Skip to main content

Analytical Methods for Determining Pyrethroid Insecticides in Environmental and Food Matrices

  • Chapter
  • First Online:
Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

  • 587 Accesses

Abstract

In this chapter, an overview of different aspects of current analytical methodologies such as sample preparation, extraction, purification, and instrumental analysis for pyrethroids is discussed. Recent development in sample preparation and extraction is presented. Regarding instrumental analysis, gas chromatography (GC) coupled to electron capture detection or mass spectrometry (MS) including tandem MS is generally preferred for analysis of pyrethroids. Although liquid chromatography has been used as a possible solution to reduce isomerization of pyrethroids that can occur at higher temperature, the advantages and disadvantages of different instrumental techniques are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607

    CAS  Google Scholar 

  2. Gosselin RE (1984) Clinic toxicological of commercial products. Williams and Wilkins, Baltimore

    Google Scholar 

  3. Toxicological Profile for Pyrethrins and Pyrethroids (2003) Agency for Toxic Substances and Disease Registry (ATSDR), US Department of Health and Human Services, Atlanta, GA, USA

    Google Scholar 

  4. van Hoeck E, David F, Sandra P (2007) Stir bar sorptive extraction for the determination of pyrethroids in water samples a comparison between thermal desorption in a dedicated thermal desorber, in a split/splitless inlet and by liquid desorption. J Chromatogr A 1157:1–2

    Google Scholar 

  5. Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  Google Scholar 

  6. Feo ML, Ginebreda A, Ethel E, Barcelò D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162

    CAS  Google Scholar 

  7. Feo ML, Eljarrat E, Barcelò D (2010) Determination of pyrethroid insecticides in environmental samples. Trends Anal Chem 29:692–705

    CAS  Google Scholar 

  8. Alonso M, Feo ML, Corcellas C, Vidal LG, Bertozzi CP, Marigo J, Secchi ER, Bassoi M, Azevedo AF, Dorneles PR, Torres JPM, Lailson-Brito J, Malm O, Eljarrat E, Damià Barceló D (2012) Pyrethroids: a new teat for marine mammals? Environ Int 47:99–106

    CAS  Google Scholar 

  9. Alonso M, Feo ML, Corcellas C, Gago-Ferrero P, Bertozzi CP, Marigo J, Flach L, Meirelles ACO, Carvalho VL, Azevedo AF, Torres JPM, Lailson-Brito J, Malm O, Diaz-Cruz SM, Eljarrat E, Damià Barceló D (2015) Toxic heritage: maternal transfer of pyrethroid insecticides and sunscreen agents in dolphins from Brazil. Environ Pollut 207:391–402

    CAS  Google Scholar 

  10. Feo ML, Eljarrat E, Manaca MN, Dobaño C, Barcelo D, Sunyer J, Alonso PL, Menendez C, Grimalt JO (2012) Pyrethroid use-malaria control and individual applications by households for other pests and home garden use. Environ Int 38:67–72

    CAS  Google Scholar 

  11. Corcellas C, Feo ML, Torres JP, Malm O, Ocampo-Duque W, Eljarrat E, Barcelò D (2012) Pyrethroids in human breast milk: occurrence and nursing daily intake estimation. Environ Int 47:17–22

    CAS  Google Scholar 

  12. TCD Insecticide Market Trends and Potential Water quality Implications (2003) TCD environmental report. San Francisco Estuary Project, p 105

    Google Scholar 

  13. Mak K, Shan G, Lee HJ, Watanable T, Stoutamire DW, Gee SJ, Hammock BD (2005) Development of a class selective immunoassay for the type II pyrethroid insecticides. Anal Chim Acta 534:109–120

    CAS  Google Scholar 

  14. European Commission, Staff Working Document on Implementation of the Community for Endocrine Disruptors, a range of substances suspected of interfering with the hormone systems of humans and wildlife, SEC (2004) 1372, EC, Brussels, Belgium

    Google Scholar 

  15. Makebi A, Crane DB, Blondina GJ, Oros DR, Rocca JL (2008) Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Bull Environ Contam Toxicol 80:455–460

    Google Scholar 

  16. Oudou HC, Hansen HCB (2002) Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite. Chemosphere 49:1285–1294

    Google Scholar 

  17. Yan H, Liu B, Du J, Yang G, Ho Row K (2010) Ultrasound-assisted dispersive liquid–liquid microextraction for the determination of six pyrethroids in river water. J Chromatogr A 1217:5152–5157

    CAS  Google Scholar 

  18. Chang Q, Feng T, Song S, Zhou X, Wang C, Wang Z (2010) Analysis of eight pyrethroids in water sample by liquid-liquid microextraction based on solidification of floating organic droplet combined with gas chromatography. Microchim Acta 171:241–247

    CAS  Google Scholar 

  19. Xue N, Xu X, Jin Z (2005) Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere 61:1594–1606

    CAS  Google Scholar 

  20. Gil-García MD, Barranco-Martínez D, Martínez-Galera M, Parrilla-Vázquez P (2006) Simple, rapid solid-phase extraction procedure for the determination of ultra-trace levels of pyrethroids in ground and sea water by liquid chromatography/electrospray ionization mass spectroscopy. Rapid Commun Mass Spectrom 20:2395–2403

    Google Scholar 

  21. Parrilla Vazquez P, Mughari AR, Martinez GM (2008) Application of solid-phase microextraction for determination of pyrethroids in groundwater using liquid chromatography with post-column photochemically induced fluorimetry derivatization and fluorescence detection. J Chromatogr 118:61–68

    Google Scholar 

  22. Bondarenko S, Spurlock F, Gan J (2007) Analysis of pyrethroids in sediment pore water by solid-phase microextraction. Environ Toxicol Chem 26:2587–2593

    CAS  Google Scholar 

  23. Casas V, Llompart M, Garcia-Jares C, Cela R, Dagnac T (2006) Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water. J Chromatogr A 1124:148–156

    CAS  Google Scholar 

  24. Chen L, Chen W, Ma C, Du D, Chen X (2011) Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids. Talanta 84:104–108

    CAS  Google Scholar 

  25. Li HP, Lin CH, Jen JF (2009) Analysis of aqueous pyrethroid residuals by one-step microwave-assisted headspace solid-phase microextraction and gas chromatography with electron capture detection. Talanta 79:466–471

    CAS  Google Scholar 

  26. Ochai N, Sasamoto K, Kanda H, Nakamura S (2006) Fast screening of pesticide multiresidue in aqueous samples by dual stir bar sorptive extraction-thermal -desorption-low thermal mass gas chromatography mass spectrometry. J Chromatogr A 113:83–90

    Google Scholar 

  27. Ochai N, Sasamoto K, Kanda H, Pfannkoch E (2008) Sequential stir bar sorptive extraction for uniform enrichment of trace amounts of organic pollutants in water samples. J Chromatogr A 1200:72–79

    Google Scholar 

  28. Zhou Q, Bai H, Xie G, Xiao J (2008) Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J Chomatrogr A 1177:43–49

    CAS  Google Scholar 

  29. Feo ML, Eljarrat E, Barcelò D (2010) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217:2248–2253

    CAS  Google Scholar 

  30. Shi X, Liu J, Sun A, Li D, Chen J (2012) Group-selective enrichment and determination of pyrethroid insecticides in aquaculture seawater via molecularly imprinted solid phase extraction coupled with gas chromatography-electron capture detection. J Chromatogr A 1227:60–66

    CAS  Google Scholar 

  31. Woudneh MB, Oros DR (2006) Pyrethroids, pyrethrins, and piperonyl butoxide in sediments by high-resolution gas chromatography/high-resolution mass spectrometry. J Chromatogr A 1135:71–77

    CAS  Google Scholar 

  32. Esteve-Turillas FA, Aman CS, Pastor A, de la Guardia M (2004) Microwave assisted extraction of pyrethroid insecticides from soil. Anal Chim Acta 522:73–78

    Google Scholar 

  33. Rissato SR, Galhiane MS, Apon BM, Arruda MSP (2005) Multiresidue analysis of pesticides in soil by supercritical fluid extraction/gas chromatography with electron-capture detection and confirmation by gas chromatography-mass spectrometry. J Agric Food Chem 53:62–69

    CAS  Google Scholar 

  34. Alvarez MF, Llompart M, Lamas JP, Lores M, Gracia-Jares C, Cela R, Dagnac T (2008) Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction–gas chromatography. J Chromatogr A 1188:154–163

    Google Scholar 

  35. Yu Y, Liu X, He Z, Wang L, Luo M, Peng Y, Zhou Q (2016) Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal Methods 8:2463–2470

    CAS  Google Scholar 

  36. Egea Gonzalez FJ, Mena Granero A, Glass CR, Garrido Frenich A, Martinez Vidal JL (2004) Screening method for pesticides in air by gas chromatography/tandem mass spectrometry. Rapid Comm Mass Spectrom 18:537–543

    CAS  Google Scholar 

  37. Regueiro J, Llompart M, Garcia-Jares C, Cela R (2007) Development of a high-throughput method for the determination of organochlorinated compounds, nitromusks and pyrethroid insecticides in indoor dust. J Chromatogr A 1174:112–124

    CAS  Google Scholar 

  38. Sichilongo K (2004) Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry. Anal Bioanal Chem 380:942–949

    CAS  Google Scholar 

  39. Barro R, Garcia-Jares C, Llompart M, Cela R (2006) Active sampling followed by solid-phase microextraction for the determination of pyrethroids in indoor air. J Chromatogr Sci 44:430–437

    CAS  Google Scholar 

  40. Kim KB, Bartlett MG, Anand SS, Bruckner JV, Kim HJ (2006) Rapid determination of the synthetic pyrethroid insecticide, deltamethrin, in rat plasma and tissues by HPLC. J Chromatogr B 834:141–148

    CAS  Google Scholar 

  41. Cheng J, Liu M, Yu Y, Wang X, Zhang H, Ding L, Jin H (2009) Determination of pyrethroids in porcine tissues by matrix solid-phase dispersion extraction and high-performance liquid chromatography. Meat Sci 82:407–412

    CAS  Google Scholar 

  42. Rawn DFK, Judge J, Roscoe V (2010) Application of the QuEChERS method for the analysis of pyrethrins and pyrethroids in fish tissues. Anal Bioanal Chem 397:2525–2531

    CAS  Google Scholar 

  43. Jia F, Wang W, Wang J, Yin J, Liu Y, Liu Z (2012) New strategy to enhance the extraction efficiency of pyrethroid pesticides in fish samples using a modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method. Anal Methods 4:449–453

    CAS  Google Scholar 

  44. Pérez JJ, Williams MK, Weerasekera G, Smith K, Whyatt RM, Needham LL, Barra DB (2010) Measurement of pyrethroid, organophosphorus, and carbamate insecticides in human plasma using isotope dilution gas chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:2554–2562

    Google Scholar 

  45. Li M, Zhang J, Li Y, Peng B, Zhou W, Gao H (2013) Ionic-liquid dual magnetic microextraction: a novel and facile procedure for the determination of pyrethroids in honey samples. Talanta 107:81–87

    CAS  Google Scholar 

  46. Farajzadeh MA, Khoshmaram L, Nabil AAA (2014) Determination of pyrethroid pesticides residues in vegetable oils using liquid–liquid extraction and dispersive liquid–liquid microextraction followed by gas chromatography–flame ionization detection. J Food Compos Anal 34:128–135

    CAS  Google Scholar 

  47. Boonchiangma S, Ngeontae W, Srijaranai S (2012) Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Talanta 88:209–2015

    CAS  Google Scholar 

  48. Park EK, Kim JH, Gee SJ, Watanabe T, Ahn KC, Hammock BD (2004) Determination of pyrethroid residues in agricultural products by an enzyme-linked immunosorbent assay. J Agric Food Chem 52:5572–5576

    CAS  Google Scholar 

  49. Ravikumar C, Srinivas P, Seshaiah K (2013) Determination of pyrethroid pesticide residues in rice by gas chromatography tandem mass spectrometry. J Chem Pharm Res 5:175–180

    CAS  Google Scholar 

  50. Parrilla Vazquez P, Mughari AR, Galera MM (2008) Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection. Anal Chem Acta 607:74–82

    Google Scholar 

  51. Goulart SM, de Queiroz MELR, Neves AA, de Queiroz JH (2008) Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection. Talanta 75:1320–1323

    CAS  Google Scholar 

  52. Li B, Zheng F, Dong Q, Cao Y, Fan H, Deng C (2012) Rapid determination method for 12 pyrethroid pesticide residues in tea by stir bar sorptive extraction-thermal desorption-gas chromatography. Phys Procedia 25:1776–1780

    CAS  Google Scholar 

  53. Khalili Zanjani MR, Yamini Y, Shariati S, Jönsson JÅ (2007) A new liquid-phase microextraction method based on solidification of floating organic drop. Anal Chim Acta 585:286–293

    CAS  Google Scholar 

  54. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    CAS  Google Scholar 

  55. Pawliszyn J (1997) Solid phase microextraction. In: Theory and practice. Wiley, New York

    Google Scholar 

  56. You J, Weston DP, Lydy MJ (2004) A sonication extraction method for the analysis of pyrethroid, organophosphate, and organochlorine pesticides from sediment by gas chromatography with electron-capture detection. Arch Environ Contam Toxicol 47:141–147

    CAS  Google Scholar 

  57. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–413

    CAS  Google Scholar 

  58. Maguire RJ (1990) Chemical and photochemical isomerization of deltamethrin. J Agric Food Chem 38:1613–1617

    CAS  Google Scholar 

  59. Audino PG, de Licastro SA, Zerba E (1999) Thermal behaviour and biological activity of pyrethroids in smoke-generating formulations. Pestic Sci 55:1187–1193

    CAS  Google Scholar 

  60. Ruzo LO, Holmstead RL, Casida JE (1977) Pyrethroid photochemistry: decamethrin. J Agric Food Chem 25:1385–1394

    CAS  Google Scholar 

  61. Valverde A, Aguilera A, Rodriguez M, Boulaid M (2002) What are we determining using gas chromatographic multiresidue methods: tralomethrin or deltamethrin? J Chromatogr A 943:101–111

    CAS  Google Scholar 

  62. Liu W, Qin S, Gan J (2005) Chiral stability of synthetic pyrethroid insecticides. J Agric Food Chem 53:3814–3820

    CAS  Google Scholar 

  63. Godula M, Hajšlová J, Alterová K (1999) Pulsed splitless injection and the extent of matrix effects in the analysis of pesticides. J High Resolut Chromatogr 22:395–402

    CAS  Google Scholar 

  64. Wylie PL (1996) Improved gas chromatographic analysis of organophosphorus pesticides with pulsed splitless injection. J AOAC Int 79:571–577

    CAS  Google Scholar 

  65. Feo ML, Eljarrat E, Barcelò D (2011) Performance of mass chromatography/tandem mass spectrometry in the analysis of pyrethroid insecticides in environmental and food samples. Rapid Comm Mass Spectrom 25:869–876

    CAS  Google Scholar 

  66. Lòpez-Lòpez T, Gil Garcìa MD, Martínez Vidal JL, Martínez M (2001) Determination of pyrethroids in vegetables by HPLC using continuous on-line post-elution photoirradiation with fluorescence detection. Anal Chim Acta 447:101–111

    Google Scholar 

  67. Olsson AO, Baker SE, Nguyen JV, Romanoff LC, Ununka SO, Walter RD, Flemmen KL, Barr DB (2004) A liquid chromatography−tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and DEET in human urine. Anal Chem 76:2453–2461

    CAS  Google Scholar 

  68. Aaron JJ (1993) Schulman SG (ed) Molecular luminescence spectrometry: methods and applications. Wiley, New York, p 85

    Google Scholar 

  69. Liu WP, Gan JJ (2004) Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography. J Agric Food Chem 52:755–761

    CAS  Google Scholar 

  70. Xu C, Wang J, Liu W, Daniel Sheng G, Tu Y, Ma Y (2008) Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. Environ Toxicol Chem 27:174–181

    CAS  Google Scholar 

  71. Corcellas C, Eljarrat E, Barcelò D (2015) Enantiomeric-selective determination of pyrethroids: application to human samples. Anal Bioanal Chem 407:779–786

    CAS  Google Scholar 

  72. Chamberlain K, Matsu N, Kaneko H, KLhamabay BPS in N, Kurihara J (1998) Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chichester, p 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Feo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feo, M.L. (2020). Analytical Methods for Determining Pyrethroid Insecticides in Environmental and Food Matrices. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_428

Download citation

Publish with us

Policies and ethics