Skip to main content

Presence of Siloxanes in Sewage Biogas and Their Impact on Its Energetic Valorization

  • Chapter
  • First Online:
Volatile Methylsiloxanes in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 89))

Abstract

Biogas produced in wastewater treatment plants (WWTPs) by microorganisms during the anaerobic degradation process of organic compounds is commonly used in energy production. Due to the increasing interest in renewable fuels, biogas has become a notable alternative to conventional fuels in the production of electricity and heat. Biomethane, upgraded from biogas, has also become an interesting alternative for vehicle fuel. Biogas contains mainly methane (from 40 to 60%) and carbon dioxide (40 to 55%), but it also contains trace compounds, such as hydrogen sulphide, halogenated compounds and volatile methyl siloxanes (VMS), which pose a risk on its energetic valorization.

It is reported that the concentrations of siloxanes in biogas are increasing in the recent years due to an increase in the use of silicon-containing compounds in personal care products, silicone oils and production of food, among others. This chapter reviews the presence of VMS in sewage biogas, depicting their concentrations and their speciation between linear and cyclic compounds depending on the wastewater treatment processes and operating conditions.

WWTP operators face therefore a choice between installing a gas purification equipment and controlling the problem with more frequent maintenance. Available technologies for siloxane removal are studied, and their impact on the performance of Energy Conversion Systems (ECS) is reported. The performance of adsorption systems using activated carbon, silica gel and zeolites is reviewed as it is a well-known and widespread used technology for siloxane abatement both at the scientific and industrial studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237

    CAS  Google Scholar 

  2. Ohannessian A, Desjardin V, Chatain V, Germain P (2008) Volatile organic silicon compounds: the most undesirable contaminants in biogases. Water Sci Technol 58:1775–1781

    CAS  Google Scholar 

  3. VDI (2008) In: K.d.L.i.V.u.D.-N. KRdL (eds) Measurement of landfill gases – measurements in the gas collection system. Beuth Verlag, Berlin

    Google Scholar 

  4. de Arespacochaga N, Valderrama C, Raich-Montiu J, Crest M, Mehta S, Cortina JL (2015) Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas – a review. Renew Sust Energ Rev 52:366–381

    Google Scholar 

  5. Lassen C, Hansen CL, Mikkelsen SH, Maag J (2005) Siloxanes-consumption, toxicity and alternatives. Environmental Project No. 1031, Danish Environmental Protection Agency, Environmental Protection Agency. http://www.miljoestyrelsen.dk/udgiv/publications/2005/87-7614-756-8/pdf/87-7614-757-6.pdf. Accessed 17 Oct 2014

  6. Tran TM, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B et al (2015) A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int 78:39–44

    CAS  Google Scholar 

  7. Chemical Economics Handbook (2010) In: Will RK, Fink U, Kishi A (eds) Chemical economics handbook marketing research report silicones. IHS Publication, Denver

    Google Scholar 

  8. Mojsiewicz-Pieńkowska K, Jamrógiewicz M, Szymkowska K, Krenczkowska D (2016) Direct human contact with siloxanes (silicones) – safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol 7:132

    Google Scholar 

  9. Chemical Economics Handbook (2017) Chemical economics handbook marketing research report silicones. IHS Publication, Denver

    Google Scholar 

  10. Graiver D, Farminer KW, Narayan R (2003) A review of the fate and effects of silicones in the environment. J Polym Environ 11:129–136

    CAS  Google Scholar 

  11. Urban W, Lohmann H, Salazar Gómez JI (2009) Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells. J Power Sources 193:359–366

    CAS  Google Scholar 

  12. Finocchio E, Montanari T, Garuti G, Pistarino C, Federici F, Cugino M, Busca G (2009) Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbon sorbents. Energy Fuel 23:4156–4159

    CAS  Google Scholar 

  13. Haga K, Adachi S, Shiratori Y, Itoh K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431

    CAS  Google Scholar 

  14. McBean EA (2008) Siloxanes in biogases from landfills and wastewater digesters. Can J Civ Eng 35:431–436

    CAS  Google Scholar 

  15. Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    CAS  Google Scholar 

  16. EEG (2009) In: N.C.a.N.S. Federal Ministry for the Environment (eds) Act revising the legislation on renewable energy sources in the electricity sector and amending related provisions – Renewable Energy Sources Act – EEG

    Google Scholar 

  17. Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47:1711–1722

    CAS  Google Scholar 

  18. Capela D, Ratola N, Alves A, Homem V (2017) Volatile methylsiloxanes through wastewater treatment plants – a review of levels and implications. Environ Int 102:9–29

    CAS  Google Scholar 

  19. Oshita K, Omori K, Takaoka M, Mizuno T (2014) Removal of siloxanes in sewage sludge by thermal treatment with gas stripping. Energy Convers Manag 81:290–297

    CAS  Google Scholar 

  20. Raich-Montiu J, Ribas-Font C, de Arespacochaga N, Roig-Torres E, Broto-Puig F, Crest M, Bouchy L, Cortina JL (2014) Analytical methodology for sampling and analysing eight siloxanes and trimethylsilanol in biogas from different wastewater treatment plants in Europe. Anal Chim Acta 812:83–91

    CAS  Google Scholar 

  21. Rasi S, Läntelä J, Veijanen A, Rintala J (2008) Landfill gas upgrading with countercurrent water wash. Waste Manag 28:1528–1534

    CAS  Google Scholar 

  22. Schweigkofler M, Niessner R (1999) Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environ Sci Technol 33:3680–3685

    CAS  Google Scholar 

  23. Tansel B, Surita SC (2014) Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Manag 34:2271–2277

    CAS  Google Scholar 

  24. Paolini V, Petracchini F, Carnevale M, Gallucci F, Perilli M, Esposito G, Segreto M, Galanti L, Scaglione D, Ianniello A, Frattoni M (2018) Characterisation and cleaning of biogas from sewage sludge for biomethane production. J Environ Manag 217:288–296

    CAS  Google Scholar 

  25. García M, Prats D, Trapote A (2015) Presence of siloxanes in the biogas of a wastewater treatment plant separation in condensates and influence of the dose of iron chloride on its elimination. Int J Waste Resour 6:1

    Google Scholar 

  26. Wang DG, Aggarwal M, Tait T, Brimble S, Pacepavicius G, Kinsman L, Theocharides M, Smyth SA, Alaee M (2015) Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Res 72:209–217

    CAS  Google Scholar 

  27. Rasi S, Lehtinen J, Rintala J (2010) Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants. Renew Energy 35:2666–2673

    CAS  Google Scholar 

  28. Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energy Fuel 24:4743–4747

    CAS  Google Scholar 

  29. Björklund J, Geber U, Rydberg T (2001) Energy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. Resour Conserv Recycl 31:293–316

    Google Scholar 

  30. Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321

    Google Scholar 

  31. Mokhov AV (2011) Silica formation from siloxanes in biogas: novelty or nuisance. In: International Gas Union research conference, October19–21, Seoul, Korea

    Google Scholar 

  32. Schweigkofler M, Niessner R (2011) Removal of siloxanes in biogases. J Hazard Mater 83(3):183–196

    Google Scholar 

  33. Badjagbo K, Heroux M, Alaee M, Moore S, Sauve S (2010) Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS. Environ Sci Technol 44:600–605

    CAS  Google Scholar 

  34. Libanati C, Ullenius DA, Pereira CJ (1998) Silica deactivation of bead VOC catalyst. Appl Catal B Environ 43:21–28

    Google Scholar 

  35. Pirnie M (2003) Retrofit digester gas engine with fuel gas cleanup and exhaust emission control technology – pilot testing of emission control system plant 1 engine 1. Orange County Sanitation District, Irvine

    Google Scholar 

  36. Alvarez-Florez J, Egusquiza E (2015) Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas. Eng Fail Anal 50:29–38

    CAS  Google Scholar 

  37. Sevimoglu O, Tansel B (2013) Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition. J Environ Manag 128:300–305

    CAS  Google Scholar 

  38. Nair N, Zhang X, Gutierrez J, Chen J, Egolfopoulos F, Tsotsis T (2012) Impact of siloxane impurities on the performance on an engine operating on renewable natural gas. Ind Eng Chem Res 51:15786–15795

    CAS  Google Scholar 

  39. Bruno JC, Ortega-López V, Coronas A (2009) Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: case study of a sewage treatment plant. Appl Energy 86:837–847

    CAS  Google Scholar 

  40. Somehsaraei HN, Majoumerd MM, Breuhaus P, Assadi M (2014) Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl Therm Eng 66:181–190

    Google Scholar 

  41. Iyer S (2011) Gas treatment systems. Nrgtek, Orange http://nrgtekusa.com/technology/gas_separation_membranes

    Google Scholar 

  42. Madi H, Lanzini A, Diethelm S, Papurello D, van Herle J, Lualdi M, Larsen JG, Santarelli M (2015a) Solid oxide fuel cell anode degradation by the effect of siloxanes. J Power Sources 279:460–471

    CAS  Google Scholar 

  43. Madi H, Diethelm S, Poitel S, Ludwig C, van Herle J (2015b) Damage of siloxanes on Ni-YSZ anode supported SOFC operated on hydrogen and bio-syngas. Fuel Cells 15:718–727

    CAS  Google Scholar 

  44. Papurello D, Chiodo V, Maisano S, Lanzini A, Santarelli M (2018) Catalytic stability of a Ni-catalyst towards biogas reforming in the presence of deactivating trace compounds. Renew Energy 127:481–494

    CAS  Google Scholar 

  45. Papurello D, Lanzini A (2018) SOFC single cells fed by biogas: experimental tests with trace contaminants. Waste Manag 72:306–312

    CAS  Google Scholar 

  46. Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu RR, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of Solid Oxide Fuel Cells: influence of impurities on long-term performance. J Power Sources 196:9130–9140

    CAS  Google Scholar 

  47. Erekson EJ, Bartholomrw CH (1983) Sulfur poisoning of nickel methanation catalysts. II. Effects of H2S concentration, CO and H2O partial pressures and temperature on reactivation rates. Appl Catal 5:323–336

    CAS  Google Scholar 

  48. Papurello D, Lanzini A, Drago D, Leone P, Santarelli M (2016) Limiting factors for planar solid oxide fuel cells under different trace compound concentrations. Energy 95:67–78

    CAS  Google Scholar 

  49. Aschmann V, Kissel R, Gronauer A (2007) Untersuchungen zum Leistungs- und Emissionsverhalten biogasbetriebener Blockheizkraftwerke an Praxisbiogas-anlagen, 8th Conference Bau, Technik und Umwelt in der landwirtschaftlichen Nutztierhaltung

    Google Scholar 

  50. Thomas B, Bekker M, Kelm T, Oechsner H, Wyndorps A (2009) Gekoppelte Produktion von Kraft und Wärme aus Bio-, Klär- und Deponiegas in kleinen, dezentralen Stirling-Motor-Blockheizkraftwerken. Final report, BWPLUS Projekt No. 25008-25010, 2009. http://www.fachdokumente.lubw.baden-wuerttemberg.de

  51. Petersson A, Wellinger A (2009) Biogas upgrading technologies-developments and innovations. IEA Bioenergy 20:1–19

    Google Scholar 

  52. Bekkering J, Broekhuis AA, van Gemert WJT (2010) Optimisation of a green gas supply chain: a review. Bioresour Technol 101:450–456

    CAS  Google Scholar 

  53. Starr K, Talens Peiro L, Lombardi L, Gabarrell X, Villalba G (2014) Optimization of environmental benefits of carbon mineralization technologies for biogas upgrading. J Clean Prod 76:32–41

    CAS  Google Scholar 

  54. van Essen M, Visser P, Gersen S, Levinsky H, Vainchtein D, Dutka M, Mokhov A (2013) Regarding specifications for siloxanes in biomethane for domestic equipment. Fifth Research Day of the Energy Delta Gas Research, Nunspeet

    Google Scholar 

  55. Nair N, Vas A, Zhu T, Sun W, Gutierrez J, Chen J, Egolfopoulos F, Tsotsis T (2013) Effect of siloxanes contained in natural gas on the operation of a residential furnace. Ind Eng Chem Res 52:6253–6261

    CAS  Google Scholar 

  56. SEPA (2004) Guidance on gas treatment technologies for landfill gas engines. Environment Agency, Bristol

    Google Scholar 

  57. Wheless E, Pierce J (2004) Siloxanes in landfill and digester gas update. http://www.scsengineers.com/Papers/Pierce_2004Siloxanes_Update_Paper.pdf. Accessed 17 Oct 2014

  58. Ajhar M, Travesset M, Yuce S, Melin T (2010) Siloxane removal from landfill and digester gas – a technology overview. Bioresour Technol 101:2913–2923

    CAS  Google Scholar 

  59. Shen M, Zhang Y, Hu D, Fan J, Zeng G (2018) A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-3000-4

  60. de Arespacochaga N, Valderrama C, Mesa C, Bouchy L, Cortina JL (2014) Biogas deep clean-up based on adsorption technologies for Solid Oxide Fuel Cell applications. Chem Eng J 255:593–603

    Google Scholar 

  61. Kuhn JN, Elwell AC, Elsayed NH, Joseph B (2017) Requirements, techniques, and costs for contaminant removal from landfill gas. Waste Manag 63:246–256

    CAS  Google Scholar 

  62. Cabrera-Codony A, Montes-Moran MA, Sanchez-Polo M, Martín MJ, Gonzalez-Olmos R (2014) Biogas upgrading: optimal activated carbon properties for siloxane removal. Environ Sci Technol 48:7187–7195

    CAS  Google Scholar 

  63. Rossol D, Schmelz KG, Hohmann R (2003) Siloxane im Faulgas. Abwasser Abfall 8:8

    Google Scholar 

  64. Sigot L, Ducom G, Benadda B, Labouré C (2014) Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification. Fuel 135:205–209

    CAS  Google Scholar 

  65. Jafari T, Jiang T, Zhong W, Khakpash N, Deljoo B, Aindow M, Singh P, Suib SL (2016) Modified mesoporous silica for efficient siloxane capture. Langmuir 32:2369–2377

    CAS  Google Scholar 

  66. Sigot L, Ducom G, Germain P (2015) Adsorption of octamethylcyclotetrasiloxane (D4) on silica gel (SG): retention mechanism. Microporous Mesoporous Mater 213:118–124

    CAS  Google Scholar 

  67. Kajolinna T, Aakko-Saksa P, Roine J, Kåll L (2015) Efficiency testing of three biogas siloxane removal systems in the presence of D5, D6, limonene and toluene. Fuel Process Technol 139:242–247

    CAS  Google Scholar 

  68. Cabrera-Codony A, Georgi A, Gonzalez-Olmos R, Valdés H, Martín MJ (2017) Zeolites as recyclable adsorbents/catalysts for biogas upgrading: removal of octamethylcyclotetrasiloxane. Chem Eng J 307:820–827

    CAS  Google Scholar 

  69. Jiang S, Qiu T, Li X (2010) Kinetic study on the ring-opening polymerization of octamethylcyclotetrasiloxane (D4) in miniemulsion. Polymer 51(18):4087–4094

    CAS  Google Scholar 

  70. Oshita K, Ishihara Y, Takaoka M, Takeda N, Matsumoto T, Morisawa S, Kitayama A (2010) Behaviour and adsorptive removal of siloxanes in sewage sludge biogas. Water Sci Technol 61:2003

    CAS  Google Scholar 

  71. Ricaurte Ortega D, Subrenat A (2009) Siloxane treatment by adsorption into porous materials. Environ Technol 30:1073–1083

    CAS  Google Scholar 

  72. Nam S, Namkoong W, Kang JH, Park JK, Lee N (2013) Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test. Waste Manag 33:2091–2098

    CAS  Google Scholar 

  73. Matsui T, Imamura S (2010) Removal of siloxane from digestion gas of sewage sludge. Bioresour Technol 101:S29–S32

    CAS  Google Scholar 

  74. Yu M, Gong H, Chen Z, Zhang M (2013) Adsorption characteristics of activated carbon for siloxanes. J Environ Chem Eng 1:1182–1187

    CAS  Google Scholar 

  75. Hamelink JL, Simon PB, Silberhorn EM (1996) Henry’s law constant volatilization rate, and aquatic half-life of octamethylcyclotetrasiloxane. Environ Sci Technol 30(6):1946–1952

    CAS  Google Scholar 

  76. Yashiro T, Kricheldorf HR, Schwarz G (2010) Polymerization of cyclosiloxanes by means of triflic acid and metal triflates. Macromol Chem Phys 211(12):1311–1321

    CAS  Google Scholar 

  77. Cabrera-Codony A, Santos-Clotas E, Ania CO, Martín MJ (2018) Competitive siloxane adsorption in multicomponent gas streams for biogas upgrading. Chem Eng J 344:565–573

    CAS  Google Scholar 

  78. Gislon P, Galli S, Monteleone G (2013) Siloxanes removal from biogas by high surface area adsorbents. Waste Manag 33(12):2687–2693

    CAS  Google Scholar 

  79. Boulinguiez B, Le Cloirec P (2009) Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fibercloth. Water Sci Technol 59:935–944

    CAS  Google Scholar 

  80. Cabrera-Codony A, Gonzalez-Olmosa R, Martin MJ (2015) Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes. J Hazard Mater 285:501–508

    CAS  Google Scholar 

  81. Soreanu G, Beland M, Falletta P, Edmonson K, Svoboda L, Al-Jamal M, Seto P (2011) Approaches concerning siloxane removal from biogas, a review. Can Biosyst Eng 53:8–18

    Google Scholar 

  82. Läntelä J, Rasi S, Lehtinen J, Rintala J (2012) Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Appl Energy 92:307–314

    Google Scholar 

  83. Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioproducts Biorefining 3:42–71

    CAS  Google Scholar 

  84. Ajhar M, Melin T (2006) Siloxane removal with gas permeation membranes. In: Conference of the European-Membrane-Society (EUROMEMBRANE 2006) Giardini Naxos, Italy, 24-28 September 2006. Elsevier Science Bv, Amsterdam, pp 234–235

    Google Scholar 

  85. Meinema HA, Dirrix RWJ, Terpstra RA, Jekerle J, Kösters PH (2005) Ceramic membranes for gas separation-recent developments and state of the art. Interceram 54:8691

    Google Scholar 

  86. Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26:853–893

    CAS  Google Scholar 

  87. Strathman H, Bell CM, Kimmerle K (1986) Development of synthetic membranes for gas and vapor separation. Pure Appl Chem 58:1663–1668

    CAS  Google Scholar 

  88. Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrick-ling filters for H2S emission control. Proc Natl Acad Sci U S A 100:6308–6312

    CAS  Google Scholar 

  89. Li Y, Zhang W, Xu J (2014) Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240. J Hazard Mater 275:175–184

    CAS  Google Scholar 

  90. Popat SC, Deshusses MA (2008) Biological removal of siloxanes from landfill and digester gases: opportunities and challenges. Environ Sci Technol 42:8510–8515

    CAS  Google Scholar 

  91. Soreanu G, Beland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207

    CAS  Google Scholar 

  92. Soreanu G (2016) Insights into siloxane removal from biogas in biotrickling filters via process mapping-based analysis. Chemosphere 146:539–546

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. de Arespacochaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Arespacochaga, N., Raich-Montiu, J., Crest, M., Cortina, J.L. (2019). Presence of Siloxanes in Sewage Biogas and Their Impact on Its Energetic Valorization. In: Homem, V., Ratola, N. (eds) Volatile Methylsiloxanes in the Environment. The Handbook of Environmental Chemistry, vol 89. Springer, Cham. https://doi.org/10.1007/698_2018_372

Download citation

Publish with us

Policies and ethics