Skip to main content

Analytical Methods for Determination Urinary Metabolites of Synthetic Pyrethroids

  • Chapter
  • First Online:
Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

  • 548 Accesses

Abstract

Insecticides are natural and synthetic chemicals used to kill unwanted pests. However, humans and insect share similar molecular targets, and thus, insecticides are potentially hazardous to human health. Several health effects might be observed in experimental animals following controlled exposure to insecticides. Synthetic pyrethroids are still a relatively novel group of insecticides widely used not only in agriculture but also in human and veterinary medicine, forestry, and public health and for commercial pest control and residential consumer use. They play a unique role in fighting against malaria in tropical areas, where the WHO recommends pyrethroids among others for indoor residual spraying (IRS) and impregnation of bed nets to prevent mosquito biting.

Bearing in mind the widespread use of these substances around the world, one can expect that the exposure of human population is common and may pose a potential health risk. Human biomonitoring (HBM) is a scientific tool that allows to assess the extent of exposure based on the measurement of a given chemical or its metabolites in human body fluids or tissues.

The need to estimate the level of exposure in different populations has led to the development of a methodology based on the measurement of urinary metabolites, as synthetic pyrethroids are rapidly metabolized in humans and excreted mainly in the urine. Human biomonitoring is used commonly in epidemiological studies and provides valuable information on the aggregate exposure.

Numerous analytical methods have been developed for the determination of metabolites of synthetic pyrethroids in human urine capable of detecting both environmental and occupational exposure.

Here, in this chapter, we summarized recent achievements in the analysis of metabolites of synthetic pyrethroids in human urine, with both separation and non-separation methods and methods of sample preparation and some aspects of instrumental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaneko H (2011) Pyrethroids: mammalian metabolism and toxicity. J Agric Food Chem 59:2786–2791. https://doi.org/10.1021/jf102567z

    Article  CAS  Google Scholar 

  2. Krieger RI, Doull J, Vega H (2010) Hayes’ handbook of pesticide toxicology, vol 1. Elsevier, Amsterdam. https://books.google.pl/books/about/Hayes_Handbook_of_Pesticide_Toxicology.html?id=sUrLT9z9i3IC&redir_esc=y. Accessed 29 May 2019

  3. Kühn K-H, Leng G, Bucholski KA, Dunemann L, Idel H (1996) Determination of pyrethroid metabolites in human urine by capillary gas chromatography-mass spectrometry. Chromatographia 43:285–292. https://doi.org/10.1007/BF02270996

    Article  Google Scholar 

  4. Leng G, Kühn KH, Idel H (1997) Biological monitoring of pyrethroids in blood and pyrethroid metabolites in urine: applications and limitations. Sci Total Environ 199:173–181. https://doi.org/10.1016/S0048-9697(97)05493-4

    Article  CAS  Google Scholar 

  5. Aprea C, Stridori A, Sciarra G (1997) Analytical method for the determination of urinary 3-phenoxybenzoic acid in subjects occupationally exposed to pyrethroid insecticides. J Chromatogr B Biomed Sci Appl 695:227–236. https://doi.org/10.1016/S0378-4347(97)00190-4

    Article  CAS  Google Scholar 

  6. Angerer J, Ritter A (1997) Determination of metabolites of pyrethroids in human urine using solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr B Biomed Sci Appl 695:217–226. https://doi.org/10.1016/S0378-4347(97)00174-6

    Article  CAS  Google Scholar 

  7. Arrebola F, Martı́nez-Vidal J, Fernández-Gutiérrez A, Akhtar M (1999) Monitoring of pyrethroid metabolites in human urine using solid-phase extraction followed by gas chromatography-tandem mass spectrometry. Anal Chim Acta 401:45–54. https://doi.org/10.1016/S0003-2670(99)00519-X

    Article  CAS  Google Scholar 

  8. Ueda Y, Oda M, Saito I, Hamada R, Kondo T, Kamijima M, Ueyama J (2018) A sensitive and efficient procedure for the high-throughput determination of nine urinary metabolites of pyrethroids by GC-MS/MS and its application in a sample of Japanese children. Anal Bioanal Chem 410:6207–6217. https://doi.org/10.1007/s00216-018-1229-x

    Article  CAS  Google Scholar 

  9. Schettgen T, Dewes P, Kraus T (2016) A method for the simultaneous quantification of eight metabolites of synthetic pyrethroids in urine of the general population using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:5467–5478. https://doi.org/10.1007/s00216-016-9645-2

    Article  CAS  Google Scholar 

  10. Leng G, Gries W (2005) Simultaneous determination of pyrethroid and pyrethrin metabolites in human urine by gas chromatography-high resolution mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 814:285–294. https://doi.org/10.1016/j.jchromb.2004.10.044

    Article  CAS  Google Scholar 

  11. Schettgen T, Koch H, Drexler H, Angerer J (2002) New gas chromatographic–mass spectrometric method for the determination of urinary pyrethroid metabolites in environmental medicine. J Chromatogr B 778:121–130. https://doi.org/10.1016/S0378-4347(01)00452-2

    Article  CAS  Google Scholar 

  12. Bartosz W, Marcin W, Wojciech C (2014) Development of hollow fiber-supported liquid-phase microextraction and HPLC-DAD method for the determination of pyrethroid metabolites in human and rat urine. Biomed Chromatogr 28:708–716. https://doi.org/10.1002/bmc.3097

    Article  CAS  Google Scholar 

  13. Saito S, Ueyama J, Kondo T, Saito I, Shibata E, Gotoh M, Nomura H, Wakusawa S, Nakai K, Kamijima M (2014) A non-invasive biomonitoring method for assessing levels of urinary pyrethroid metabolites in diapered children by gas chromatography–mass spectrometry. J Expo Sci Environ Epidemiol 24:200–207. https://doi.org/10.1038/jes.2013.31

    Article  CAS  Google Scholar 

  14. Le Grand R, Dulaurent S, Gaulier JM, Saint-Marcoux F, Moesch C, Lachâtre G (2012) Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography–tandem mass spectrometry: application to 39 persons without known exposure to pyrethroids. Toxicol Lett 210:248–253. https://doi.org/10.1016/j.toxlet.2011.08.016

    Article  CAS  Google Scholar 

  15. Toshima H, Yoshinaga J, Shiraishi H, Ito Y, Kamijima M, Ueyama J (2015) Comparison of different urine pretreatments for biological monitoring of pyrethroid insecticides. J Anal Toxicol 39:133–136. https://doi.org/10.1093/jat/bku142

    Article  CAS  Google Scholar 

  16. Davis MD, Wade EL, Restrepo PR, Roman-Esteva W, Bravo R, Kuklenyik P, Calafat AM (2013) Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. J Chromatogr B 929:18–26. https://doi.org/10.1016/j.jchromb.2013.04.005

    Article  CAS  Google Scholar 

  17. Klimowska A, Wielgomas B (2018) Off-line microextraction by packed sorbent combined with on solid support derivatization and GC-MS: application for the analysis of five pyrethroid metabolites in urine samples. Talanta 176:165–171. https://doi.org/10.1016/j.talanta.2017.08.011

    Article  CAS  Google Scholar 

  18. Baker S, Barr D, Driskell W, Beeson M, Needham L (2000) Quantification of selected pesticide metabolites in human urine using isotope dilution high-performance liquid chromatography/tandem mass spectrometry. J Expo Sci Environ Epidemiol 10:789–798. https://doi.org/10.1038/sj.jea.7500123

    Article  CAS  Google Scholar 

  19. Roca M, Leon N, Pastor A, Yusà V (2014) Comprehensive analytical strategy for biomonitoring of pesticides in urine by liquid chromatography-orbitrap high resolution mass spectrometry. J Chromatogr A 1374:66–76. https://doi.org/10.1016/j.chroma.2014.11.010

    Article  CAS  Google Scholar 

  20. Yoshida T (2017) Analytical method for pyrethroid metabolites in urine of the non-occupationally exposed population by gas chromatography/mass spectrometry. J Chromatogr Sci 55:873–881. https://doi.org/10.1093/chromsci/bmx048

    Article  CAS  Google Scholar 

  21. Garí M, González-Quinteiro Y, Bravo N, Grimalt JO (2018) Analysis of metabolites of organophosphate and pyrethroid pesticides in human urine from urban and agricultural populations (Catalonia and Galicia). Sci Total Environ 622–623:526–533. https://doi.org/10.1016/j.scitotenv.2017.11.355

    Article  CAS  Google Scholar 

  22. Dewailly E, Forde M, Robertson L, Kaddar N, Laouan Sidi EA, Côté S, Gaudreau E, Drescher O, Ayotte P (2014) Evaluation of pyrethroid exposures in pregnant women from 10 Caribbean countries. Environ Int 63:201–206. https://doi.org/10.1016/j.envint.2013.11.014

    Article  CAS  Google Scholar 

  23. Qi X, Zheng M, Wu C, Wang G, Feng C, Zhou Z (2012) Urinary pyrethroid metabolites among pregnant women in an agricultural area of the province of Jiangsu, China. Int J Hyg Environ Health 215:487–495. https://doi.org/10.1016/j.ijheh.2011.12.003

    Article  CAS  Google Scholar 

  24. Wielgomas B, Nahorski W, Czarnowski W (2013) Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of northern Poland. Int J Hyg Environ Health 216:295–300. https://doi.org/10.1016/j.ijheh.2012.09.001

    Article  CAS  Google Scholar 

  25. Couture C, Fortin M-C, Carrier G, Dumas P, Tremblay C, Bouchard M (2009) Assessment of exposure to pyrethroids and pyrethrins in a rural population of the Montérégie Area, Quebec, Canada. J Occup Environ Hyg 6:341–352. https://doi.org/10.1080/15459620902850907

    Article  CAS  Google Scholar 

  26. Guo XY, Sun LS, Huang MY, Xu WL, Wang Y, Wang N (2017) Simultaneous determination of eight metabolites of organophosphate and pyrethroid pesticides in urine. J Environ Sci Heal B 52:1–9. https://doi.org/10.1080/03601234.2016.1224695

    Article  CAS  Google Scholar 

  27. Smith PA, Thompson MJ, Edwards JW (2002) Estimating occupational exposure to the pyrethroid termiticide bifenthrin by measuring metabolites in urine. J Chromatogr B Anal Technol Biomed Life Sci 778:113–120. https://doi.org/10.1016/S0378-4347(01)00440-6

    Article  CAS  Google Scholar 

  28. Lin C-H, Yan C-T, Kumar PV, Li H-P, Jen J-F (2011) Determination of pyrethroid metabolites in human urine using liquid phase microextraction coupled in-syringe derivatization followed by gas chromatography/electron capture detection. Anal Bioanal Chem 401:927–937. https://doi.org/10.1007/s00216-011-5122-0

    Article  CAS  Google Scholar 

  29. Baker SE, Olsson AO, Barr DB (2004) Isotope dilution high-performance liquid chromatography-tandem mass spectrometry method for quantifying urinary metabolites of synthetic pyrethroid insecticides. Arch Environ Contam Toxicol 46:281–288. https://doi.org/10.1007/s00244-003-3044-3

    Article  CAS  Google Scholar 

  30. Olsson AO, Baker SE, Nguyen JV, Romanoff LC, Udunka SO, Walker RD, Flemmen KL, Barr DB (2004) A liquid chromatography−tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and DEET in human urine. Anal Chem 76:2453–2461. https://doi.org/10.1021/ac0355404

    Article  CAS  Google Scholar 

  31. Zhang J, Hisada A, Yoshinaga J, Shiraishi H, Shimodaira K, Okai T, Noda Y, Shirakawa M, Kato N (2013) Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women. Environ Res 127:16–21. https://doi.org/10.1016/j.envres.2013.10.001

    Article  CAS  Google Scholar 

  32. Ratelle M, Côté J, Bouchard M (2016) Time courses and variability of pyrethroid biomarkers of exposure in a group of agricultural workers in Quebec, Canada. Int Arch Occup Environ Health 89:767–783. https://doi.org/10.1007/s00420-016-1114-x

    Article  CAS  Google Scholar 

  33. Tao L, Chen M, Collins E, Lu C (2013) Simultaneous quantitation of seven pyrethroid metabolites in human urine by capillary gas chromatography-mass spectrometry. J Sep Sci 36:773–780. https://doi.org/10.1002/jssc.201200655

    Article  CAS  Google Scholar 

  34. Roca M, Miralles-Marco A, Ferré J, Pérez R, Yusà V (2014) Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environ Res 131:77–85. https://doi.org/10.1016/j.envres.2014.02.009

    Article  CAS  Google Scholar 

  35. Ratelle M, Coté J, Bouchard M (2015) Time profiles and toxicokinetic parameters of key biomarkers of exposure to cypermethrin in orally exposed volunteers compared with previously available kinetic data following permethrin exposure. J Appl Toxicol 35:1586–1593. https://doi.org/10.1002/jat.3124

    Article  CAS  Google Scholar 

  36. Ferland S, Côté J, Ratelle M, Thuot R, Bouchard M (2015) Detailed urinary excretion time courses of biomarkers of exposure to permethrin and estimated exposure in workers of a corn production farm in Quebec, Canada. Ann Occup Hyg 59:1152–1167. https://doi.org/10.1093/annhyg/mev059

    Article  CAS  Google Scholar 

  37. López-García M, Romero-González R, Garrido Frenich A (2019) Monitoring of organophosphate and pyrethroid metabolites in human urine samples by an automated method (TurboFlowTM) coupled to ultra-high performance liquid chromatography-Orbitrap mass spectrometry. J Pharm Biomed Anal 173:31–39. https://doi.org/10.1016/j.jpba.2019.05.018

    Article  CAS  Google Scholar 

  38. Ahn KC, Ma SJ, Tsai HJ, Gee SJ, Hammock BD (2006) An immunoassay for a urinary metabolite as a biomarker of human exposure to the pyrethroid insecticide permethrin. Anal Bioanal Chem 384:713–722. https://doi.org/10.1007/s00216-005-0220-5

    Article  CAS  Google Scholar 

  39. Ahn KC, Gee SJ, Kim HJ, Aronov PA, Vega H, Krieger RI, Hammock BD (2011) Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal Bioanal Chem 401:1285–1293. https://doi.org/10.1007/s00216-011-5184-z

    Article  CAS  Google Scholar 

  40. Chuang JC, Van Emon JM, Trejo RM, Durnford J (2011) Biological monitoring of 3-phenoxybenzoic acid in urine by an enzyme-linked immunosorbent assay. Talanta 83:1317–1323. https://doi.org/10.1016/j.talanta.2010.07.077

    Article  CAS  Google Scholar 

  41. Kim HJ, Ki CA, Seung JM, Gee SJ, Hammock BD (2007) Development of sensitive immunoassays for the detection of the glucuronide conjugate of 3-phenoxybenzyl alcohol, a putative human urinary biomarker for pyrethroid exposure. J Agric Food Chem 55:3750–3757. https://doi.org/10.1021/jf063282g

    Article  CAS  Google Scholar 

  42. Kim HJ, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-Da Rosa S, González-Sapienza GG, Hammock BD (2012) Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem 84:1165–1171. https://doi.org/10.1021/ac2030255

    Article  CAS  Google Scholar 

  43. Shan G, Wengatz I, Stoutamire DW, Gee SJ, Hammock BD (1999) An enzyme-linked immunosorbent assay for the detection of esfenvalerate metabolites in human urine. Chem Res Toxicol 12:1033–1041. https://doi.org/10.1021/tx990091h

    Article  CAS  Google Scholar 

  44. Shan G, Huang H, Stoutamire DW, Gee SJ, Leng G, Hammock BD (2004) A sensitive class specific immunoassay for the detection of pyrethroid metabolites in human urine. Chem Res Toxicol 17:218–225. https://doi.org/10.1021/tx034220c

    Article  CAS  Google Scholar 

  45. Thiphom S, Prapamontol T, Chantara S, Mangklabruks A, Suphavilai C, Ahn KC, Gee SJ, Hammock BD (2014) Determination of the pyrethroid insecticide metabolite 3-PBA in plasma and urine samples from farmer and consumer groups in northern Thailand. J Environ Sci Health B 49:15–22. https://doi.org/10.1080/03601234.2013.836862

    Article  CAS  Google Scholar 

  46. Ki CA, Lohstroh P, Gee SJ, Gee NA, Lasley B, Hammock BD (2007) High-throughput automated luminescent magnetic particle-based immunoassay to monitor human exposure to pyrethroid insecticides. Anal Chem 79:8883–8890. https://doi.org/10.1021/ac070675l

    Article  CAS  Google Scholar 

  47. Huo J, Li Z, Wan D, Li D, Qi M, Barnych B, Vasylieva N, Zhang J, Hammock BD (2018) Development of a highly sensitive direct competitive fluorescence enzyme immunoassay based on a nanobody-alkaline phosphatase fusion protein for detection of 3-phenoxybenzoic acid in urine. J Agric Food Chem 66:11284–11290. https://doi.org/10.1021/acs.jafc.8b04521

    Article  CAS  Google Scholar 

  48. Kim HJ, Ahn KC, González-Techera A, González-Sapienza GG, Gee SJ, Hammock BD (2009) Magnetic bead-based phage anti-immunocomplex assay (PHAIA) for the detection of the urinary biomarker 3-phenoxybenzoic acid to assess human exposure to pyrethroid insecticides. Anal Biochem 386:45–52. https://doi.org/10.1016/j.ab.2008.12.003

    Article  CAS  Google Scholar 

  49. Kim HJ, McCoy M, Gee SJ, González-Sapienza GG, Hammock BD (2011) Noncompetitive phage anti-immunocomplex real-time polymerase chain reaction for sensitive detection of small molecules. Anal Chem 83:246–253. https://doi.org/10.1021/ac102353z

    Article  CAS  Google Scholar 

  50. Matveeva EG, Shan G, Kennedy IM, Gee SJ, Stoutamire DW, Hammock BD (2001) Homogeneous fluoroimmunoassay of a pyrethroid metabolite in urine. Anal Chim Acta 444:103–117. https://doi.org/10.1016/S0003-2670(01)01161-8

    Article  CAS  Google Scholar 

  51. Pandey V, Chauhan A, Pandey G, Mudiam MKR (2015) Optical sensing of 3-phenoxybenzoic acid as a pyrethroid pesticides exposure marker by surface imprinting polymer capped on manganese-doped zinc sulfide quantum dots. Anal Chem Res 5:21–27. https://doi.org/10.1016/j.ancr.2015.06.002

    Article  CAS  Google Scholar 

  52. Ahn KC, Lohstroh P, Gee SJ, Gee NA, Lasley B, Hammock BD (2007) High-throughput automated luminescent magnetic particle-based immunoassay to monitor human exposure to pyrethroid insecticides. Anal Chem 79:88838890. https://doi.org/10.1021/ac070675l

    Article  CAS  Google Scholar 

  53. Kim H, McCoy M, Gee SJ, González-sapienza GG, Hammock BD (2011) Noncompetitive phage anti-immunocomplex real-time PCR (PHAIA-PCR) for sensitive detection of small molecules. Anal Chem 83:246–253. https://doi.org/10.1021/ac102353z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Wielgomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wielgomas, B., Klimowska, A., Rodzaj, W. (2020). Analytical Methods for Determination Urinary Metabolites of Synthetic Pyrethroids. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_430

Download citation

Publish with us

Policies and ethics