Skip to main content

Risk Assessment of Human Exposure to Pyrethroids Through Food

  • Chapter
  • First Online:
Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

Abstract

For decades, the global demand for food has been increasing as a result of population growth and changes in diets. Together with this demand, the ample use of pesticides and insecticides in every step of the production chain has grown. Pyrethroids are systemic pesticides widely used in both agriculture and veterinary. They are often found on the surface of fruits and leafy vegetables or deposited on the lipid bilayer in products of animal origin. Considering the high use of pyrethroids all around the world, the potential risks of human exposure to residues in food products are a matter of great concern. Risk assessment is the scientific basis for risk management according to various international agencies. The vast majority of pesticide residue risk assessments in food are based on the toxicological evaluation of individual compounds, but assessments of cumulative exposure to multiple residues have gained notoriety. The evaluation of the “daily intake” is of great importance for human and environment safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saillenfait A-M, Ndiaye D, Sabaté J-P (2015) Pyrethroids: exposure and health effects – an update. Int J Hyg Environ Health 218(3):281–292. http://www.sciencedirect.com/science/article/pii/S1438463915000048

    Article  CAS  Google Scholar 

  2. Schlosser C, Sahafeyan M, Hawkins M, Keller N, Shelat, S (2017) Lambda- & gamma-cyhalothrin: human health risk assessment, pg 5, US-EPA, Decision No 502525

    Google Scholar 

  3. Dallegrave A, Pizzolato TM, Barreto F, Bica VC, Eljarrat E, Barceló D (2018) Residue of insecticides in foodstuff and dietary exposure assessment of Brazilian citizens. Food Chem Toxicol 115:329–335. http://www.sciencedirect.com/science/article/pii/S0278691518301777

    Article  CAS  Google Scholar 

  4. WHO and FAO (2009) Principles and methods for the risk assessment of chemicals in food-Environmental Health Criteria 240. http://www.who.int/foodsafety/publications/chemical-food/en/

  5. Reffstrup TK, Larsen JC, Meyer O (2010) Risk assessment of mixtures of pesticides. Current approaches and future strategies. Regul Toxicol Pharmacol 56(2):174–192. http://www.sciencedirect.com/science/article/pii/S0273230009001986

    Article  CAS  Google Scholar 

  6. Morgan MK, MacMillan DK, Zehr D, Sobus JR (2018) Pyrethroid insecticides and their environmental degradates in repeated duplicate-diet solid food samples of 50 adults. J Expo Sci Environ Epidemiol 28(1):40–45. https://www.ncbi.nlm.nih.gov/pubmed/27966670

    Article  CAS  Google Scholar 

  7. Quijano L, Yusà V, Font G, Pardo O (2016) Chronic cumulative risk assessment of the exposure to organophosphorus, carbamate and pyrethroid and pyrethrin pesticides through fruit and vegetables consumption in the region of Valencia (Spain). Food Chem Toxicol 89:39–46. http://www.sciencedirect.com/science/article/pii/S0278691516300047

    Article  CAS  Google Scholar 

  8. Nougadère A, Sirot V, Kadar A, Fastier A, Truchot E, Vergnet C et al (2012) Total diet study on pesticide residues in France: levels in food as consumed and chronic dietary risk to consumers. Environ Int 45:135–150. http://www.sciencedirect.com/science/article/pii/S0160412012000335

    Article  Google Scholar 

  9. Jensen AF, Petersen A, Granby K (2003) Cumulative risk assessment of the intake of organophosphorus and carbamate pesticides in the Danish diet. Food Addit Contam 20(8):776–785. https://doi.org/10.1080/0265203031000138240

    Article  CAS  Google Scholar 

  10. Jensen BH, Petersen A, Christiansen S, Boberg J, Axelstad M, Herrmann SS et al (2013) Probabilistic assessment of the cumulative dietary exposure of the population of Denmark to endocrine disrupting pesticides. Food Chem Toxicol 55:113–120. http://www.sciencedirect.com/science/article/pii/S027869151300015X

    Article  CAS  Google Scholar 

  11. Lehmann E, Turrero N, Kolia M, Konaté Y, de Alencastro LF (2017) Dietary risk assessment of pesticides from vegetables and drinking water in gardening areas in Burkina Faso. Sci Total Environ 601–602:1208–1216. http://www.sciencedirect.com/science/article/pii/S0048969717314006

    Article  Google Scholar 

  12. Li Z, Nie J, Lu Z, Xie H, Kang L, Chen Q et al (2016) Cumulative risk assessment of the exposure to pyrethroids through fruits consumption in China – based on a 3-year investigation. Food Chem Toxicol 96:234–243. http://www.sciencedirect.com/science/article/pii/S0278691516302782

    Article  Google Scholar 

  13. Whitby K (2011) Pyrethroid cumulative risk assessment, US-EPA, Decision No 455436

    Google Scholar 

  14. Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C (2012) Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 210(2):155–168. http://www.sciencedirect.com/science/article/pii/S0378427411015748

    Article  CAS  Google Scholar 

  15. Mikata K, Isobe N, Kaneko H (2012) Biotransformation and enzymatic reactions of synthetic pyrethroids in mammals. In: Matsuo N, Mori T (eds) Pyrethroids: from chrysanthemum to modern industrial insecticide. Topics in current chemistry, vol 314. Springer, Berlin, pp 113–135

    Chapter  Google Scholar 

  16. Takaku T, Mikata K, Matsui M, Nishioka K, Isobe N, Kaneko H (2011) In vitro metabolism of trans-permethrin and its major metabolites, PBalc and PBacid, in humans. J Agric Food Chem 59(9):5001–5005. https://doi.org/10.1021/jf200032q

    Article  CAS  Google Scholar 

  17. Wu C, Feng C, Qi X, Wang G, Zheng M, Chang X et al (2013) Urinary metabolite levels of pyrethroid insecticides in infants living in an agricultural area of the Province of Jiangsu in China. Chemosphere 90(11):2705–2713. http://www.sciencedirect.com/science/article/pii/S0045653512014555

    Article  CAS  Google Scholar 

  18. Wielgomas B, Piskunowicz M (2013) Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere 93(10):2547–2553. http://www.sciencedirect.com/science/article/pii/S0045653513013404

    Article  CAS  Google Scholar 

  19. Ueda Y, Oda M, Saito I, Hamada R, Kondo T, Kamijima M et al (2018) A sensitive and efficient procedure for the high-throughput determination of nine urinary metabolites of pyrethroids by GC-MS/MS and its application in a sample of Japanese children. Anal Bioanal Chem 410(24):6207–6217. https://doi.org/10.1007/s00216-018-1229-x

    Article  CAS  Google Scholar 

  20. Trunnelle KJ, Bennett DH, Ahn KC, Schenker MB, Tancredi DJ, Gee SJ et al (2014) Concentrations of the urinary pyrethroid metabolite 3-phenoxybenzoic acid in farm worker families in the MICASA study. Environ Res 131:153–159. http://www.sciencedirect.com/science/article/pii/S0013935114000486

    Article  CAS  Google Scholar 

  21. Zhang J, Hisada A, Yoshinaga J, Shiraishi H, Shimodaira K, Okai T et al (2013) Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women. Environ Res 127:16–21. http://www.sciencedirect.com/science/article/pii/S0013935113001734

    Article  CAS  Google Scholar 

  22. Corcellas C, Feo ML, Torres JP, Malm O, Ocampo-Duque W, Eljarrat E et al (2012) Pyrethroids in human breast milk: occurrence and nursing daily intake estimation. Environ Int 47:17–22. http://www.sciencedirect.com/science/article/pii/S0160412012001195

    Article  CAS  Google Scholar 

  23. Ji G, Xia Y, Gu A, Shi X, Long Y, Song L et al (2011) Effects of non-occupational environmental exposure to pyrethroids on semen quality and sperm DNA integrity in Chinese men. Reprod Toxicol 31(2):171–176. http://www.sciencedirect.com/science/article/pii/S0890623810003163

    Article  CAS  Google Scholar 

  24. Toshima H, Suzuki Y, Imai K, Yoshinaga J, Shiraishi H, Mizumoto Y et al (2012) Endocrine disrupting chemicals in urine of Japanese male partners of subfertile couples: a pilot study on exposure and semen quality. Int J Hyg Environ Health 215(5):502–506. http://www.sciencedirect.com/science/article/pii/S143846391100157X

    Article  CAS  Google Scholar 

  25. Jurewicz J, Radwan M, Wielgomas B, Sobala W, Piskunowicz M, Radwan P et al (2015) The effect of environmental exposure to pyrethroids and DNA damage in human sperm. Syst Biol Reprod Med 61(1):37–43

    Article  CAS  Google Scholar 

  26. Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B et al (2014) Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study. Environ Health Perspect 122(10):A266

    Article  Google Scholar 

  27. Reardon AM, Perzanowski MS, Whyatt RM, Chew GL, Perera FP, Miller RL (2009) Associations between prenatal pesticide exposure and cough, wheeze, and IgE in early childhood. J Allergy Clin Immunol 124(4):852–854. http://www.sciencedirect.com/science/article/pii/S0091674909011555

    Article  CAS  Google Scholar 

  28. Mawussi G, Sanda K, Merlina G, Pinelli E (2009) Assessment of average exposure to organochlorine pesticides in southern Togo from water, maize (Zea mays) and cowpea (Vigna unguiculata). Food Addit Contam Part A 26(3):348–354. https://doi.org/10.1080/02652030802528343

    Article  CAS  Google Scholar 

  29. Bempah CK, Agyekum AA, Akuamoa F, Frimpong S, Buah-Kwofie A (2016) Dietary exposure to chlorinated pesticide residues in fruits and vegetables from Ghanaian markets. J Food Compos Anal 46:103–113. http://www.sciencedirect.com/science/article/pii/S0889157515002525

    Article  CAS  Google Scholar 

  30. Skovgaard M, Renjel Encinas S, Jensen OC, Andersen JH, Condarco G, Jørs E (2017) Pesticide residues in commercial lettuce, onion, and potato samples from Bolivia – a threat to public health? Environ Health Insights 11:1178630217704194. https://doi.org/10.1177/1178630217704194

    Article  Google Scholar 

  31. Rosalind S, Gibson ELF (1999) An interactive 24-hour recall for assessing the adequacy of iron and zinc intakes in developing countries. ILSI Press, Washington

    Google Scholar 

  32. Boobis AR, Ossendorp BC, Banasiak U, Hamey PY, Sebestyen I, Moretto A (2008) Cumulative risk assessment of pesticide residues in food. Toxicol Lett 180(2):137–150. http://www.sciencedirect.com/science/article/pii/S0378427408001823

    Article  CAS  Google Scholar 

  33. Teuschler LK, Hertzberg RC (1995) Current and future risk assessment guidelines, policy, and methods development for chemical mixtures. Toxicology 105(2):137–144. http://www.sciencedirect.com/science/article/pii/0300483X9503207V

    Article  CAS  Google Scholar 

  34. Kennedy MC, van der Voet H, Roelofs VJ, Roelofs W, Glass CR, de Boer WJ et al (2015) New approaches to uncertainty analysis for use in aggregate and cumulative risk assessment of pesticides. Food Chem Toxicol 79:54–64. http://www.sciencedirect.com/science/article/pii/S0278691515000472

    Article  CAS  Google Scholar 

  35. U.S. EPA (2001) Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002. www.epa.gov/NCEA/raf/chem_mix.htm

    Google Scholar 

  36. Evans RM, Scholze M, Kortenkamp A (2015) Examining the feasibility of mixture risk assessment: a case study using a tiered approach with data of 67 pesticides from the Joint FAO/WHO Meeting on Pesticide Residues (JMPR). Food Chem Toxicol 84:260–269. http://www.sciencedirect.com/science/article/pii/S0278691515300375

    Article  CAS  Google Scholar 

  37. Global Environment Monitoring System-Food contamination and assessment programme. https://www.who.int/foodsafety/areas_work/chemical-risks/gems-food/en/. Accessed 15 Mar 2019

  38. EFSA Panel on Plant Protection Products and their Residues (PPR) (2013) Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J 11(7):1–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Mara Pizzolato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pizzolato, T.M., Dallegrave, A. (2020). Risk Assessment of Human Exposure to Pyrethroids Through Food. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_429

Download citation

Publish with us

Policies and ethics