Skip to main content

Occurrence Forms of Heavy Metals in the Bottom Sediments of the White Sea

  • Chapter
  • First Online:
Sedimentation Processes in the White Sea

Abstract

The White Sea is an inner subarctic marine basin where sedimentation is known to be influenced by mostly terrigenous processes. In the catchment area of the White Sea, a lot of the mining, manufacture, and pulp and paper industry plants are located whose solid and liquid wastes contain heavy metals, including the toxic ones. Through the solid and dissolved river runoff, atmospheric fluxes, and coastal abrasion, heavy metals enter the seawater where they are involved in various biogeochemical processes before to be precipitated on the sea floor. Many studies of marine sedimentation concern total metal concentration; meanwhile, an assessment of contribution of different biogeochemical processes stays incomplete. In this chapter, we try to evaluate the partitioning among the different forms (speciation) of heavy metals that reflect principal processes of their accumulation in the modern bottom sediments of the White Sea. We study both the rock-forming (Al, Fe, Mn) and trace elements (Mo, Cr, Ni, Co, Cu, Pb, Cd, and As) by use of a modified method of selective sequential chemical leaching.

A spatial distribution of the occurrence forms of these elements in the surface sediments was estimated, while their analysis in high-resolution (1-cm-scale) sedimentary core lets us to study their behavior in the processes of early diagenesis.

Our data evidenced a correctness of using Al as element indicator of terrigenous deposition in the marine bottom sediments. In both oxidized surface sediments and high-resolution sedimentary core, geochemically inert lithogenic form of Al dominated absolutely (on average, 95% of total content). Predominance of lithogenic form of Fe, Cr, Ni, and As (68–85% for each of these metals, on average) suggested the major role of terrigenous processes in their accumulation. For Cu, Cd, Pb, and Co, the sum of the three labile forms (adsorbed on clays/carbonates, authigenic Fe-Mn oxyhydroxides, and organic matter) and the inert lithogenic form contributes approximately equal portions into accumulation of these metals in the White Sea bottom sediments. Mn and Mo were found to be the most labile metals: only till 10% in the lithogenic form in the upper 0–6 cm layer, while down the core portion of this form increased progressively.

A detailed record of Mn and Fe occurrence forms revealed that a ratio of Mn/Fe in the labile (absorbed/carbonate and authigenic Mn-Fe oxyhydroxides) forms has changed abruptly during early diagenesis. The Mn/Fe ratio was the highest in the 1–2 cm upper oxidized sedimentary layer, decreasing sharply at intervals 6–7 cm in the White Sea, staying constantly low in deeper sedimentary layers. From this we suppose Mn/Fe ratio to be applied as a proxy of the early diagenesis of the bottom sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chester R, Massina-Hanna KG (1970) Trace element partition patterns in Northern Atlantic deep-sea sediments. Geochim Cosmochim Acta 34(10):1121–1128

    Article  CAS  Google Scholar 

  2. Gibbs RI (1977) Transport phases in the Amazon and Yukon Rivers. Geol Soc Am Bull 88(6):829–843

    Article  CAS  Google Scholar 

  3. Demina LL, Gordeev VV, Fomina LS (1978) Forms of iron, manganese, zinc and copper in river water and their changes in the mixing zone of river and sea waters (by an example of the rivers of the Black, Azov and Caspian Seas basins). Geochem Int 8:1211–1229

    Google Scholar 

  4. Chudaeva VA, Gordeev VV, Fomina LS (1982) Phase state of the elements in suspended matter of some rivers of the Japan Sea basin. Geochem Int 4:585–596

    Google Scholar 

  5. Lukashin VN (1983) Forms of elements in sediments. In: Lisitsyn AP (ed) Biogeochemistry of the ocean. Nauka, Moscow, pp 312–344. (in Russian)

    Google Scholar 

  6. Demina LL, Shumilin EV, Tambiev SB (1984) Trace metal speciation in suspended matter of the Indian Ocean of surface water. Geochem Int 4:565–576

    Google Scholar 

  7. Raiswell R, Canfield DE (1998) Sources of iron for pyrite formation in marine sediments. Am J Sci 298:219–245

    Article  CAS  Google Scholar 

  8. Raiswell R, Canfield DE (2012) The iron biogeochemical cycle: past and present. Geochem Perspect 1(1):6–221

    Article  Google Scholar 

  9. Poulton SW, Raiswell R (2002) The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am J Sci 302:774–805

    Article  CAS  Google Scholar 

  10. Lisitsyn AP, Novigatsky AN, Shevchenko VP, Kluvitkin AA, Filippov AS, Kravchishina MD, Politova NV (2014) Dispersed forms of sedimentary matter in the ocean and seas on the example of the White Sea (results of 12 years of research). Dokl Earth Sci 456(3):355–359

    Google Scholar 

  11. Lisitsyn AP (2014) Current views on the sedimentation in the ocean and seas: the ocean as a natural recorder of the geosphere’s interaction. In: Nigmatulin RI, Libkovsky LI (eds) The World Ocean, vol 2. Nauchnyi Mir, Moscow, pp 331–553. (in Russian)

    Google Scholar 

  12. Kukina SE, Sadovnokova LK, Kalafat-Frau A, Palerod R, Hummel K (1999) Occurrence forms of metals in bottom sediments of selected estuaries of the White and Barents Seas. Geochem Int 12:1324–1329

    Google Scholar 

  13. Demina LL, Levitan MA, Politova NV (2006) About occurrence forms of heavy metals in bottom sediments of the Ob and Yenisei Rivers estuaries (the Kara Sea). Geochem Int 2:212–226

    Google Scholar 

  14. Nevessky EN, Medvedev VS, Kalinenko VV (1977) The White Sea: sediment formation and development history in Holocene. Nauka, Moscow. 236 pp (in Russian)

    Google Scholar 

  15. Lisitsyn AP, Nemirovskaya IA (eds) (2012) The White Sea system. Vol II Water column and interacting with it atmosphere, cryosphere, river runoff and biosphere. Scientific World, Moscow. 783 pp (in Russian)

    Google Scholar 

  16. Lisitsyn AP, Nemirovskaya IA (eds) (2013) The White Sea System. Vol III Dispersed sedimentary matter in hydrosphere, microbial processes and water pollution. Scientific World, Moscow. 665 pp (in Russian)

    Google Scholar 

  17. Lisitsyn AP, Nemirovskaya IA (eds) (2017) White Sea System. Vol IV The processes of sedimentation, geology and history. Scientific World, Moscow. 1028 pp (in Russian)

    Google Scholar 

  18. Novigatsky AN, Lisitsyn AP, Shevchenko VP, Kluvitkin AA, Kravchishina MD, Filippov AS, Politova NV (2013) Study of vertical fluxes of sedimentary matter by use of automatic deep-sea sediment observatories in the White Sea. In: Sedimentary basins, sedimentation and post-sedimentation processes in geological history. Proceedings of VII All-Russian lithological conference, Novosibirsk, 28–31 Oct 2013, vol 2. SB RAS, Novosibirsk, pp 317–321. (in Russian)

    Google Scholar 

  19. Lisitsyn AP, Lukashin VN, Novigatsky AN, Ambrosimov AK, Klyvitkin AA, Filippov AS (2014) Deep-sea observatories at the axial transect in the Caspian Sea and continuous investigations of the dispersed sedimentary matter’s fluxes. Dokl Earth Sci 456(4):485–489

    Google Scholar 

  20. Yudovich YE, Ketris MP (2011) Geochemical indicators of lithogenesis (lithological geochemistry). Geoprint, Syktyvkar. 741 pp (in Russian)

    Google Scholar 

  21. Petelin VP (1967) Grain-size analysis of the marine bottom sediments. Nauka, Moscow. 128 pp

    Google Scholar 

  22. Luoma SN, Bryan GW (1981) A statistical assessment of the trace metals forms in oxidized estuarine sediments employing chemical extractants. Sci Total Environ 17:165–196

    Article  CAS  Google Scholar 

  23. Сhester R, Hughes MJ (1967) A chemical technique for separation of ferromanganese minerals and adsorbed trace metals from pelagic sediments. Chem Geol 3:249–262

    Article  Google Scholar 

  24. Kitano Y, Fujiyoshi R (1980) Selective chemical leaching of Cd, Cu, Mn and Fe in marine sediments. Geochem J 14:122–128

    Google Scholar 

  25. Mamochkina AI, Dara OM (2015) Distribution of fine-dispersed fraction fragmented minerals in the surface sediments of the White Sea. In: Evolution of sedimentary processes in the Earth’s history. Proceedings of the VIII Russian lithological conference, vol 1. Gubkin Russian State University of Oil and Gas, Moscow, pp 112–114. (in Russian)

    Google Scholar 

  26. Gordeev VV, Shevchenko VP (2012) Forms of occurrence of some metals in the suspended matter of Northern Dvina River. Oceanology 52(2):282–291

    Article  CAS  Google Scholar 

  27. Belyaev NA (2015) Organic matter and hydrocarbon markers of the White Sea. Abstract PhD thesis, IO RAS, Moscow, 25 pp

    Google Scholar 

  28. Rozanov AG, Volkov II, Kokryatskaya NM, Yudin MV (2006) Manganese and iron in the White Sea: sedimentation and diagenesis. Lithol Miner Resour 5:539–558

    Google Scholar 

  29. Gusakova AI (2015) Mineral composition of modern bottom sediments of the White Sea. Oceanology 53(2):249–258

    Google Scholar 

  30. Demina LL, Fomina LS (1982) On occurrence forms of iron, manganese, zinc and copper in surface suspended particulate matter of the Pacific. Geochem Int 11:1710–1726

    Google Scholar 

  31. Demina LL, Nemirovskaya IA (2007) Spatial distribution of trace elements in seston of the White Sea. Oceanology 47(3):390–402

    Article  CAS  Google Scholar 

  32. AMAP (2005) Assessment of heavy metals in the Arctic. AMAP, Oslo. 265 pp

    Google Scholar 

  33. Mamindy-Pajany Y, Hurel C, Geret F, Galgani F, Bataglia-Brunet F, Marmier N, Romeo M (2013) Arsenic in marine sediments from French Mediterranean ports: geochemical partitioning, bioavailability and ecotoxicology. Chemosphere 90(11):2730–2736

    Article  CAS  Google Scholar 

  34. Beldowski J, Szubska M, Emelyanov E, Gargana G, Drzewinska A, Beldowska M, Vannien P, Ostin P, Fabisiak J (2015) Arsenic concentrations in the Baltic Sea sediments close to chemical munitions dumpsites. Deep-Sea Res II. https://doi.org/10.1016/j.dsr2.2015.03.001

    Article  Google Scholar 

  35. Strakhov NM (1960) Basic theory of lithogenesis, vol 2. Nauka, Moscow. 574 pp (in Russian)

    Google Scholar 

  36. Savvichev AS, Rusanov II, Zakharova EE (2008) Microbial processes of carbon and sulfur cycle in the White Sea. Microbiology 77(6):823–838

    Article  CAS  Google Scholar 

  37. Gursky YN (2005) Features of chemical composition of pore waters of the White Sea. Oceanology 45(2):224–239

    CAS  Google Scholar 

  38. Rozanov AG, Volkov II (2009) Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn. Oceanology 47(10):1067–1086

    Google Scholar 

  39. Kokryatskaya NM (2004) Sulfur compounds in water and bottom sediments of the White Sea and the Northern Dvina River mouth. Abstract of PhD thesis, IO RAS, Moscow, 24 pp (in Russian)

    Google Scholar 

  40. Bezrukov PL, Lisitsyn AP (1960) Classification of marine sediments of modern seas. In: Geological studies in the Far-Eastern Seas Proc of Institute Oceanology XXXII, pp 117–124 (in Russian)

    Google Scholar 

  41. Astakhov AS, Rozan V, Crane K, Ivanov MV, Gao A (2013) Lithochemical classification of the depositional environments of the Arctic Chukchi Sea by multicomponent statistical analysis. Geochem Int 4:303–325

    Google Scholar 

  42. Schoster F, Behrends M, Müller C, Stein R, Wahsner M (2000) Modern river discharge and pathways of supplied material in the Eurasian Arctic Ocean: evidence from mineral assemblages and major and minor element distribution. Int J Earth Sci 89:486–495

    Article  CAS  Google Scholar 

  43. Sundby B, Lecroart P, Anschutz P, Katsev S, Mucci A (2015) When deep diagenesis in Arctic Ocean sediments compromises manganese-based geochronology. Mar Geol 366:62–68

    Article  CAS  Google Scholar 

  44. März C, Stratmann A, Matthiessen J, Meinhardt A-K, Eckert S, Schnetger B, Vogt C, Stein R, Brumsack H-J (2011) Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochim Cosmochim Acta 75:7668–7687

    Article  Google Scholar 

  45. Naeher S, Gilli A, North RP, Hamann Y, Schubert CJ (2013) Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chem Geol 352:125–133

    Article  CAS  Google Scholar 

  46. Pilipchuck MF, Volkov II (1974) Behavior of molybdenum in processes of sediment formation and diagenesis. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry and biology. American Association of Petroleum Geologists, Tulsa, pp 542–552

    Google Scholar 

  47. Aliev RA, Bobrov VA, Kalmykov SN, Melgunov MS, Vlasova IE, Shevchenko VP, Novigatsky AN, Lisitsyn AP (2007) Natural and artificial radionuclides as a tool for sedimentation studies in Arctic. J Radioanal Nucl Chem 274(2):315–321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was prepared on base of bottom sediments sampling and analytical processing in accordance with the state task, the Russian Academy of Sciences for 2017–2018, theme No 0149-2018-0016; the authors thank the Russian Scientific Foundation (Project No 14-27-00114-П) for the financial support over the period of generalization of the data obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila L. Demina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demina, L.L., Budko, D.F., Novigatsky, A.N., Alexсeeva, T.N., Kochenkova, A.I. (2018). Occurrence Forms of Heavy Metals in the Bottom Sediments of the White Sea. In: Lisitsyn, A., Demina, L. (eds) Sedimentation Processes in the White Sea. The Handbook of Environmental Chemistry, vol 82. Springer, Cham. https://doi.org/10.1007/698_2018_328

Download citation

Publish with us

Policies and ethics