Advertisement

Volatile Methyl Siloxanes in Polar Regions

  • Ingjerd S. KrogsethEmail author
  • Nicholas A. Warner
Chapter
  • 40 Downloads
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 89)

Abstract

This chapter reviews volatile methyl siloxanes (VMS) in polar regions (i.e., at latitudes above the polar circles), including their sources, measured concentrations, and the effect of polar environmental conditions on behavior of VMS. Knowledge about VMS in polar regions has been centered on cyclic VMS (cVMS) due to their widespread use and presence in the environment. Due to their high volatility, cVMS are mainly emitted to and remain in the atmosphere, where they eventually degrade. cVMS are present in Arctic air due to both long-range atmospheric transport and local sources within the Arctic. There is no evidence that cVMS deposit to surface media to a significant extent, not even under polar environmental conditions. However, cVMS are emitted via wastewater, and many Arctic communities have limited wastewater treatment where low removal efficiency of cVMS from wastewater can result in high emissions. cVMS concentrations in sediments and aquatic biota close to wastewater outlets in the Norwegian Arctic are comparable to those at temperate latitudes. Sporadic detections of cVMS in biota and surface media in remote Arctic and Antarctic regions need further investigation to be confirmed. Very few measurements are reported for linear VMS (lVMS) in polar regions, with a majority of studies reporting findings below detection limits. The understanding of how Arctic conditions, including low temperatures and strong seasonality, affect the environmental behavior and bioaccumulation of VMS has been expanded through modelling studies. However, important knowledge gaps remain regarding temperature dependence of partitioning behavior in aquatic environments, biotransformation rates in polar biota, and the influence of physiological and behavioral adaptations of polar biota on bioaccumulation of VMS.

Keywords

Arctic Environmental behavior Measurements Modelling Polar Volatile methyl siloxanes 

Notes

Acknowledgments

The Research Council of Norway (#222259, #267574) and the Fram Centre Flagship research programme for Hazardous Substances – effects on ecosystem and human health.

References

  1. 1.
    Brooke D, Crookes M, Gray D, Robertson S (2009) Environmental risk assessment report: decamethylcyclopentasiloxane. Environment Agency of England and Wales, BristolGoogle Scholar
  2. 2.
    Brooke D, Crookes M, Gray D, Robertson S (2009) Environmental risk assessment report: octamethylcyclotetrasiloxane. Environment Agency of England and Wales, BristolGoogle Scholar
  3. 3.
    Brooke D, Crookes M, Gray D, Robertson S (2009) Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency of England and Wales, BristolGoogle Scholar
  4. 4.
    Genualdi SGS, Harner T, Cheng Y, MacLeod M, Hansen KM, van Egmond R, Shoeib M, Lee SC (2011) Global distribution of linear and cyclic volatile methyl siloxanes in air. Environ Sci Technol 45(8):3349–3354.  https://doi.org/10.1021/es200301jCrossRefGoogle Scholar
  5. 5.
    Kierkegaard A, McLachlan MS (2013) Determination of linear and cyclic volatile methylsiloxanes in air at a regional background site in Sweden. Atmos Environ 80:322–329.  https://doi.org/10.1016/j.atmosenv.2013.08.001CrossRefGoogle Scholar
  6. 6.
    Krogseth IS, Zhang X, Lei YD, Wania F, Breivik K (2013) Calibration and application of a passive air sampler (XAD-PAS) for volatile methyl siloxanes. Environ Sci Technol 47(9):4463–4470.  https://doi.org/10.1021/es400427hCrossRefGoogle Scholar
  7. 7.
    Atkinson R (1991) Kinetics of the gas-phase reactions of a series of organosilicon compounds with OH and NO3 radicals and O3 at 297 +/− 2K. Environ Sci Technol 25(5):863–866.  https://doi.org/10.1021/es00017a005CrossRefGoogle Scholar
  8. 8.
    Whelan MJ, Estrada E, van Egmond R (2004) A modelling assessment of the atmospheric fate of volatile methyl siloxanes and their reaction products. Chemosphere 57(10):1427–1437.  https://doi.org/10.1016/j.chemosphere.2004.08.100CrossRefGoogle Scholar
  9. 9.
    MacLeod M, Kierkegaard A, Genualdi S, Harner T, Scheringer M (2013) Junge relationships in measurement data for cyclic siloxanes in air. Chemosphere 93(5):830–834.  https://doi.org/10.1016/j.chemosphere.2012.10.055CrossRefGoogle Scholar
  10. 10.
    Bernard F, Papanastasiou DK, Papadimitriou VC, Burkholder JB (2018) Temperature dependent rate coefficients for the gas-phase reaction of the OH radical with linear (L2, L3) and cyclic (D3, D4) permethylsiloxanes. J Phys Chem A 122(17):4252–4264.  https://doi.org/10.1021/acs.jpca.8b01908CrossRefGoogle Scholar
  11. 11.
    Safron A, Strandell M, Kierkegaard A, Macleod M (2015) Rate constants and activation energies for gas-phase reactions of three cyclic volatile methyl siloxanes with the hydroxyl radical. Int J Chem Kinet 47(7):420–428.  https://doi.org/10.1002/kin.20919CrossRefGoogle Scholar
  12. 12.
    UNEP (2009) Stockholm convention of persistent organic pollutants (POPs) as amended in 2009. Text and AnnexesGoogle Scholar
  13. 13.
    Buser AM, Kierkegaard A, Bogdal C, MacLeod M, Scheringer M, Hungerbühler K (2013) Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zürich, Switzerland. Environ Sci Technol 47(13):7045–7051.  https://doi.org/10.1021/es3046586CrossRefGoogle Scholar
  14. 14.
    Kierkegaard A, McLachlan MS (2010) Determination of decamethylcyclopentasiloxane in air using commercial solid phase extraction cartridges. J Chromatogr A 1217(21):3557–3560.  https://doi.org/10.1016/j.chroma.2010.03.045CrossRefGoogle Scholar
  15. 15.
    Yucuis RA, Stanier CO, Hornbuckle KC (2013) Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere 92:905–910.  https://doi.org/10.1016/j.chemosphere.2013.02.051CrossRefGoogle Scholar
  16. 16.
    Xu S, Kozerski G, Mackay D (2014) Critical review and interpretation of environmental data for volatile methylsiloxanes: partition properties. Environ Sci Technol 48(20):11748–11759.  https://doi.org/10.1021/es503465bCrossRefGoogle Scholar
  17. 17.
    Krogseth IS, Kierkegaard A, McLachlan MS, Breivik K, Hansen KM, Schlabach M (2013) Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air. Environ Sci Technol 47(1):502–509.  https://doi.org/10.1021/es3040208CrossRefGoogle Scholar
  18. 18.
    McLachlan MS, Kierkegaard A, Hansen KM, van Egmond R, Christensen JH, Skjøth CA (2010) Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere. Environ Sci Technol 44(14):5365–5370.  https://doi.org/10.1021/es100411wCrossRefGoogle Scholar
  19. 19.
    Bohlin-Nizzetto P, Aas W, Krogseth IS (2014) Monitoring of environmental contaminants in air and precipitation, annual report 2013. Norwegian Environment Agency, M-202/2014. NILU – Norwegian Institute for Air Research, NILU OR 29/2014, Kjeller, NorwayGoogle Scholar
  20. 20.
    Bohlin-Nizzetto P, Aas W, Warner N (2015) Monitoring of environmental contaminants in air and precipitation, annual report 2014. Norwegian Environment Agency, M-368/2015. NILU – Norwegian Institute for Air Research, NILU OR 19/2015, Kjeller, NorwayGoogle Scholar
  21. 21.
    Bohlin-Nizzetto P, Aas W (2016) Monitoring of environmental contaminants in air and precipitation, annual report 2015. Norwegian Environment Agency, M-579/2016. NILU – Norwegian Institute for Air Research, NILU report 14/2016, Kjeller, NorwayGoogle Scholar
  22. 22.
    Bohlin-Nizzetto P, Aas W, Warner N (2017) Monitoring of environmental contaminants in air and precipitation, annual report 2016. Norwegian Environment Agency, M-757/2017. NILU – Norwegian Institute for Air Research, NILU report 17/2017, Kjeller, NorwayGoogle Scholar
  23. 23.
    Bohlin-Nizzetto P, Aas W, Warner NA (2018) Monitoring of environmental contaminants in air and precipitation, annual report 2017. Norwegian Environment Agency, M-1062/2018. NILU – Norwegian Institute for Air Research, NILU report 13/2018, Kjeller, NorwayGoogle Scholar
  24. 24.
    Sanchís J, Cabrerizo A, Galbán-Malagón C, Barceló D, Farré M, Dachs J (2015) Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environ Sci Technol 49(7):4415–4424.  https://doi.org/10.1021/es503697tCrossRefGoogle Scholar
  25. 25.
    Mackay D, Gobas F, Solomon K, Macleod M, McLachlan M, Powell DE, Xu S (2015) Comment on “Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill”. Environ Sci Technol 49(12):7507–7509.  https://doi.org/10.1021/acs.est.5b01936CrossRefGoogle Scholar
  26. 26.
    Warner NA, Krogseth IS, Whelan MJ (2015) Comment on “Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill”. Environ Sci Technol 49(12):7504–7506.  https://doi.org/10.1021/acs.est.5b01612CrossRefGoogle Scholar
  27. 27.
    Sanchís J, Cabrerizo A, Galbán-Malagón C, Barceló D, Farré M, Dachs J (2015) Response to comments on “Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton and krill”. Environ Sci Technol 49(12):7510–7512.  https://doi.org/10.1021/acs.est.5b02184CrossRefGoogle Scholar
  28. 28.
    Wang D-G, Norwood W, Alaee M, Byer JD, Brimble S (2013) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93(5):711–725.  https://doi.org/10.1016/j.chemosphere.2012.10.041CrossRefGoogle Scholar
  29. 29.
    Warner NA (2017) Siloxanes. AMAP assessment 2016: chemicals of emerging Arctic concern. Arctic Monitoring and Assessment Programme (AMAP), Oslo, pp 131–139Google Scholar
  30. 30.
    Schlabach M, Bavel Bv, Lomba JAB, Borgen A, Fjeld E, Gabrielsen GW, Götsch A, Halse AK, Hanssen L, Krogseth IS, Nikiforov V, Nygård T, Bohlin-Nizzetto P, Reid M, Rostkowski P (2018) Screening programme 2017 – AMAP assessment compounds. Norwegian Environment Agency, M-1080/2018. NILU – Norwegian Institute for Air Research, NILU report 21/2018, Kjeller, NorwayGoogle Scholar
  31. 31.
    Krogseth IS, Whelan MJ, Christensen GN, Breivik K, Evenset A, Warner NA (2017) Understanding of cyclic volatile methyl siloxane fate in a high latitude lake is constrained by uncertainty in organic carbon–water partitioning. Environ Sci Technol 51(1):401–409.  https://doi.org/10.1021/acs.est.6b04828CrossRefGoogle Scholar
  32. 32.
    Warner NA, Evenset A, Christensen G, Gabrielsen GW, Borgå K, Leknes H (2010) Volatile siloxanes in the European Arctic: assessment of sources and spatial distribution. Environ Sci Technol 44(19):7705–7710.  https://doi.org/10.1021/es101617kCrossRefGoogle Scholar
  33. 33.
    Warner NA, Kozerski G, Durham J, Koerner M, Gerhards R, Campbell R, McNett DA (2013) Positive vs. false detection: a comparison of analytical methods and performance for analysis of cyclic volatile methylsiloxanes (cVMS) in environmental samples from remote regions. Chemosphere 93:749–756.  https://doi.org/10.1016/j.chemosphere.2012.10.045CrossRefGoogle Scholar
  34. 34.
    Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2008) Impacts of local human activities on the Antarctic environment. Antarct Sci 21(1):3–33.  https://doi.org/10.1017/S0954102009001722CrossRefGoogle Scholar
  35. 35.
    Rauert C, Shoeib M, Schuster JK, Eng A, Harner T (2018) Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ Pollut 238:94–102.  https://doi.org/10.1016/j.envpol.2018.03.017CrossRefGoogle Scholar
  36. 36.
    Warner N, Nikiforov V, Krogseth IS, Kierkegaard A, Bohlin-Nizzetto P (2018) Reducing sampling artifacts in air measurements: improvement of active air sampling methodologies for accurate measurements of cyclic volatile methylsiloxanes in remote regions. Organohalogen Compd 80:465–468Google Scholar
  37. 37.
    Companioni-Damas EY, Santos FJ, Galceran MT (2012) Analysis of linear and cyclic methylsiloxanes in sewage sludges and urban soils by concurrent solvent recondensation – large volume injection – gas chromatography-mass spectrometry. J Chromatogr A 1268:150–156.  https://doi.org/10.1016/j.chroma.2012.10.043CrossRefGoogle Scholar
  38. 38.
    Sánchez-Brunete C, Miguel E, Albero B, Tadeo JL (2010) Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography–mass spectrometry. J Chromatogr A 1217(45):7024–7030.  https://doi.org/10.1016/j.chroma.2010.09.031CrossRefGoogle Scholar
  39. 39.
    Warner NA, Nøst TH, Andrade H, Christensen G (2014) Allometric relationships to liver tissue concentrations of cyclic volatile methyl siloxanes in Atlantic cod. Environ Pollut 190:109–114.  https://doi.org/10.1016/j.envpol.2014.03.031CrossRefGoogle Scholar
  40. 40.
    Powell DE, Durham J, Darren WH, Kozerski GE, Böhmer T, Gerhards R (2010) Deposition of cyclic volatile methylsiloxane (cVMS) materials to sediment in a temperate freshwater lake: a historical perspective. Dow Corning Corporation, HES study no. 10725-108. Auburn, MIGoogle Scholar
  41. 41.
    Lee S-Y, Lee S, Choi M, Kannan K, Moon H-B (2018) An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea. Environ Pollut 236:111–118.  https://doi.org/10.1016/j.envpol.2018.01.051CrossRefGoogle Scholar
  42. 42.
    Evenset A, Leknes H, Christensen GN, Warner NA, Remberger M, Gabrielsen GW (2009) Screening of new contaminants in samples from the Norwegian Arctic. Norwegian Pollution Control Authority, TA-2510/2009. Akvaplan-niva, Report 4351-1, Tromsø, NorwayGoogle Scholar
  43. 43.
    Bakke T, Boitsov S, Brevik EM, Gabrielsen GW, Green N, Helgason LB, Klungsøyr J, Leknes H, Miljeteig C, Måge A, Rolfsnes BE, Savinova T, Schlabach M, Skaare BB, Valdersnes S (2008) Mapping selected organic contaminants in the Barents Sea 2007. Norwegian Pollution Control Authority, TA-2400/2008. Norwegian Institute for Water Research, NIVA-report 5589-2008, Oslo, NorwayGoogle Scholar
  44. 44.
    Krogseth IS, Undeman EM, Evenset A, Christensen GN, Whelan MJ, Breivik K, Warner NA (2017) Elucidating the behavior of cyclic volatile methylsiloxanes in a subarctic freshwater food web: a modeled and measured approach. Environ Sci Technol 51(21):12489–12497.  https://doi.org/10.1021/acs.est.7b03083CrossRefGoogle Scholar
  45. 45.
    Kierkegaard A, Adolfsson-Erici M, McLachlan MS (2010) Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method. Anal Chem 82(22):9573–9578.  https://doi.org/10.1021/ac102406aCrossRefGoogle Scholar
  46. 46.
    Borgå K, Fjeld E, Kierkegaard A, McLachlan MS (2012) Food web accumulation of cyclic siloxanes in Lake Mjøsa, Norway. Environ Sci Technol 46(11):6347–6354.  https://doi.org/10.1021/es300875dCrossRefGoogle Scholar
  47. 47.
    Borgå K, Fjeld E, Kierkegaard A, McLachlan MS (2013) Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout. Environ Sci Technol 47(24):14394–14402.  https://doi.org/10.1021/es404374jCrossRefGoogle Scholar
  48. 48.
    Powell DE, Woodburn KB, Drotar KD, Durham J, Huff DW (2009) Trophic dilution of cyclic volatile methylsiloxane (cVMS) materials in a temperate freshwater lake. Dow Corning Corporation, HES study no. 10771-108. Auburn, MIGoogle Scholar
  49. 49.
    Powell DE, Durham J, Huff DW, Böhmer T, Gerhards R, Koerner M (2010) Bioaccumulation and trophic transfer of cyclic volatile methylsiloxane (cVMS) materials in the aquatic marine food webs of the inner and outer Oslofjord, Norway. Dow Corning Corporation, HES study no. 11060-108. Auburn, MIGoogle Scholar
  50. 50.
    Powell DE, Schøyen M, Øxnevad S, Gerhards R, Böhmer T, Koerner M, Durham J, Huff DW (2018) Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway. Sci Total Environ 622:127–139.  https://doi.org/10.1016/j.scitotenv.2017.11.237CrossRefGoogle Scholar
  51. 51.
    McGoldrick DJ, Chan C, Drouillard KG, Keir MJ, Clark MG, Backus SM (2014) Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada. Environ Pollut 186:141–148.  https://doi.org/10.1016/j.envpol.2013.12.003CrossRefGoogle Scholar
  52. 52.
    Rikardsen AH, Amundsen PA, Bodin PJ (2003) Growth and diet of anadromous Arctic charr after their return to freshwater. Ecol Freshw Fish 12(1):74–80.  https://doi.org/10.1034/j.1600-0633.2003.00001.xCrossRefGoogle Scholar
  53. 53.
    Jensen JLA, Christensen GN, Hawley KH, Rosten CM, Rikardsen AH (2016) Arctic charr exploit restricted urbanized coastal areas during marine migration: could they be in harm’s way? Hydrobiologia 783(1):335–345.  https://doi.org/10.1007/s10750-016-2787-6CrossRefGoogle Scholar
  54. 54.
    Lucia M, Gabrielsen GW, Herzke D, Christensen GN (2016) Screening of UV chemicals, bisphenols and siloxanes in the Arctic. Norwegian Environment Agency, M-598/2016. Norwegian Polar Institute, Brief report no. 039, Tromsø, NorwayGoogle Scholar
  55. 55.
    Jartun M, Fjeld E, Bæk K, Løken KB, Rundberget T, Grung M, Schlabach M, Warner NA, Johansen I, Lyche JL, Berg V, Nøstbakken OJ (2018) Monitoring of environmental contaminants in freshwater ecosystems. Norwegian Environment Agency, M-1106/2018. Norwegian Institute for Water Research and Norwegian University of Life Sciences, Oslo, NorwayGoogle Scholar
  56. 56.
    Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary. Environ Sci Technol 45(14):5936–5942.  https://doi.org/10.1021/es200707rCrossRefGoogle Scholar
  57. 57.
    Gobas FAPC, Muir DCG, Mackay D (1988) Dynamics of dietary bioaccumulation and fecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17(5):943–962CrossRefGoogle Scholar
  58. 58.
    Green NW, Schøyen M, Hjermann DØ, Øxnevad S, Ruus A, Lusher A, Beylich B, Lund E, Tveiten L, Håvardstun J, Jenssen MTS, Ribeiro AL, Bæk K (2018) Contaminants in coastal waters of Norway 2017. Norwegian Environment Agency, M-1120/2018. Norwegian Institute for Water Research, NIVA-report 7302-2018, Oslo, NorwayGoogle Scholar
  59. 59.
    Knudsen LB, Sagerup K, Polder A, Schlabach M, Josefsen TD, Strøm H, Skåre JU, Gabrielsen GW (2007) Halogenated organic contaminants and mercury in dead or dying seabirds on Bjørnøya (Svalbard). Norwegian Pollution Control Authority, TA-2222/2007. Norwegian Polar Institute, SPFO-Report 977/2007, Tromsø, NorwayGoogle Scholar
  60. 60.
    Huber S, Warner NA, Nygård T, Remberger M, Harju M, Uggerud HT, Kaj L, Hanssen L (2015) A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway. Environ Toxicol Chem 34(6):1296–1308.  https://doi.org/10.1002/etc.2956CrossRefGoogle Scholar
  61. 61.
    Kierkegaard A, Bignert A, McLachlan MS (2013) Cyclic volatile methylsiloxanes in fish from the Baltic Sea. Chemosphere 93(5):774–778.  https://doi.org/10.1016/j.chemosphere.2012.10.048CrossRefGoogle Scholar
  62. 62.
    Tobin JM, McNett DA, Durham JA, Plotzke KP (2008) Disposition of decamethylcyclopentasiloxane in Fischer 344 rats following single or repeated inhalation exposure to 14C-decamethylcyclopentasiloxane (14C-D5). Inhal Toxicol 20(5):513–531.  https://doi.org/10.1080/08958370801935075CrossRefGoogle Scholar
  63. 63.
    Sarangapani R, Teeguarden J, Andersen ME, Reitz RH, Plotzke KP (2003) Route-specific differences in distribution characteristics of octamethylcyclotetrasiloxane in rats: analysis using PBPK models. Toxicol Sci 71(1):41–52.  https://doi.org/10.1093/toxsci/71.1.41CrossRefGoogle Scholar
  64. 64.
    Domoradzki JY, Sushynski CM, Sushynski JM, McNett DA, Van Landingham C, Plotzke KP (2017) Metabolism and disposition of [(14)C]-methylcyclosiloxanes in rats. Toxicol Lett 279(Suppl 1):98–114.  https://doi.org/10.1016/j.toxlet.2017.05.002CrossRefGoogle Scholar
  65. 65.
    Lu Z, Martin PA, Burgess NM, Champoux L, Elliott JE, Baressi E, De Silva AO, de Solla SR, Letcher RJ (2017) Volatile methylsiloxanes and organophosphate esters in the eggs of European starlings (Sturnus vulgaris) and congeneric gull species from locations across Canada. Environ Sci Technol 51(17):9836–9845.  https://doi.org/10.1021/acs.est.7b03192CrossRefGoogle Scholar
  66. 66.
    Hanssen L, Warner NA, Braathen T, Odland JO, Lund E, Nieboer E, Sandanger TM (2013) Plasma concentrations of cyclic volatile methylsiloxanes (cVMS) in pregnant and postmenopausal Norwegian women and self-reported use of personal care products (PCPs). Environ Int 51:82–87.  https://doi.org/10.1016/j.envint.2012.10.008CrossRefGoogle Scholar
  67. 67.
    Xu S, Kropscott B (2013) Octanol/air partition coefficients of volatile methylsiloxanes and their temperature dependence. J Chem Eng Data 58(1):136–142.  https://doi.org/10.1021/je301005bCrossRefGoogle Scholar
  68. 68.
    Xu S, Kropscott B (2014) Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (KOW, KOA, and KAW) for volatile methylsiloxanes and trimethylsilanol. Environ Toxicol Chem 33(12):2702–2710.  https://doi.org/10.1002/etc.2754CrossRefGoogle Scholar
  69. 69.
    Xu S, Kropscott B (2012) Method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol. Anal Chem 84(4):1948–1955.  https://doi.org/10.1021/ac202953tCrossRefGoogle Scholar
  70. 70.
    Schenker U, MacLeod M, Scheringer M, Hungerbühler K (2005) Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Technol 39(21):8434–8441.  https://doi.org/10.1021/es0502526CrossRefGoogle Scholar
  71. 71.
    Panagopoulos D, Jahnke A, Kierkegaard A, MacLeod M (2017) Temperature dependence of the organic carbon/water partition ratios (KOC) of volatile methylsiloxanes. Environ Sci Technol Lett 4(6):240–245.  https://doi.org/10.1021/acs.estlett.7b00138CrossRefGoogle Scholar
  72. 72.
    Panagopoulos D, Jahnke A, Kierkegaard A, MacLeod M (2015) Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: measurements and polyparameter linear free energy relationships. Environ Sci Technol 49(20):12161–12168.  https://doi.org/10.1021/acs.est.5b02483CrossRefGoogle Scholar
  73. 73.
    Kozerski GE, Xu S, Miller J, Durham J (2014) Determination of soil-water sorption coefficients of volatile methylsiloxanes. Environ Toxicol Chem 33(9):1937–1945.  https://doi.org/10.1002/etc.2640CrossRefGoogle Scholar
  74. 74.
    Xu S, Wania F (2013) Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment. Chemosphere 93(5):835–843.  https://doi.org/10.1016/j.chemosphere.2012.10.056CrossRefGoogle Scholar
  75. 75.
    Wania F (2006) Potential of degradable organic chemicals for absolute and relative enrichment in the Arctic. Environ Sci Technol 40(2):569–577.  https://doi.org/10.1021/es051406kCrossRefGoogle Scholar
  76. 76.
    Kim J, Mackay D, Whelan MJ (2018) Predicted persistence and response times of linear and cyclic volatile methylsiloxanes in global and local environments. Chemosphere 195:325–335.  https://doi.org/10.1016/j.chemosphere.2017.12.071CrossRefGoogle Scholar
  77. 77.
    Webster E, Mackay D, Wania F (1998) Evaluating environmental persistence. Environ Toxicol Chem 17(11):2148–2158.  https://doi.org/10.1002/etc.5620171104CrossRefGoogle Scholar
  78. 78.
    Altshuller AP (1989) Ambient air hydroxyl radical concentrations – measurements and model predictions. J Air Waste Manage Assoc 39(5):704–708.  https://doi.org/10.1080/08940630.1989.10466556CrossRefGoogle Scholar
  79. 79.
    Xiao R, Zammit I, Wei Z, Hu W-P, MacLeod M, Spinney R (2015) Kinetics and mechanism of the oxidation of cyclic methylsiloxanes by hydroxyl radical in the gas phase: an experimental and theoretical study. Environ Sci Technol 49(22):13322–13330.  https://doi.org/10.1021/acs.est.5b03744CrossRefGoogle Scholar
  80. 80.
    Xu S, Warner N, Bohlin-Nizzetto P, Durham J, McNett D (2019) Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements. Chemosphere 228:460–468.  https://doi.org/10.1016/j.chemosphere.2019.04.130CrossRefGoogle Scholar
  81. 81.
    Kim J, Xu S (2016) Sorption and desorption kinetics and isotherms of volatile methylsiloxanes with atmospheric aerosols. Chemosphere 144:555–563.  https://doi.org/10.1016/j.chemosphere.2015.09.033CrossRefGoogle Scholar
  82. 82.
    Kim J, Xu S, Varaprath S (2009) Removal of trace-level D4 in air by mineral aerosol. SETAC Europe 19th Annual Meeting, Gothenburg, SwedenGoogle Scholar
  83. 83.
    Xu S, Chandra G (1999) Fate of cyclic methylsiloxanes in soils. 2. Rates of degradation and volatilization. Environ Sci Technol 33(22):4034–4039.  https://doi.org/10.1021/es990099dCrossRefGoogle Scholar
  84. 84.
    Janechek NJ, Hansen KM, Stanier CO (2017) Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products. Atmos Chem Phys 17(13):8357.  https://doi.org/10.5194/acp-17-8357-2017CrossRefGoogle Scholar
  85. 85.
    MacLeod M, von Waldow H, Tay P, Armitage JM, Wöhrnschimmel H, Riley WJ, McKone TE, Hungerbühler K (2011) BETR global – a geographically-explicit global-scale multimedia contaminant fate model. Environ Pollut 159(5):1442–1445.  https://doi.org/10.1016/j.envpol.2011.01.038CrossRefGoogle Scholar
  86. 86.
    Whelan MJ (2013) Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model. Chemosphere 91(11):1566–1576.  https://doi.org/10.1016/j.chemosphere.2012.12.048CrossRefGoogle Scholar
  87. 87.
    Whelan MJ, Breivik K (2013) Dynamic modelling of aquatic exposure and pelagic food chain transfer of cyclic volatile methyl siloxanes in the Inner Oslofjord. Chemosphere 93(5):794–804.  https://doi.org/10.1016/j.chemosphere.2012.10.051CrossRefGoogle Scholar
  88. 88.
    Hughes L, Mackay D, Powell DE, Kim J (2012) An updated state of the science EQC model for evaluating chemical fate in the environment: application to D5 (decamethylcyclopentasiloxane). Chemosphere 87(2):118–124.  https://doi.org/10.1016/j.chemosphere.2011.11.072CrossRefGoogle Scholar
  89. 89.
    Mackay D, Hughes L, Powell DE, Kim J (2014) An updated quantitative water air sediment interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: application to D5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes. Chemosphere 111:359–365.  https://doi.org/10.1016/j.chemosphere.2014.04.033CrossRefGoogle Scholar
  90. 90.
    Panagopoulos D, MacLeod M (2018) A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models. Environ Sci Process Impacts 20(1):183–194.  https://doi.org/10.1039/c7em00524eCrossRefGoogle Scholar
  91. 91.
    Undeman E, Gustafsson B, Humborg C, McLachlan M (2015) Application of a novel modeling tool with multistressor functionality to support management of organic contaminants in the Baltic Sea. Ambio 44(3):498–506.  https://doi.org/10.1007/s13280-015-0668-2CrossRefGoogle Scholar
  92. 92.
    Seston RM, Powell DE, Woodburn KB, Kozerski GE, Bradley PW, Zwiernik MJ (2014) Importance of lipid analysis and implications for bioaccumulation metrics. Integr Environ Assess Manag 10(1):142–144.  https://doi.org/10.1002/ieam.1495CrossRefGoogle Scholar
  93. 93.
    Jahnke A, Holmbäck J, Andersson RA, Kierkegaard A, Mayer P, MacLeod M (2015) Differences between lipids extracted from five species are not sufficient to explain biomagnification of nonpolar organic chemicals. Environ Sci Technol Lett 2(7):193–197.  https://doi.org/10.1021/acs.estlett.5b00145CrossRefGoogle Scholar
  94. 94.
    Kozerski GE, McNett D (2015) Determination of storage lipid-to-air partition coefficients and their temperature dependence for Octamethylcyclotetrasiloxane (D4; CAS 556-67-2), Decamethylcyclopentasiloxane (D5; CAS 541-02-6) and Dodecamethylcyclohexasiloxane (D6; CAS 540-97-6). Dow Corning Corporation, HES Study Number 17240-108, Auburn, MIGoogle Scholar
  95. 95.
    Arnot JA, Mackay D, Parkerton TF, Bonnell M (2008) A database of fish biotransformation rates for organic chemicals. Environ Toxicol Chem 27(11):2263–2270.  https://doi.org/10.1897/08-058.1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NILU – Norwegian Institute for Air Research, Fram CentreTromsøNorway

Personalised recommendations