006) Modeling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 396(2):255–263. https://doi.org/10.1042/BJ20051925

    Article  Google Scholar 

  130. Van Leeuwen T, Tirry L, Nauen R (2006) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem Mol Biol 36(11):869–877. https://doi.org/10.1016/j.ibmb.2006.08.005

    Article  CAS  Google Scholar 

  131. Brausch JM, Smith PN (2009) Development of resistance to cyfluthrin and naphthalene among Daphnia magna. Ecotoxicology 18(5):600–609. https://doi.org/10.1007/s10646-009-0318-1

    Article  CAS  Google Scholar 

  132. Reid MC, McKenzie FE (2016) The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J 15:107. https://doi.org/10.1186/s12936-016-1162-4

    Article  CAS  Google Scholar 

  133. World Health Organization (1985) Resistance of vectors and reservoirs of disease to pesticides: tenth report of the WHO expert committee on vector biology and control. WHO technical report series, vol no. 737. Geneva

    Google Scholar 

  134. Environmental Protection Agency (2017) Persistent organic pollutants: a global issue, a global response. https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response. Accessed 29 Jul 2019

  135. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL (1996) Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252:51–60. https://doi.org/10.1007/BF02173204

    Article  CAS  Google Scholar 

  136. Martinez-Arguelles D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7(2):179–184. https://doi.org/10.1046/j.1365-2583.1998.72062.x

    Article  Google Scholar 

  137. Dognon SR, Dognon HR, Abdou Karim AY, Scippo ML, Adbdou Karim IY (2018) The use of pesticides in agriculture in North-East Benin. IJAAR 12(6):48–63

    Google Scholar 

  138. Burton MJ, Mellor IR, Duce IR, Davies TG, Field LM, Williamson MS (2011) Differential resistance of insect sodium channels with kdr mutations to deltamethrin, permethrin and DDT. Insect Biochem Mol Biol 41(9):723–732. https://doi.org/10.1016/j.ibmb.2011.05.004

    Article  CAS  Google Scholar 

  139. Kudom AA, Anane LN, Afoakwah R, Adokoh CK (2018) Relating high insecticide residues in larval breeding habitats in urban residential areas to the selection of pyrethroid resistance in Anopheles gambiae s.l. (Diptera: Culicidae) in Akim Oda, Ghana. J Med Entomol 55(2):490–495. https://doi.org/10.1093/jme/tjx223

    Article  CAS  Google Scholar 

  140. Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci U S A 112(18):5750–5755. https://doi.org/10.1073/pnas.1500232112

    Article  CAS  Google Scholar 

  141. Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R, Simard F (2008) Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Tropical Med Int Health 13(4):476–486. https://doi.org/10.1111/j.1365-3156.2008.02025.x

    Article  CAS  Google Scholar 

  142. Soderlund DM, Knipple DC (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33(6):563–577. https://doi.org/10.1016/s0965-1748(03)00023-7

    Article  CAS  Google Scholar 

  143. Toft JD, Simenstad CA, Cordell JR, Grimaldo LF (2003) The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26(3):746–758. https://doi.org/10.1007/BF02711985

    Article  Google Scholar 

  144. Brown PW, Fredrickson LH (1986) Food habits of breeding white-winged scoters. Can J Zool 64:1652–1654. https://doi.org/10.1139/z86-248

    Article  Google Scholar 

  145. Carletto J, Martin T, Vanlerberghe-Masutti F, Brevault T (2010) Insecticide resistance traits differ among and within host races in Aphis gossypii. Pest Manag Sci 66(3):301–307. https://doi.org/10.1002/ps.1874

    Article  CAS  Google Scholar 

  146. Alon M, Benting J, Lueke B, Ponge T, Alon F, Morin S (2006) Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 36(1):71–79. https://doi.org/10.1016/j.ibmb.2005.10.007

    Article  CAS  Google Scholar 

  147. Gonzalez-Cabrera J, Davies TG, Field LM, Kennedy PJ, Williamson MS (2013) An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS One 8(12):e82941. https://doi.org/10.1371/journal.pone.0082941

    Article  CAS  Google Scholar 

  148. Palenchar DJ, Gellatly KJ, Yoon KS, Mumcuoglu KY, Shalom U, Clark JM (2015) Quantitative sequencing for the determination of kdr-type resistance allele (V419L, L925I, I936F) frequencies in common bed bug (Hemiptera: Cimicidae) populations collected from Israel. J Med Entomol 52(5):1018–1027

    Article  CAS  Google Scholar 

  149. Dang K, Toi CS, Lilly DG, Bu W, Doggett SL (2015) Detection of knockdown resistance mutations in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), in Australia. Pest Manag Sci 71(7):914–922. https://doi.org/10.1002/ps.3861

    Article  CAS  Google Scholar 

  150. Heim JR, Weston DP, Major K, Poynton H, Huff Hartz KE, Lydy MJ (2018) Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca? Environ Pollut 235:39–46. https://doi.org/10.1016/j.envpol.2017.12.043

    Article  CAS  Google Scholar 

  151. Weston DP, Poynton HC, Major KM, Wellborn GA, Lydy MJ, Moschet C, Connon RE (2018) Using mutations for pesticide resistance to identify the cause of toxicity in environmental samples. Environ Sci Technol 52(2):859–867. https://doi.org/10.1021/acs.est.7b05071

    Article  CAS  Google Scholar 

  152. Nylund A, Wallace C, Hovland T (1993) The possible role of Lepeophtheirus salmonis (Krøyer) in the transmission of infectious salmon anaemia. In: BG A, Defaye D (eds) Pathogens of wild and farmed fish: sea lice. Ellis Horwood Limited, Chichester, pp 363–373

    Google Scholar 

  153. Costello MJ (2009) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32(1):115–118. https://doi.org/10.1111/j.1365-2761.2008.01011.x

    Article  Google Scholar 

  154. Moore A, Waring CP (2001) The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat Toxicol 52:1–12. https://doi.org/10.1016/S0166-445X(00)00133-8

    Article  CAS  Google Scholar 

  155. Moore A, Lower N (2001) The impact of two pesticides on olfactory-mediated endocrine function in mature male Atlantic salmon (Salmo salar L.) parr. Comp Biochem Physiol B Biochem Mol Biol 129:269–276. https://doi.org/10.1016/S1096-4959(01)00321-9

    Article  CAS  Google Scholar 

  156. Centers for Disease Control and Prevention (2019) Malaria. https://www.cdc.gov/parasites/malaria/. Accessed 17 Jul 2019

  157. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI (2012) A global map of dominant malaria vectors. Parasit Vectors 5:69. https://doi.org/10.1186/1756-3305-5-69

    Article  Google Scholar 

  158. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945. https://doi.org/10.1073/pnas.0832254100

    Article  CAS  Google Scholar 

  159. N’Guessan R, Corbel V, Akogbeto M, Rowland M (2007) Reduced efficiency of insecticide treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13:199–206. https://doi.org/10.3201/eid1302.060631

    Article  Google Scholar 

  160. Centers for Disease Control and Prevention (2019) Parasites – Onchocerciasis (also known as River Blindness). https://www.cdc.gov/parasites/onchocerciasis/. Accessed 17 Jul 2019

  161. Fisher RA (1999) The genetical theory of natural selection: a complete variorum edition.2nd edn. Oxford University Press, New York

    Google Scholar 

  162. Coustau C, Chevillon C, ffrench-Constant R (2000) Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol 15:378–383. https://doi.org/10.1016/S0169-5347(00)01929-7

    Article  CAS  Google Scholar 

  163. Ffrench-Constant RH, Bass C (2017) Does resistance really carry a fitness cost? Curr Opin Insect Sci 21:39–46. https://doi.org/10.1016/j.cois.2017.04.011

    Article  Google Scholar 

  164. Boivin T, Chabert d’Hieres C, Bouvier JC, Beslay D, Sauphanor B (2001) Pleiotropy of insecticide resistance in the codling moth, Cydia pomonella. Entomol Exp Appl 99:381–386. https://doi.org/10.1046/j.1570-7458.2001.00838.x

    Article  CAS  Google Scholar 

  165. Konopka JK, Scott IM, McNeil JN (2012) Costs of insecticide resistance in Cydia pomonella (Lepidoptera: Tortricidae). J Econ Entomol 105(3):872–877. https://doi.org/10.1603/ec11342

    Article  Google Scholar 

  166. Hanai D, Hardstone Yoshimizu M, Scott JG (2018) The insecticide resistance allele kdr-his has a fitness cost in the absence of insecticide exposure. J Econ Entomol 111(6):2992–2995. https://doi.org/10.1093/jee/toy300

    Article  CAS  Google Scholar 

  167. Berticat C, Bonnet J, Duchon S, Agnew P, Weill M, Corbel V (2008) Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol Biol 8:104. https://doi.org/10.1186/1471-2148-8-104

    Article  CAS  Google Scholar 

  168. Zhao Y, Park Y, Adams ME (2000) Functional and evolutionary consequences of pyrethroid resistance mutations in S6 transmembrane segments of a voltage-gated sodium channel. Biochem Biophys Res Commun 278(3):516–521. https://doi.org/10.1006/bbrc.2000.3832

    Article  CAS  Google Scholar 

  169. Diop MM, Moiroux N, Chandre F, Martin-Herrou H, Milesi P, Boussari O, Porciani A, Duchon S, Labbe P, Pennetier C (2015) Behavioral cost & overdominance in Anopheles gambiae. PLoS One 10(4):e0121755. https://doi.org/10.1371/journal.pone.0121755

    Article  CAS  Google Scholar 

  170. Van Straalen NM, Timmermans MJTN (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess 8(5):983–1002. https://doi.org/10.1080/1080-700291905783

    Article  Google Scholar 

  171. Markert JA, Champlin DM, Gutjahr-Gobell R, Grear JS, Kuhn A, McGreevy TJ Jr, Roth A, Bagley MJ, Nacci DE (2010) Population genetic diversity and fitness in multiple environments. BMC Evol Biol 10:205. https://doi.org/10.1186/1471-2148-10-205

    Article  CAS  Google Scholar 

  172. Major KM, Weston DP, Lydy MJ, Huff Hartz KE, Wellborn GA, Manny AR, Poynton HC (2019) The G119S ace-1 mutation confers adaptive organophosphate resistance in a nontarget amphipod. Evol Appl 00:1–16. https://doi.org/10.1111/eva.12888

    Article  CAS  Google Scholar 

  173. Fallang A, Ramsay JM, Sevatdal S, Burka JF, Jewess P, Hammell KL, Horsberg TE (2004) Evidence for occurrence of an organophosphate-resistant type of acetylcholinesterase in strains of sea lice (Lepeophtheirus salmonis Kroyer). Pest Manag Sci 60(12):1163–1170. https://doi.org/10.1002/ps.932

    Article  CAS  Google Scholar 

  174. Kaur K, Helgesen KO, Bakke MJ, Horsberg TE (2015) Mechanism behind resistance against the organophosphate azamethiphos in salmon lice (Lepeophtheirus salmonis). PLoS One 10(4):e0124220. https://doi.org/10.1371/journal.pone.0124220

    Article  CAS  Google Scholar 

  175. Namountougou M, Simard F, Baldet T, Diabate A, Ouedraogo JB, Martin T, Dabire RK (2012) Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS One 7(11):e48412. https://doi.org/10.1371/journal.pone.0048412

    Article  CAS  Google Scholar 

  176. Marcombe S, Paris M, Paupy C, Bringuier C, Yebakima A, Chandre F, David JP, Corbel V, Despres L (2013) Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island. PLoS One 8(10):e77857. https://doi.org/10.1371/journal.pone.0077857

    Article  CAS  Google Scholar 

  177. Kazachkova N, Meijer J, Ekbom B (2007) Genetic diversity in pollen beetles (Meligethes aeneus) in Sweden: role of spatial, temporal and insecticide resistance factors. Agric For Entomol 9(4):259–269. https://doi.org/10.1111/j.1461-9563.2007.00345.x

    Article  Google Scholar 

  178. Stutz HL, Shiozawa DK, Evans RP (2010) Inferring dispersal of aquatic invertebrates from genetic variation: a comparative study of an amphipod and mayfly in Great Basin springs. J N Am Benthol Soc 29(3):1132–1147. https://doi.org/10.1899/09-157.1

    Article  Google Scholar 

  179. Burridge LE, Lyons MC, Wong DKH, MacKeigan K, VanGeest JL (2014) The acute lethality of three anti-sea lice formulations: AlphaMax®, Salmosan®, and Interox® Paramove™50 to lobster and shrimp. Aquaculture 420-421:180–186. https://doi.org/10.1016/j.aquaculture.2013.10.041

    Article  CAS  Google Scholar 

  180. Haya K, Burrdige LE, Davies IM, Ervik A (2005) A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environmental chemistry, vol 5M. Springer, Berlin

    Chapter  Google Scholar 

  181. Ernst W, Doe K, Cook A, Burridge L, Lalonde B, Jackman P, Aubé JG, Page F (2014) Dispersion and toxicity to non-target crustaceans of azamethiphos and deltamethrin after sea lice treatments on farmed salmon, Salmo salar. Aquaculture 424–425:104–112. https://doi.org/10.1016/j.aquaculture.2013.12.017

    Article  CAS  Google Scholar 

  182. Weston DP, Schlenk D, Riar N, Lydy MJ, Brooks ML (2015) Effects of pyrethroid insecticides in urban runoff on Chinook salmon, steelhead trout, and their invertebrate prey. Environ Toxicol Chem 34(3):649–657. https://doi.org/10.1002/etc.2850

    Article  CAS  Google Scholar 

  183. Hasenbein S, Lawler SP, Geist J, Connon RE (2016) A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Environ Toxicol Chem 35(1):218–232. https://doi.org/10.1002/etc.3187

    Article  Google Scholar 

  184. Soucek DJ, Dickinson A, Major KM (2016) Selection of food combinations to optimize survival, growth, and reproduction of the amphipod Hyalella azteca in static-renewal, water-only laboratory exposures. Environ Toxicol Chem 35(10):2407–2415. https://doi.org/10.1002/etc.3387

    Article  CAS  Google Scholar 

  185. Brittain JE (1982) Biology of mayflies. Annu Rev Entomol 27:119–147. https://doi.org/10.1146/annurev.en.27.010182.001003

    Article  Google Scholar 

  186. Muggelberg LL, Huff Hartz KE, Nutile SA, Harwood AD, Heim JR, Derby AP, Weston DP, Lydy MJ (2017) Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. Environ Pollut 220(Pt A):375–382. https://doi.org/10.1016/j.envpol.2016.09.073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Helen Poynton for her edits and thoughtful comments on the content of this chapter. We acknowledge funding from EPA STAR grant #835799 and California Department of Fish and Wildlife grant #P1796002 which supported the development of ideas as well as writing effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaley M. Major .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Major, K.M., Brander, S.M. (2020). The Ecological and Evolutionary Implications of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_432

Download citation

Publish with us

Policies and ethics