Volatile Dimethylsiloxanes in Aquatic Systems

  • Josep Sanchís
  • Marinella FarréEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 89)


Volatile methylsiloxanes are high-volume synthetic chemicals that are included in a plethora of domestic and industrial formulations. Because of their widespread use, these organosilicon molecules are emitted to the environment and reach the aquatic systems, where they may cause potential adverse effects to some aquatic organisms. The study of the occurrence and fate of volatile methylsiloxanes in the aquatic media has progressed considerably during the last years thanks to the development of new analytical methods, which decrease the limits of detection substantially while minimising and stabilising the contamination levels of the blank assays. The present chapter briefly reviews the most relevant analytical strategies that have been developed for the analysis of volatile methylsiloxanes in the aquatic environment, with a focus in water matrices, sediments and biota. The behaviour and fate of cyclic and linear methylsiloxanes in the aquatic environment are summarised, as well as the levels at which these compounds have been reported.


Analytical methods Aquatic systems Occurrence Volatile methylsiloxanes 



This work was supported by the Spanish Ministry of Economy and Competitiveness through the project NANO-transfer (ERA-NET SIINN PCIN-2015-182-CO2-02) and by the Catalan Government (Consolidated Research Group “2017 SGR 1404 – Water and Soil Quality Unit”).


  1. 1.
    Colas A (2005) Silicones: preparation, properties and performance. Dow corning, life sciences. Dow Corning Corporation, MidlandGoogle Scholar
  2. 2.
    Hunter M, Hyde J, Warrick E, Fletcher H (1946) Organo-silicon polymers. The cyclic dimethyl siloxanes. J Am Chem Soc 68:667–672Google Scholar
  3. 3.
    Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: decamethylcyclopentasiloxane. Environment Agency, BristolGoogle Scholar
  4. 4.
    Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency, BristolGoogle Scholar
  5. 5.
    Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: octamethylcyclotetrasiloxane. Environment Agency, BristolGoogle Scholar
  6. 6.
    Tran TM, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B et al (2015) A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int 78:39–44Google Scholar
  7. 7.
    Mojsiewicz-Pieńkowska K, Jamrógiewicz M, Szymkowska K, Krenczkowska D (2016) Direct human contact with siloxanes (silicones)–safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol 7:132Google Scholar
  8. 8.
    Horii Y, Kannan K (2008) Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contam Toxicol 55:701–710Google Scholar
  9. 9.
    Fairbrother A, Woodburn KB (2016) Assessing the aquatic risks of the cyclic volatile methyl siloxane D4. Environ Sci Technol Lett 3:359–363Google Scholar
  10. 10.
    Gobas FA, Xu S, Kozerski G, Powell DE, Woodburn KB, Mackay D et al (2015) Fugacity and activity analysis of the bioaccumulation and environmental risks of decamethylcyclopentasiloxane (D5). Environ Toxicol Chem 34:2723–2731Google Scholar
  11. 11.
    Redman AD, Mihaich E, Woodburn K, Paquin P, Powell D, McGrath JA et al (2012) Tissue-based risk assessment of cyclic volatile methyl siloxanes. Environ Toxicol Chem 31:1911–1919Google Scholar
  12. 12.
    Sousa JV, McNamara PC, Putt AE, Machado MW, Surprenant DC, Hamelink JL et al (1995) Effects of octamethylcyclotetrasiloxane (OMCTS) on freshwater and marine organisms. Environ Toxicol Chem 14:1639–1647Google Scholar
  13. 13.
    Parrott J, Alaee M, Wang D, Sverko E (2013) Fathead minnow (Pimephales promelas) embryo to adult exposure to decamethylcyclopentasiloxane (D5). Chemosphere 93:813–818Google Scholar
  14. 14.
    Drottar KR (2005) 14C-dodecamethylcyclohexasiloxane (14C–D6): bioconcentration in the fathead minnow (Pimephales promelas) under flow-through test conditions. Dow Corning Corporation, Silicones Environment, Health and Safety Council (SEHSC) (cited from the Report of the Assessment for D6 by Environment Canada and Health Canada)Google Scholar
  15. 15.
    Kierkegaard A, Bignert A, McLachlan MS (2012) Cyclic volatile methylsiloxanes in fish from the Baltic Sea. Chemosphere 93:774–778Google Scholar
  16. 16.
    Kierkegaard A, Bignert A, McLachlan MS (2013) Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes. Chemosphere 93:789–793Google Scholar
  17. 17.
    Sanchís J, Llorca M, Picó Y, Farré M, Barceló D (2016) Volatile dimethylsiloxanes in market seafood and freshwater fish from the Xúquer River, Spain. Sci Total Environ 545:236–243Google Scholar
  18. 18.
    Zhi L, Xu L, He X, Zhang C, Cai Y (2018) Distribution of methylsiloxanes in benthic mollusks from the Chinese Bohai Sea. J Environ SciGoogle Scholar
  19. 19.
    Panagopoulos D, MacLeod M (2018) A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models. Environ Sci: Processes Impacts 20:183–194Google Scholar
  20. 20.
    Álvarez-Muñoz D, Llorca M, Blasco J, Barceló D (2017) Contaminants in the marine environment. Marine ecotoxicology. Elsevier, Amsterdam, pp 1–34Google Scholar
  21. 21.
    Ginebreda A, Pérez S, Rivas D, Kuzmanovic M, Barceló D (2015) Pollutants of emerging concern in rivers of Catalonia: occurrence, fate, and risk. Experiences from surface water quality monitoring. Springer, Cham, pp 283–320Google Scholar
  22. 22.
    Richardson SD, Kimura SY (2015) Water analysis: emerging contaminants and current issues. Anal Chem 88:546–582Google Scholar
  23. 23.
    Thomaidis NS, Asimakopoulos AG, Bletsou A (2012) Emerging contaminants: a tutorial mini-review. Global NEST J 14:72–79Google Scholar
  24. 24.
    Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832Google Scholar
  25. 25.
    Hong W-J, Jia H, Liu C, Zhang Z, Sun Y, Li Y-F (2014) Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environ Pollut 191:175–181Google Scholar
  26. 26.
    Sanchís J, Martínez E, Ginebreda A, Farré M, Barceló D (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538Google Scholar
  27. 27.
    Xu L, Xu S, Zhi L, He X, Zhang C, Cai Y (2017) Methylsiloxanes release from one landfill through yearly cycle and their removal mechanisms (especially hydroxylation) in leachates. Environ Sci Technol 51:12337–12346Google Scholar
  28. 28.
    Cortada C, dos Reis LC, Vidal L, Llorca J, Canals A (2014) Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Talanta 120:191–197Google Scholar
  29. 29.
    Krogseth IS, Whelan MJ, Christensen GN, Breivik K, Evenset A, Warner NA (2016) Understanding of cyclic volatile methyl siloxane fate in a high latitude lake is constrained by uncertainty in organic carbon–water partitioning. Environ Sci Technol 51:401–409Google Scholar
  30. 30.
    Sparham C, Van Egmond R, O’Connor S, Hastie C, Whelan M, Kanda R et al (2008) Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry. J Chromatogr A 1212:124–129Google Scholar
  31. 31.
    van Egmond R, Sparham C, Hastie C, Gore D, Chowdhury N (2013) Monitoring and modelling of siloxanes in a sewage treatment plant in the UK. Chemosphere 93:757–765Google Scholar
  32. 32.
    Companioni-Damas EY, Santos FJ, Galceran MT (2012) Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatography–mass spectrometry. Talanta 89:63–69Google Scholar
  33. 33.
    Xu L, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res 47:715–724Google Scholar
  34. 34.
    Zhang Y (2014) Analysis of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane in wastewater, sludge and river samples by headspace gas chromatography/mass spectrometry. Doctoral dissertation, Colorado State UniversityGoogle Scholar
  35. 35.
    Horii Y, Minomo K, Ohtsuka N, Motegi M, Nojiri K, Kannan K (2017) Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: analysis of surface waters by purge and trap method. Sci Total Environ 586:56–65Google Scholar
  36. 36.
    Kaj L, Andersson J, Cousins AP, Remberger M, Ekheden Y, Dusan B et al (2004) Subreport 4: siloxanes. IVL Swedish Environmental Research Institute, Stockholm Results from the Swedish National Screening ProgrammeGoogle Scholar
  37. 37.
    Kaj L, Schlabach M, Andersson J, Cousins AP, Schmidbauer N, Brorström-Lundén E (2005) Siloxanes in the nordic environment. Nordic Council of MinistersGoogle Scholar
  38. 38.
    Warner NA, Evenset A, Christensen G, Gabrielsen GW, Borgå K, Leknes H (2010) Volatile siloxanes in the European arctic: assessment of sources and spatial distribution. Environ Sci Technol 44:7705–7710Google Scholar
  39. 39.
    Wang D-G, Norwood W, Alaee M, Byer JD, Brimble S (2012) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93:711–725Google Scholar
  40. 40.
    Zhang Z, Qi H, Ren N, Li Y, Gao D, Kannan K (2011) Survey of cyclic and linear siloxanes in sediment from the Songhua River and in sewage sludge from wastewater treatment plants, Northeastern China. Arch Environ Contam Toxicol 60:204–211Google Scholar
  41. 41.
    Lee S, Lee S, Choi M, Kannan K, Moon H (2018) An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea. Environ Pollut 236:111–118Google Scholar
  42. 42.
    Warner NA, Kozerski G, Durham J, Koerner M, Gerhards R, Campbell R et al (2012) Positive vs. false detection: a comparison of analytical methods and performance for analysis of cyclic volatile methylsiloxanes (cVMS) in environmental samples from remote regions. Chemosphere 93:749–756Google Scholar
  43. 43.
    Warner NA, Nøst TH, Andrade H, Christensen G (2014) Allometric relationships to liver tissue concentrations of cyclic volatile methyl siloxanes in Atlantic cod. Environ Pollut 190:109–114Google Scholar
  44. 44.
    Varaprath S, Seaton M, McNett D, Cao L, Plotzke KP (2000) Quantitative determination of octamethylcyclotetrasiloxane (D4) in extracts of biological matrices by gas chromatography-mass spectrometry. Int J Environ Anal Chem 77:203–219Google Scholar
  45. 45.
    Woodburn K, Drottar K, Domoradzki J, Durham J, McNett D, Jezowski R (2013) Determination of the dietary biomagnification of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout (Oncorhynchus mykiss). Chemosphere 93:779–788Google Scholar
  46. 46.
    McGoldrick DJ, Letcher RJ, Barresi E, Keir MJ, Small J, Clark MG et al (2014) Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environ Pollut 193:254–261Google Scholar
  47. 47.
    Kierkegaard A, Adolfsson-Erici M, McLachlan MS (2010) Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method. Anal Chem 82:9573–9578Google Scholar
  48. 48.
    Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary. Environ Sci Technol 45:5936–5942Google Scholar
  49. 49.
    McGoldrick DJ, Chan C, Drouillard KG, Keir MJ, Clark MG, Backus SM (2014) Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada. Environ Pollut 186:141–148Google Scholar
  50. 50.
    Wang D-G, de Solla SR, Lebeuf M, Bisbicos T, Barrett GC, Alaee M (2017) Determination of linear and cyclic volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada. Sci Total Environ 574:1254–1260Google Scholar
  51. 51.
    Flaningam OL (1986) Vapor pressures of poly (dimethylsiloxane) oligomers. J Chem Eng Data 31:266–272Google Scholar
  52. 52.
    Xu S, Kropscott B (2014) Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (KOW, KOA, and KAW) for volatile methylsiloxanes and trimethylsilanol. Environ Toxicol Chem 33:2702–2710Google Scholar
  53. 53.
    Varaprath S, Frye CL, Hamelink J (1996) Aqueous solubility of permethylsiloxanes (silicones). Environ Toxicol Chem 15:1263–1265Google Scholar
  54. 54.
    Lei YD, Wania F, Mathers D (2010) Temperature-dependent vapor pressure of selected cyclic and linear polydimethylsiloxane oligomers. J Chem Eng Data 55:5868–5873Google Scholar
  55. 55.
    Bruggeman W, Weber-Fung D, Opperhuizen A, Van Der Steen J, Wijbenga A, Hutzinger O (1984) Absorption and retention of polydimethylsiloxanes (silicones) in fish: preliminary experiments. Toxicol Environ Chem 7:287–296Google Scholar
  56. 56.
    Government of Canada (2011) Screening assessment for the challenge. Siloxanes and silicones, di-Me, hydrogen-terminated. Chemical Abstracts Service Registry Number 70900-21-9Google Scholar
  57. 57.
    Mazzoni S, Roy S, Grigoras S (1997) Eco-relevant properties of selected organosilicon materials. Organosilicon materials. Springer, Berlin, pp 53–81Google Scholar
  58. 58.
    Xu S, Kropscott B (2012) Method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol. Anal Chem 84:1948–1955Google Scholar
  59. 59.
    Lee S, Moon H-B, Song G-J, Ra K, Lee W-C, Kannan K (2014) A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea. Sci Total Environ 497:106–112Google Scholar
  60. 60.
    Lu Z, Martin PA, Burgess NM, Champoux L, Elliott JE, Baressi E et al (2017) Volatile methylsiloxanes and organophosphate esters in the eggs of European starlings (Sturnus vulgaris) and congeneric gull species from locations across Canada. Environ Sci Technol 51:9836–9845Google Scholar
  61. 61.
    Pieri F, Katsoyiannis A, Martellini T, Hughes D, Jones KC, Cincinelli A (2013) Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization. Environ Int 59:363–371Google Scholar
  62. 62.
    Raich-Montiu J, Ribas-Font C, De Arespacochaga N, Roig-Torres E, Broto-Puig F, Crest M et al (2014) Analytical methodology for sampling and analysing eight siloxanes and trimethylsilanol in biogas from different wastewater treatment plants in Europe. Anal Chim Acta 812:83–91Google Scholar
  63. 63.
    Hanssen L, Warner NA, Braathen T, Odland JØ, Lund E, Nieboer E et al (2013) Plasma concentrations of cyclic volatile methylsiloxanes (cVMS) in pregnant and postmenopausal Norwegian women and self-reported use of personal care products (PCPs). Environ Int 51:82–87Google Scholar
  64. 64.
    Dewil R, Appels L, Baeyens J, Buczynska A, Van Vaeck L (2007) The analysis of volatile siloxanes in waste activated sludge. Talanta 74:14–19Google Scholar
  65. 65.
    Huppmann R, Lohoff HW, Schröder HF (1996) Cyclic siloxanes in the biological waste water treatment process – determination, quantification and possibilities of elimination. Fresenius J Anal Chem 354:66–71Google Scholar
  66. 66.
    Kochetkov A, Smith JS, Ravikrishna R, Valsaraj KT, Thibodeaux LJ (2001) Air-water partition constants for volatile methyl siloxanes. Environ Toxicol Chem 20:2184–2188Google Scholar
  67. 67.
    Badjagbo K, Furtos A, Alaee M, Moore S, Sauvé S (2009) Direct analysis of volatile methylsiloxanes in gaseous matrixes using atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chem 81:7288–7293Google Scholar
  68. 68.
    Badjagbo K, Héroux M, Alaee M, Moore S, Sauvé S (2009) Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS. Environ Sci Technol 44:600–605Google Scholar
  69. 69.
    Langford V, Gray J, Maclagan R, McEwan MJ (2013) Detection of siloxanes in landfill gas and biogas using SIFT-MS. Curr Anal Chem 9:558–564Google Scholar
  70. 70.
    Fackler PH, Dionne E, Hartley DA, Hamelink JL (1995) Bioconcentration by fish of a highly volatile silicone compound in a totally enclosed aquatic exposure system. Environ Toxicol Chem 14:1649–1656Google Scholar
  71. 71.
    Kent DJ, McNamara PC, Putt AE, Hobson JF, Silberhorn EM (1994) Octamethylcyclotetrasiloxane in aquatic sediments: toxicity and risk assessment. Ecotoxicol Environ Saf 29:372–389Google Scholar
  72. 72.
    Rücker C, Kümmerer K (2015) Environmental chemistry of organosiloxanes. Chem Rev 115:466–524Google Scholar
  73. 73.
    Parker R (1978) Determination of organosilicon compounds in water by atomic absorption spectroscopy Bestimmung von siliciumorganischen Verbindungen in Wasser mit Hilfe der Atomabsorptions-Spektralphotometrie. Fresenius Z Anal Chem 292:362–364Google Scholar
  74. 74.
    Zhi L, Xu L, He X, Zhang C, Cai Y (2018) Occurrence and profiles of methylsiloxanes and their hydrolysis product in aqueous matrices from the Daqing oilfield in China. Sci Total Environ 631:879–886Google Scholar
  75. 75.
    Varaprath S, Lehmann RG (1997) Speciation and quantitation of degradation products of silicones (Silane/Siloxane Diols) by gas chromatography – mass spectrometry and stability of dimethylsilanediol. J Environ Polym Degrad 5:17–31Google Scholar
  76. 76.
    Mahone L, Garner P, Buch R, Lane T, Tatera J, Smith R, Frye CL (1983) A method for the qualitative and quantitative characterization of waterborne organosilicon substances. Environ Toxicol Chem 2:307–313Google Scholar
  77. 77.
    Dorn SB, Skelly Frame SB (1994) Development of a high-performance liquid chromatographic–inductively coupled plasma method for speciation and quantification of silicones: from silanols to polysiloxanes. Analyst 119:1687–1694Google Scholar
  78. 78.
    Grümping R, Hirner A (1999) HPLC/ICP-OES determination of water-soluble silicone (PDMS) degradation products in leachates. Fresenius J Anal Chem 363:347–352Google Scholar
  79. 79.
    Jovanovic ML, McMahon JM, McNett DA, Tobin JM, Plotzke KP (2008) In vitro and in vivo percutaneous absorption of 14C-octamethylcyclotetrasiloxane (14C-D4) and 14C-decamethylcyclopentasiloxane (14C-D5). Regul Toxicol Pharmacol 50:239–248Google Scholar
  80. 80.
    Fendinger N, McAvoy D, Eckhoff W, Price B (1997) Environmental occurrence of polydimethylsiloxane. Environ Sci Technol 31:1555–1563Google Scholar
  81. 81.
    Wang D-G, Steer H, Tait T, Williams Z, Pacepavicius G, Young T et al (2013) Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada. Chemosphere 93:766–773Google Scholar
  82. 82.
    Sanchís JÀ (2015) Occurrence and toxicity of nanomaterials and nanostructures in the environment. Doctoral dissertation, Universitat de Barcelona, BarcelonaGoogle Scholar
  83. 83.
    Genualdi S, Harner T, Cheng Y, MacLeod M, Hansen KM, van Egmond R et al (2011) Global distribution of linear and cyclic volatile methyl siloxanes in air. Environ Sci Technol 45:3349–3354Google Scholar
  84. 84.
    Xu S, Wania F (2013) Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment. Chemosphere 93:835–843Google Scholar
  85. 85.
    Ahrens L, Harner T, Shoeib M (2014) Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers. Environ Sci Technol 48:9374–9381Google Scholar
  86. 86.
    Sanchís J, Cabrerizo A, Galbán-Malagón C, Barceló D, Farré M, Dachs J (2015) Response to comments on “unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton and krill”. Environ Sci Technol 49:7510–7512Google Scholar
  87. 87.
    Sanchís J, Cabrerizo A, Galbán-Malagón C, Barceló D, Farré M, Dachs J (2015) Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environ Sci Technol 49:4415–4424Google Scholar
  88. 88.
    Janechek NJ, Hansen KM, Stanier CO (2017) Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products. Atmos Chem Phys 17:8357Google Scholar
  89. 89.
    Whelan MJ, Estrada E, Van Egmond R (2004) A modelling assessment of the atmospheric fate of volatile methyl siloxanes and their reaction products. Chemosphere 57:1427–1437Google Scholar
  90. 90.
    Lehmann RG, Varaprath S, Frye CL (1994) Fate of silicone degradation products (silanols) in soil. Environ Toxicol Chem 13:1753–1759Google Scholar
  91. 91.
    Stevens C (1998) Environmental degradation pathways for the breakdown of polydimethylsiloxanes. J Inorg Biochem 69:203–207Google Scholar
  92. 92.
    Xu S, Lehmann RG, Miller JR, Chandra G (1998) Degradation of polydimethylsiloxanes (silicones) as influenced by clay minerals. Environ Sci Technol 32:1199–1206Google Scholar
  93. 93.
    Carpenter JC, Cella JA, Dorn SB (1995) Study of the degradation of polydimethylsiloxanes on soil. Environ Sci Technol 29:864–868Google Scholar
  94. 94.
    Xu S (2010) Aerobic and anaerobic transformation of decamethylcyclopentasiloxane (14C-D5) in aquatic sediment systems. Centre Européen des Silicones (CES). CES report 27 Jan 2010Google Scholar
  95. 95.
    Panagopoulos D, Jahnke A, Kierkegaard A, MacLeod M (2017) Temperature dependence of the organic carbon/water partition ratios (KOC) of volatile methylsiloxanes. Environ Sci Technol Lett 4:240–245Google Scholar
  96. 96.
    Panagopoulos D, Kierkegaard A, Jahnke A, MacLeod M (2016) Evaluating the salting-out effect on the organic carbon/water partition ratios (KOC and KDOC) of linear and cyclic volatile methylsiloxanes: measurements and polyparameter linear free energy relationships. J Chem Eng Data 61:3098–3108Google Scholar
  97. 97.
    Durham J, Kozerski G (2005) Hydrolysis of octamethylcyclotetrasiloxane (D4). Silicones Environmental Health and Safety Council StudyGoogle Scholar
  98. 98.
    Durham J, Kozerski G (2006) Hydrolysis of decamethylcyclopentasiloxane (D5). Silicones Environmental Health and Safety Council StudyGoogle Scholar
  99. 99.
    Environment Canada, Health Canada (2008) Screening assessment for the challenge - decamethylcyclopentasiloxane (D5)Google Scholar
  100. 100.
    Environment Canada, Health Canada (2008) Screening assessment for the challenge - dodecamethylcyclohexasiloxane (D6)Google Scholar
  101. 101.
    Environment Canada, Health Canada (2008) Screening assessment for the challenge - octamethylcyclotetrasiloxane (D4)Google Scholar
  102. 102.
    Hughes L, Mackay D, Powell DE, Kim J (2012) An updated state of the science EQC model for evaluating chemical fate in the environment: application to D5 (decamethylcyclopentasiloxane). Chemosphere 87:118–124Google Scholar
  103. 103.
    Webster E, Mackay D, Wania F (1998) Evaluating environmental persistence. Environ Toxicol Chem 17:2148–2158Google Scholar
  104. 104.
    Pellenbarg R (1979) Environmental poly (organosiloxanes)(silicones). Environ Sci Technol 13(5):565–569Google Scholar
  105. 105.
    Watanabe N, Nakamura T, Watanabe E, Sato E, Ose Y (1984) Distribution of organosiloxanes (silicones) in water, sediments and fish from the Nagara River watershed, Japan. Sci Total Environ 35:91–97Google Scholar
  106. 106.
    Watanabe N, Nagase H, Ose Y (1988) Distribution of silicones in water, sediment and fish in Japanese rivers. Sci Total Environ 73:1–9Google Scholar
  107. 107.
    Zhang Y, Shen M, Tian Y, Zeng G (2018) Cyclic volatile methylsiloxanes in sediment, soil, and surface water from Dongting Lake, China. J Soils Sediments 18:2063–2071Google Scholar
  108. 108.
    Sparham C, van Egmond R, Hastie C, O’Connor S, Gore D, Chowdhury N (2011) Determination of decamethylcyclopentasiloxane in river and estuarine sediments in the UK. J Chromatogr A 1218:817–823Google Scholar
  109. 109.
    Schøyen M, Øxnevad S, Hjermann D, Mund C, Böhmer T, Beckmann K et al (2016) Levels of siloxanes (D4, D5, D6) in biota and sediments from the Inner Oslofjord, Norway, 2011-2014 (Poster presentation). In: The SETAC Europe 26th annual meeting, NantesGoogle Scholar
  110. 110.
    Xu L, He X, Zhi L, Zhang C, Zeng T, Cai Y (2016) Chlorinated methylsiloxanes generated in the papermaking process and their fate in wastewater treatment processes. Environ Sci Technol 50:12732–12741Google Scholar
  111. 111.
    Howard PH, Muir DCG (2010) Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environ Sci Technol 44:2277–2285Google Scholar
  112. 112.
    Thomas KV, Schlabach M, Langford K, Fjeld E, Øxnevad S, Rundberget T et al (2014) Screening program 2013. New bisphenols, organic peroxides, fluorinated siloxanes, organic UV filters and selected PBT substances. Norwegian Environment Agency, OsloGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain

Personalised recommendations