Skip to main content

Bioconcentration, Bioaccumulation, and Biomagnification of Volatile Methylsiloxanes in Biota

  • Chapter
  • First Online:
Volatile Methylsiloxanes in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 89))

  • 442 Accesses

Abstract

Volatile methylsiloxanes (VMS) are synthetic chemicals that have been extensively used in the manufacture of many industrial and consumer products and in the formulation of personal and health-care products. Due to their extensive use, VMS have been found in a diversity of abiotic media (air, soil, water, sediments) and in a wide range of aquatic and terrestrial organisms. The ubiquitous presence of VMS has raised concerns regarding whether these chemicals are prone to accumulate in aquatic and terrestrial life to levels higher than those found in the environment and ultimately to affect human and ecosystem health. The purpose of this chapter is to provide an overview of the studies that have been developed to understand if VMS have the potential to bioconcentrate, bioaccumulate, and biomagnify. Key factors affecting bioaccumulation of VMS by different organisms will be described, including physicochemical properties, environmental conditions, characteristics of the exposed organism, and the respective food chains. A review of the studies reporting VMS in different biota samples will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-G, Norwood W, Alaee M et al (2013) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemospere 93:711–725

    CAS  Google Scholar 

  2. Hamelink JL (1992) Silicones. In: Hutzinger EO (ed) Anthropogenic compounds: detergents. The handbook of environmental chemistry, vol 3, part F. Springer, Berlin, pp 383–394

    Google Scholar 

  3. Hobson JF, Atkinson R, Carter WPL (1997) Volatile methylsiloxanes. In: Chandra G (ed) Organosilicon materials. The handbook of environmental chemistry, vol 3, part H. Springer, New York, pp 137–179

    Google Scholar 

  4. Mojsiewicz-Pienkowska K, Jamrógiewicz M, Szymkowska K et al (2016) Direct human contact with siloxanes (silicones) – safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol 7:132. https://doi.org/10.3389/fphar.2016.00132

    Article  CAS  Google Scholar 

  5. Varaprath S, Stutts DH, Kozerski GE (2006) A primer on the analytical aspects of silicones at trace levels - challenges and artifacts - a review. Silicon Chem 3:79–102

    CAS  Google Scholar 

  6. Genualdi S, Harner T, Cheng Y et al (2013) Global distribution of linear and cyclic volatile methyl siloxanes in air. Environ Sci Technol 45:3349–3354

    Google Scholar 

  7. USEPA (2007) High production volume (HPV) challenge program. https://www.echemportal.org/echemportal/participant/participantinfo.action?participantId=9. Accessed 13 Sept 2018

  8. McLachlan MS, Kierkegaard A, Hansen KM et al (2010) Concentrations and fate of decamethylcyclopentasiloxane (D5) in the atmosphere. Environ Sci Technol 44:5365–5370

    CAS  Google Scholar 

  9. Krogseth IS, Kierkegaard A, McLachlan MS et al (2012) Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air. Environ Sci Technol 47:502–509

    Google Scholar 

  10. Watanabe N, Nakamura T, Watanabe E (1984) Distribution of organosiloxanes (silicones) in water, sediments and fish from the Nagara watershed, Japan. Sci Total Environ 35:91–97

    CAS  Google Scholar 

  11. Kaj L, Andersson J, Palm CA et al (2005) Results from the Swedish national screening programme 2004 - subreport 4: siloxanes. IVL report B 1643. http://www.imm.ki.se/Datavard/PDF/B1645_adipater.pdf. Accessed 13 Sept 2018

  12. Kaj L, Schlabach M, Andersson J et al (2005) Siloxanes in the Nordic environment. TemaNord 593. Nordic Council of Ministers, Copenhagen. http://nordicscreening.org/index.php?module=Pagesetter&type=file&func=get&tid=5&fid=reportfile&pid=4. Accessed 13 Sept 2018

  13. Hong W, Jia H, Liu C et al (2014) Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environ Pollut 191:175–181

    CAS  Google Scholar 

  14. Sparham C, Egmond RV, Hastie C et al (2011) Determination of decamethylcyclopentasiloxane in river and estuarine sediments in the UK. J Chromatogr A 1218:817–823

    CAS  Google Scholar 

  15. Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile Methylsiloxane bioaccumulation in flounder and Ragworm in the Humber Estuary. Environ Sci Technol 45:5936–5942

    CAS  Google Scholar 

  16. Sanchís J, Martínez E, Ginebreda A et al (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538

    Google Scholar 

  17. Borgå K, Fjeld E, Kierkegaard A et al (2012) Food web accumulation of cyclic siloxanes in Lake Mjøsa, Norway. Environ Sci Technol 46:6347–6354

    Google Scholar 

  18. Borgå K, Fjeld E, Kierkegaard A et al (2013) Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout. Environ Sci Technol 47:14394–14402

    Google Scholar 

  19. McGoldrick D, Chan C, Drouillard K et al (2014) Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada. Environ Pollut 186:141–148

    CAS  Google Scholar 

  20. Ratola N, Ramos S, Homem V et al (2016) Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Environ Sci Pollut Res 23(4):3273–3284

    CAS  Google Scholar 

  21. Sanchís J, Cabrerizo A, Galbán-Malagón C et al (2015) Unexpected occurrence of volatile Dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environ Sci Technol 49:4415–4424

    Google Scholar 

  22. OECD (2007) Manual for investigation of HPV chemicals. http://www.oecd.org/document/7/0,3343,en_2649_34379_1947463_1_1_1_1,00.html. Accessed 13 Sept 2018

  23. Environment Agency (2009) Environmental risk assessment report: decamethylcyclopentasiloxane. Environment Agency, Almondsbury

    Google Scholar 

  24. Environment Agency (2009) Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency, Almondsbury

    Google Scholar 

  25. Environment Agency (2009) Environmental risk assessment report: octamethylcyclotetrasiloxane. Environment Agency, Almondsbury

    Google Scholar 

  26. EC & HC (2008) Screening assessment for the challenge: decamethylcyclopentasiloxane (D5) chemical abstracts service registry number 541-02-6. Technical report, Health Canada and Environment Canada, Ottawa

    Google Scholar 

  27. EC & HC (2008) Screening assessment for the challenge: dodecamethylcyclohexasiloxane (D6) chemical abstracts service registry number 540-97-6. Technical report, Health Canada and Environment Canada, Ottawa

    Google Scholar 

  28. EC & HC (2008) Screening assessment for the challenge: octamethylcyclotetrasiloxane (D4) chemical abstracts service registry number 556-67-2. Technical report. Health Canada and Environment Canada, Ottawa

    Google Scholar 

  29. Ministerråd N (2005) Siloxanes in the Nordic environment. Technical report 593, TemaNord, Copenhagen

    Google Scholar 

  30. Giesy JP, Solomon KR, Kacew S et al (2016) The case for establishing a board of review for resolving environmental issues: the science court in Canada. Integr Environ Assess Manag 12(3):572–579. https://doi.org/10.1002/ieam.1729

    Article  Google Scholar 

  31. Siloxane D5 Board of Review (2011) Report of the Board of Review for decamethylcyclopentasiloxane (D5), technical. Environment Canada, Ottawa

    Google Scholar 

  32. Environment Agency (2014) D4 PBT/vPvB evaluation, technical. Environment Agency, Bristol

    Google Scholar 

  33. Environment Agency (2014) D5 PBT/vPvB evaluation, technical. Environment Agency, Bristol

    Google Scholar 

  34. Hayden JF, Barlow SA (1972) Structure-activity relationships of organosiloxanes and the female reproductive system. Toxicol Appl Pharmacol 21:68–79

    CAS  Google Scholar 

  35. Quinn AL, Regan JM, Tobin JM et al (2007) In vitro and in vivo evaluation of the estrogenic, androgenic, and progestagenic potential of two cyclic siloxanes. Toxicol Sci 96:145–153

    CAS  Google Scholar 

  36. Granchi D, Cavedagna D, Ciapetti G et al (1995) Silicone breast implants: the role of immune-system on capsular contracture formation. J Biomed Mater Res 29:197–202

    CAS  Google Scholar 

  37. Hea B, Rhodes-Brower S, Miller MR et al (2003) Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ER alpha. Toxicol Appl Pharmacol 192:254–261

    Google Scholar 

  38. Lieberman MW, Lykissa ED, Barrios R et al (1999) Cyclosiloxanes produce fatal liver and lung damage in mice. Environ Health Perspect 107:161–165

    CAS  Google Scholar 

  39. Lu Y, Yuan T, Wang W et al (2011) Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environ Pollut 159(12):3522–3528

    CAS  Google Scholar 

  40. Xu L, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res 47:715–724

    CAS  Google Scholar 

  41. Schweigkofler M, Niessner R (1999) Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GCMS/AES analysis. Environ Sci Technol 33(20):3680–3685

    CAS  Google Scholar 

  42. Bletsou AA, Asimakopoulos AG, Stasinakis AS et al (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment Plant in Greece. Environ Sci Technol 47(4):1824–1832

    CAS  Google Scholar 

  43. Capela D, Ratola N, Alves A (2017) Volatile methylsiloxanes through wastewater treatment plants – a review of levels and implications. Environ Int 102:9–29

    CAS  Google Scholar 

  44. Xu S, Kropscott B (2012) Method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol. Anal Chem 84(4):1948–1955

    CAS  Google Scholar 

  45. Huckins JN, Petty JD, Thomas J (1997) Bioaccumulation: how chemicals move from the water into fish and other aquatic organisms. American Petroleum Institute publication number 4656, Midwest Science Center, Columbia

    Google Scholar 

  46. Bridges J, Solomon KR (2016) Quantitative weight-of-evidence analysis of the persistence, bioaccumulation, toxicity, and potential for long-range transport of the cyclic volatile methyl siloxanes. J Toxicol Environ Health B 19(8):345–379. https://doi.org/10.1080/10937404.2016.1200505

    Article  CAS  Google Scholar 

  47. Xu S, Kropscott B (2013) Octanol/air partition coefficients of volatile methylsiloxanes and their temperature dependence. J Chem Eng Data 58:136–142. https://doi.org/10.1021/je301005b

    Article  CAS  Google Scholar 

  48. Kelly BC, Ikonomou MG, Blair JD et al (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317(5835):236–239

    CAS  Google Scholar 

  49. Andersen ME, Reddy MB, Plotzke KP (2008) Are highly lipophilic volatile compounds expected to bioaccumulate with repeated exposures? Toxicol Lett 179:85–92. https://doi.org/10.1016/j.toxlet.2008.04.007

    Article  CAS  Google Scholar 

  50. Seston RM, Powell DE, Woodburn KB et al (2014) Importance of lipid analysis and implications for bioaccumulation metrics. Integr Environ Assess Manag 10:142–144. https://doi.org/10.1002/ieam.1495

    Article  CAS  Google Scholar 

  51. Lucia M, Gabrielsen GW, Herzke D et al (2016) Screening of UV chemicals bisphenols and siloxanes in the Arctic. Norsk Polarinstitutt, Norwegian Polar Institute, Fram Centre, Tromso

    Google Scholar 

  52. Whelan MJ, Estrada E, van Egmond R (2004) A modelling assessment of the atmospheric fate of volatile methyl siloxanes and their reaction products. Chemosphere 57(10):1427–1437

    CAS  Google Scholar 

  53. Atkinson R (1991) Kinetics of the gas-phase reactions of a series of organosilicon compounds with OH and NO3 radicals and O3 at 297 ± 2 K. Environ Sci Technol 25:863–866. https://doi.org/10.1021/es00017a005

    Article  CAS  Google Scholar 

  54. SEHSC (2007) Long range transport potential of cyclic methylsiloxanes estimated using a global average chemical fate model: the OECD tool, technical. Silicones Environment Health and Safety Council of North America, Herndon

    Google Scholar 

  55. Xu S, Wania F (2013) Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment. Chemosphere 93:835–843. https://doi.org/10.1016/j.chemosphere.2012.10.056

    Article  CAS  Google Scholar 

  56. Navea JG, Xu SH, Stanier CO et al (2009) Heterogeneous uptake of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) onto mineral dust aerosol under variable RH conditions. Atmos Environ 43:4060–4069

    CAS  Google Scholar 

  57. Durham J (2005) Hydrolysis of octamethylcyclotetrasiloxane (D4). Silicones environment, health and safety council. Study number 10000–102 (cited from the report of the assessment for D4 by Environment Canada and Health Canada)

    Google Scholar 

  58. Durham J (2006) Hydrolysis of octamethylcyclotetrasiloxane (D5) silicones environment, health and safety council. Study number 10040–102 (cited from the report of the assessment for D5 by Environment Canada and Health Canada)

    Google Scholar 

  59. Xu S (1999) Fate of cyclic methylsiloxanes in soils. 1: the degradation pathway. Environ Sci Technol 33:603–608

    CAS  Google Scholar 

  60. Xu S, Chandra G (1999) Fate of cyclic methylsiloxanes in soils. 2. Rates of degradation and volatilization. Environ Sci Technol 33:4034–4039

    CAS  Google Scholar 

  61. Xu S (2007) Estimation of degradation rates of cVMS in soils. HES study no. 10787–102. Health and environmental sciences, Dow Corning Corporation, Auburg, MI (cited from the report of the assessment for cVSM by Environment Agency of England and Wales)

    Google Scholar 

  62. Xu S, Miller JA (2008) Aerobic transformation of octamethylcyclotetrasiloxane (D4) in water/sediment system. Centre Européen des silicones (CES), interim report (cited from the report of the assessment for D4 by environment Canada and Health Canada)

    Google Scholar 

  63. Xu S (2010) Aerobic and anaerobic transformation of 14CDecamethylcyclopentasiloxane (14C-D5) in the aquatic sediment systems. Centre Européen des Silicones (CES). Dow Corning Corporation

    Google Scholar 

  64. Springer T (2007) Decamethylcyclopentasiloxane (D5): a 96-hour study of the elimination and metabolism of orally gavaged 14C-D5 in rainbow trout (Oncorhynchus mykiss). HES study number 10218–101. Centre Europeen des Silicones (CES), Brussels

    Google Scholar 

  65. Jovanovic ML, McNett DA, Regan JM et al (2003) Disposition of 14C-decamethylcyclopentasiloxane (D5), in Fischer 344 rats when delivered in various carriers following administration of a single oral dose. Report number 2003-I0000–52391. Dow Corning, Midland

    Google Scholar 

  66. Varaprath S, McMahon JM, Plotzke KP (2003) Metabolites of hexamethyldisiloxane and decamethylcyclopentasiloxane in Fischer 344 rat urine: a comparison of a linear and a cyclic siloxane. Drug Metabol Dispos 31:206–214

    CAS  Google Scholar 

  67. Burkhard LP, Borgå K, Powell DE et al (2013) Improving the quality and scientific understanding of trophic magnification factors (TMFs). Environ Sci Technol 47:1186–1187

    CAS  Google Scholar 

  68. Gobas FAPC, Powell DE, Woodburn KB et al (2015) Bioaccumulation of decamethylpentacyclosiloxane (D5): a review. Environ Toxicol Chem 34(12):2703–2714

    CAS  Google Scholar 

  69. Government of Canada (1999) Canadian Environmental Protection Act, Canada Gazette, Part III, vol 22. Public Works and Government Services, Ottawa

    Google Scholar 

  70. US Congress (1976) Toxic substances control act, Pub. L. No. 94-469, Washington

    Google Scholar 

  71. European Commission (2006) Regulation (EC) 1907/2006 of the European Parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending directive 1999/45/EC and repealing council regulation (EEC) 793/93 and commission regulation (EC) no. 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union L396:374–375

    Google Scholar 

  72. Opperhuizen A, Damen HWJ, Asyee GM (1987) Uptake and elimination by fish of polydimethylsiloxanes (silicones) after dietary and aqueous exposure. Toxicol Environ Chem 13:265–285

    CAS  Google Scholar 

  73. OECD (2008) SIAR for SIAM 26: hexamethylcyclotrisiloxane. Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  74. Annelin RB, Frye CL (1989) The piscine bioconcentration characteristics of cyclic and linear oligomeric permethylsiloxanes. Sci Total Environ 83:1–11

    CAS  Google Scholar 

  75. Fackler PH, Dionne E, Hartley DA et al (1995) Bioconcentration by fish of a highly volatile silicone compound in a totally enclosed aquatic exposure system. Environ Toxicol Chem 14:1649–1656

    CAS  Google Scholar 

  76. Parrott J, Alaee M, Wang D et al (2013) Fathead minnow (Pimephales promelas) egg-to-juvenile exposure to decamethylcyclopentasiloxane (D5). Chemosphere 93:813–818

    CAS  Google Scholar 

  77. Drottar KR (2005) 14C-Decamethylcyclopentasiloxane (14C-D5): bioconcentration in the fathead minnow (Pimephales promelas) under flow-through test conditions. Dow Corning Corporation, Silicones Environment, Health and Safety Council (SEHSC) (cited from the report of the assessment for D5 by Environment Canada and Health Canada)

    Google Scholar 

  78. Drottar KR (2005) 14C-Dodecamethylcyclohexasiloxane (14C–D6): bioconcentration in the fathead minnow (Pimephales promelas) under flow-through test conditions. Dow Corning Corporation, Silicones Environment, Health and Safety Council (SEHSC) (cited from the report of the assessment for D6 by Environment Canada and Health Canada)

    Google Scholar 

  79. OECD (2009) SIAR for SIAM 29: dodecamethylcyclohexasiloxane (D6). Organization for Economic Cooperation and Development, Paris. https://hpvchemicals.oecd.org/ui/Default.aspx. Accessed 13 Sept 2018

  80. Kent DJ, McNamara PC, Putt AE et al (1994) Octamethylcyclotetrasiloxane in aquatic sediments: toxicity and risk assessment. Ecotoxicol Environ Saf 29:372–389

    CAS  Google Scholar 

  81. Springborn Smithers Laboratories (2003) Decamethylcyclopentasiloxane (D5)-the full life-cycle toxicity to midge (Chironomus riparius) under static conditions. Silicones environmental, health and safety council (SEHSC) (cited from the report of the assessment for D5 by Environment Canada and Health Canada)

    Google Scholar 

  82. Norwood WP, Alaee M, Sverko E et al (2013) Decamethylcyclopentasiloxane (D5) spiked sediment: bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca. Chemosphere 93:805–812

    CAS  Google Scholar 

  83. Warner NA, Evenset A, Christensen G et al (2010) Volatile siloxanes in the European Arctic: assessment of sources and spatial distribution. Environ Sci Technol 44:7705–7710

    CAS  Google Scholar 

  84. Krueger HO, Thomas ST, Kendall TZ (2008) D5: a bioaccumulation test with Lumbriculus variegatus using spiked sediment. Wildlife International, Easton

    Google Scholar 

  85. Powell DE, Woodburn KB, Drotar KD et al (2009) Trophic dilution of cyclic volatile Methylsiloxane (cVMS) materials in a temperate freshwater Lake. Internal report conducted for Centre Européen des Sililones. Report Number 2009-I0000-60988

    Google Scholar 

  86. Woodburn KB, Seston RM, Kim J et al (2018) Benthic invertebrate exposure and chronic toxicity risk analysis for cyclic volatile methylsiloxanes: comparison of hazard quotient and probabilistic risk assessment approaches. Chemosphere 192:337–347

    CAS  Google Scholar 

  87. Canada (1999) Canadian Environmental Protection Act. http://laws-lois.justice.gc.ca/PDF/C-15.31.pdf. Accessed 13 Sept 2018

  88. European Commission (2010) Amending regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annex XIII. http://register.consilium.europa.eu/pdf/en/10/st14/st14860.en10.pdf. Accessed 13 Sept 2018

  89. McLachlan MS, Czub G, MacLeod M et al (2011) Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation. Environ Sci Technol 45:197–202. https://doi.org/10.1021/es101000w

    Article  CAS  Google Scholar 

  90. Woodburn K, Drottar K, Domoradzki JY et al (2013) Determination of the dietary biomagnification of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout (Oncorhynchus mykiss). Chemosphere 93(5):779–788

    CAS  Google Scholar 

  91. Powell DE, Suganuma N, Kobayashi K et al (2017) Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan. Sci Total Environ 578:366–382

    CAS  Google Scholar 

  92. Powell DE, Schøyen M, Øxnevad S et al (2018) Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway. Sci Total Environ 622–623:127–139

    Google Scholar 

  93. Jia H, Zhang Z, Wang C et al (2015) Trophic transfer of methyl siloxanes in the marine food web from coastal area of northern China. Environ Sci Technol 49:2833–2840

    CAS  Google Scholar 

  94. Powell DE, Durham JA, Huff DW et al (2010) Bioaccumulation and trophic transfer of cyclic volatile Methylsiloxanes (cVMS) materials in the aquatic marine food webs of inner and outer Oslo fjord, Norway. Dow Corning Corporation, Midland. https://www.regulations.gov/contentStreamer?documentId=EPA-HQ-OPPT-2011-0516-0025&attachmentNumber=32&disposition=attachment&contentType=pdf. Accessed 13 Sept 2018

  95. Borgå K, Kidd KA, Muir DCG et al (2012) Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integr Environ Assess Manag 8:64–84

    Google Scholar 

  96. Law K, Halldorson T, Danell R et al (2006) Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ Toxicol Chem 25:2177–2186

    CAS  Google Scholar 

  97. Muir DCG, Whittle MD, Vault DS et al (2004) Bioaccumulation of toxaphene congeners in the Lake Superior food web. J Great Lakes Res 30:316–340

    CAS  Google Scholar 

  98. Houde M, Muir DCG, Kidd KA et al (2008) Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environ Toxicol Chem 27:2169–2178

    CAS  Google Scholar 

  99. Kim J, Gobas FAPC, Arnot JA et al (2016) Evaluating the roles of biotransformation, spatial concentration differences, organism home range, and field sampling design on trophic magnification factors. Sci Total Environ 551–552:438–451

    Google Scholar 

  100. McLeod AM, Arnot JA, Borgå K et al (2015) Quantifying uncertainty in the trophic magnification factor related to spatial movements of organisms in a food web. Integr Environ Assess Manag 11:306–318

    CAS  Google Scholar 

  101. Kierkegaard A, Adolfsson-Erici M, McLachlan MS (2010) Determination of cycle volatile methylsiloxanes in biota with a purge and trap method. Anal Chem 82:9573–9578

    CAS  Google Scholar 

  102. Kierkegaard A, Bignert A, McLachlan MS (2013) Bioaccumulation of decamethyl-cyclopentasiloxane in perch in Swedish lakes. Chemosphere 93(5):789–793

    CAS  Google Scholar 

  103. Kierkegaard A, Bignert A, McLachlan MS (2013) Cycle volatile methylsiloxanes in fish from the Baltic Sea. Chemosphere 93(5):774–778

    CAS  Google Scholar 

  104. Huber S, Warner NA, Nygard T et al (2015) A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway. Environ Toxicol Chem 34(6):1296–1308

    CAS  Google Scholar 

  105. Mackay D, Gobas F, Solomon K et al (2015) Comment on “unexpected occurrence of volatile Dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill”. Environ Sci Technol 49(12):7507–7509

    CAS  Google Scholar 

  106. Sanchís J, Cabrerizo A, Galbán-Malagón C et al (2015) Response to comments on “unexpected occurrence of volatile Dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill”. Environ Sci Technol 49(12):7510–7512

    Google Scholar 

  107. Wang D, de Solla SR, Lebeuf M et al (2017) Determination of linear and cycle volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada. Sci Total Environ 574:1254–1260

    CAS  Google Scholar 

  108. Heimstad ES, Nygard T, Herzke D et al (2018) Environmental pollutants in the terrestrial and urban environment 2017. Report M-1076/2018, Norwegian Institute for Air Research, 234 pp

    Google Scholar 

  109. Zhi L, Xu L, He X et al (2019) Distribution of methylsiloxanes in benthic mollusks from the Chinese Bohai Sea. J Environ Sci 76:199–207

    Google Scholar 

Download references

Acknowledgments

The author acknowledges the support from FCT-MCTES (SFRH/BPD/109382/2015) and the project 032084 from 02/SAICT/2017 (LANSILOT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Augusto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Augusto, S. (2019). Bioconcentration, Bioaccumulation, and Biomagnification of Volatile Methylsiloxanes in Biota. In: Homem, V., Ratola, N. (eds) Volatile Methylsiloxanes in the Environment. The Handbook of Environmental Chemistry, vol 89. Springer, Cham. https://doi.org/10.1007/698_2019_387

Download citation

Publish with us

Policies and ethics