Skip to main content

Are the Egyptian Coastal Lakes Sustainable? A Comprehensive Review Based on Remote Sensing Approach

  • Chapter
  • First Online:
Egyptian Coastal Lakes and Wetlands: Part II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 72))

  • 984 Accesses

Abstract

Lakes play pivotal roles in the biological and environmental systems and prove several ecosystem facilities. Unfortunately, in Egypt, there are many factors which directly or indirectly threaten the ecological system of the Egyptian coastal lakes (lakes Mariout, Edku, Burullus, Manzala, and Bardawil). For example, reduction of water bodies, deterioration of water quality, eutrophication, and climate changes are among the present common challenges. These challenges may potentially act against the sustainability of the coastal lakes. The use of the remote sensing (RS) data offers a better perception of analyzing water bodies (water quality and lake ecology) by providing synoptic and spatiotemporal ideas to help in assessing their present conditions. Moreover, it will promote the lakes sustainability by implementing the needed measures. This chapter provides an updated review of the present literature that applied the remote sensing (RS) technique for monitoring and assessing the sustainability conditions of the Egyptian coastal lakes. It covers different areas such as extracting lake surface areas and their changes, examining lake bathymetry (levels), and monitoring lake water quality. Meanwhile, a review of the worldwide-related studies is presented. The present chapter concluded that most of the Egyptian coastal lakes are suffering from lack of sustainability. In addition, urgent actions from the concerning authorities should be taken shortly to maintain the sustainability of these lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  2. Moss B (2012) Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Sci Total Environ 434:130–142. https://doi.org/10.1016/j.scitotenv.2011.07.069

    Article  CAS  Google Scholar 

  3. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman R, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. https://doi.org/10.1017/S1464793105006950

    Article  Google Scholar 

  4. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  5. Hestir EL, Brando VE, Bresciani M, Giardino C, Matta E, Villa P, Dekker AG (2015) Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sens Environ 167:181–195. https://doi.org/10.1016/j.rse.2015.05.023

    Article  Google Scholar 

  6. Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, Solimini A, van de Bund W, Zampoukas N, Hering D (2012) Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18:31–41. https://doi.org/10.1016/j.ecolind.2011.10.009

    Article  Google Scholar 

  7. Gray WB, Shimshack JP (2011) The effectiveness of environmental monitoring and enforcement: a review of the empirical evidence. Rev Environ Econ Policy 5:3–24. https://doi.org/10.1093/reep/req017

    Article  Google Scholar 

  8. Warne MSJ, Batley MJ, Braga GE, Chapman O, Fox JC, Hickey DR, Stauber CW, van Dam JLR (2014) Revisions to the derivation of the Australian and New Zealand guidelines for toxicants in fresh and marine waters. Environ Sci Pollut Res 21:51–60. https://doi.org/10.1007/s11356-013-1779-6

    Article  Google Scholar 

  9. Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36. https://doi.org/10.1016/j.rse.2011.11.026

    Article  Google Scholar 

  10. Reyjol Y, Argillier C, Bonne W, Borja A, Buijse AD, Cardoso AC, Daufresne M, Kernan M, Ferreira MT, Poikane S, Prat N, Solheim AL, Stroffek S, Usseglio-Polatera P, Villeneuve B, van de Bund W (2014) Assessing the ecological status in the context of the European Water Framework Directive: where do we go now? Sci Total Environ 497–498:332–344. https://doi.org/10.1016/j.scitotenv.2014.07.119

    Article  CAS  Google Scholar 

  11. Birk S, Ecke F (2014) The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants. Ecol Indic 46:398–406. https://doi.org/10.1016/j.ecolind.2014.06.035

    Article  CAS  Google Scholar 

  12. Pahlevan N, Lee Z, Wei J, Schaaf CB, Schott JR, Berk A (2014) On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens Environ 154:272–284. https://doi.org/10.1016/j.rse.2014.08.001

    Article  Google Scholar 

  13. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282. https://doi.org/10.4319/lo.2009.54.6part2.2273

    Article  Google Scholar 

  14. Chen Q, Zhang Y, Ekroos A, Hallikainen M (2004) The role of remote sensing technology in the EU water framework directive (WFD). Environ Sci Pol 7:267–276. https://doi.org/10.1016/j.envsci.2004.05.002

    Article  Google Scholar 

  15. Palmer SC, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8. https://doi.org/10.1016/j.rse.2014.09.021

    Article  Google Scholar 

  16. Kachelriess D, Wegmann M, Gollock M, Pettorelli N (2014) The application of remote sensing for marine protected area management. Ecol Indic 36:169–177. https://doi.org/10.1016/j.ecolind.2013.07.003

    Article  Google Scholar 

  17. Dekker AG, Brando VE, Anstee JM, Pinnel N, Kutser T, Hoogenboom E, Peters S, Pasterkamp R, Vos R, Olbert C, Malthus T (2002) Imaging spectrometry of water. Imaging spectrometry. Springer, Dordrecht, The Netherlands, pp 307–359

    Chapter  Google Scholar 

  18. Mouw CB, Greb S, Aurin DA, DiGiacomo PM, Lee Z, Twardowski M, Binding C, Hu C, Ma R, Moore T, Moses W, Craig SE (2015) Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens Environ 160:15–30. https://doi.org/10.1016/j.rse.2015.02.001

    Article  Google Scholar 

  19. Gitelson A, Kondratyev KY (1991) Optical models of mesotrophic and eutrophic water bodies. Int J Remote Sens 12:373–385. https://doi.org/10.1080/01431169108929659

    Article  Google Scholar 

  20. Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesot’s 10,000 lakes. Remote Sens Environ, Special Issue on Monitoring Freshwater and Estuarine Systems 112(11):4086–4097

    Google Scholar 

  21. Harris AR (1994) Time series remote sensing of a climatically sensitive lake. Remote Sens Environ 50:83–94

    Article  Google Scholar 

  22. Birkett CM (2000) Synergistic remote sensing of lake Chad: variability of Basin inundation. Remote Sens Environ 72:218–236

    Article  Google Scholar 

  23. Böhme B, Steinbruch F, Gloaguen R, Heilmeier H, Merkel B (2006) Geomorphology, hydrology, and ecology of Lake Urema, central Mozambique, with focus on lake extent changes. Phys Chem Earth 31:745–752. https://doi.org/10.1016/j.pce.2006.08.010

    Article  Google Scholar 

  24. Ouma YO, Tateishi R (2006) A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. Int J Remote Sens 27:3153–3181. https://doi.org/10.1080/01431160500309934

    Article  Google Scholar 

  25. Turada IA (2008) The use of MERIS data to detect the impact of flood inundation on land cover changes in the lake Chad Basin. Dissertation, The Hong Kong Polytechnic University

    Google Scholar 

  26. Leblanc M, Lemoalle J, Bader J-C, Tweed S, Mofor L (2011) Thermal remote sensing of water under flooded vegetation: new observations of inundation patterns for the ‘Small’ lake Chad. J Hydrol 404:87–98. https://doi.org/10.1016/j.jhydrol.2011.04.023

    Article  Google Scholar 

  27. Sharma O, Mioc D, Anton F (2007) Feature extraction and simplification from colour images based on colour image segmentation and skeletonization using the Quad-Edge data structure. Proceedings of the international conference in Central Europe on computer graphics, visualization and computer vision, Plzen, 29 January–1 February, 225–232

    Google Scholar 

  28. Hu Z, Gong H, Zhu L (2007) Fast flooding information extraction in emergency response of flood disaster. Proceedings of the ISPRS workshop on updating geo-spatial databases with imagery and the 5th ISPRS workshop on DMGISs, Urumchi, 28–29 August, pp 173–177

    Google Scholar 

  29. Soh LK, Tsatsoulis C (1999) Segmentation of satellite imagery of natural scenes using data mining. IEEE Trans Geosci Remote Sens 37:1086–1099. https://doi.org/10.1109/36.752227

    Article  Google Scholar 

  30. Yang C, He R, Wang S (2008) Extracting waterbody from Beijing-1 micro-satellite images based on knowledge discovery. Proceedings of the IEEE international geoscience and remote sensing symposium, Boston, 7–11 July, pp 850–853. https://doi.org/10.1109/igarss.2008.4779856

  31. Zhang ZH, Prinet V, Ma SD (2003) Water body extraction from multi-source satellite images. Proceedings of the IEEE international geoscience and remote sensing symposium, Toulouse, 21–25 July, pp 3970–3972. https://doi.org/10.1109/igarss.2003.1295331

  32. Zhang Y, Pulliainen JT, Koponen SS, Hallikainen MT (2003) Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans Geosci Remote Sens 41:622–629. https://doi.org/10.1109/TGRS.2003.808906

    Article  Google Scholar 

  33. Tulbure MG, Broich M, Stehman SV, Kommareddy A (2016) Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens Environ 178:142–157

    Article  Google Scholar 

  34. Fuller LM, Morgan TR, Aichele SS (2006) Wetland delineation with IKONOS high-resolution satellite imagery, Fort Custer Training Center, Battle Creek, Michigan, Date Posted: March 3, 2006, 2005: US Geological Survey, Scientific Investigations Report 2006–5051, 8 p

    Google Scholar 

  35. McIver DK, Friedl MA (2002) Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens Environ 81:253–261

    Article  Google Scholar 

  36. McCarthy JM, Gumbricht T, McCarthy T, Frost P, Wessels K, Seidel F (2003) Flooding Patterns of the Okavango Wetland in Botswana between 1972 and 2000. AMBIO J Hum Environ 32:453–457. https://doi.org/10.1579/0044-7447-32.7.453

    Article  Google Scholar 

  37. Du Z, Linghu B, Ling F, Li W, Tian W, Wang H, Gui Y, Sun B, Zhang X (2012) Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. J Appl Remote Sens 6:063609

    Article  Google Scholar 

  38. Elsahabi MA, Negm AM, El-Tahan MA (2016) Performances evaluation of surface water areas extraction techniques using Landsat ETM+ data: case study Aswan High Dam Lake (AHDL). Procedia Technol 22:1205–1212

    Article  Google Scholar 

  39. Basaeed E, Bhaskar H, Al-Mualla M (2013) A spectral water index based on visual bands. Proceeding of the image and signal processing for remote sensing XIX, Dresden, 23–26 September 2013, Article ID: 889219. https://doi.org/10.1117/12.2028638

  40. Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35

    Article  Google Scholar 

  41. Rogers AS, Kearney MS (2004) Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int J Remote Sens 25:2317–2335

    Article  Google Scholar 

  42. Nair PK, Babu DS (2016) Spatial Shrinkage of Vembanad Lake, South West India during 1973-2015 using NDWI and MNDWI. Int J Sci Res 5(7):1394–1401

    Google Scholar 

  43. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033

    Article  Google Scholar 

  44. Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2009) Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens Environ 113:2164–2171. https://doi.org/10.1016/j.rse.2009.05.018

    Article  Google Scholar 

  45. Selmes N, Murray T, James TD (2011) Fast draining lakes on the greenland ice sheet linked to routing of surface water. Geophys Res Lett 38. https://doi.org/10.1029/2011GL047872

    Article  Google Scholar 

  46. Liang YL, Colgan W, Lv Q, Steffen K, Abdalati W, Stroeve J et al (2012) A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens Environ 123:127–138. https://doi.org/10.1016/j.rse.2012.03.020

    Article  Google Scholar 

  47. Johansson AM, Brown IA (2013) Adaptive classification of supra-glacial lakes on the West Greenland ice sheet. IEEE J Sel Topics Appl Earth Observ Remote Sens 6:1998–2007. https://doi.org/10.1109/JSTARS.2012.2233722

    Article  Google Scholar 

  48. Temiz F, Durduran SS (2016) Monitoring coastline change using remote sensing and GIS technology: a case study of Acıgöl Lake, Turkey. IOP Conf Series Earth Environ Sci 44:042033

    Article  Google Scholar 

  49. Jeihouni M, Toomanian A, Alavipanah SK, Hamzeh S (2017) Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling. Environ Monit Assess 189:572

    Article  Google Scholar 

  50. Sultan YM, Beheary MS, Zaghloul EA, Sheta MH (2017) Change detection in the water bodies of Lake Malaha, East PortSaid, Egypt, using RS/GIS. Int J Eng Sci Comput 7(7):13759–13763

    Google Scholar 

  51. Acharya TD, Yang IT, Subedi A, Lee DH (2017) Change detection of lakes in Pokhara, Nepal using Landsat data. Proceedings 1:17. https://doi.org/10.3390/ecsa-3-E005. www.mdpi.com/journal/proceedings. Licensee MDPI, Basel, Switzerland

    Article  Google Scholar 

  52. Xie H, Luo X, Xu X, Pan H, Tong X (2016) Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. Int J Remote Sens 37:1826–1844

    Article  Google Scholar 

  53. Darwish K, Smith SE, Torab M, Monsef H (2016) Geomorphological changes along the Nile Delta coastline between 1945 and 2015 detected using satellite remote sensing and GIS. J Coast Res. https://doi.org/10.2112/JCOASTRES-D-16-00056.1

    Article  Google Scholar 

  54. El-Hattab MM (2016) Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). Egypt J Rem Sens Space Sci 19:23–36

    Google Scholar 

  55. Ballatore TJ, Bradt SR, Olaka L, Cózar A, Loiselle SA (2014) Remote sensing of African lakes: a review. Rem Sens Afr Seas. https://doi.org/10.1007/978-94-017-8008-7_20. Springer Science+Business Media, Dordrecht

    Google Scholar 

  56. USDA (United States Department of Agriculture) (2017) Global reservoir and lake monitor. http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir

  57. ESA (European Space Agency) (2017) River and lake website. http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main

  58. LEGOS (Laboratoire d’Etudes en Géophysique et Océanographie Spatiales) (2017) Hydroweb: surface monitoring by satellite altimetry. http://www.legos.obsmip.fr/en/soa/hydrologie/hydroweb/

  59. Munyaneza O, Wali UG, Uhlenbrook S, Maskey S, Mlotha MJ (2009) Water level monitoring using radar remote sensing data: application to Lake Kivu, central Africa. Phys Chem Earth 34:722–728. https://doi.org/10.1016/j.pce.2009.06.008

    Article  Google Scholar 

  60. Velpuri NM, Senay GB, Asante KO (2012) A multi-source satellite data approach for modelling lake Turkana water level: calibration and validation using satellite altimetry data. Hydrol Earth Syst Sci 16:1–18. https://doi.org/10.5194/hess-16-1-2012

    Article  Google Scholar 

  61. Yuzugullu O, Aksoy A (2014) Generation of the bathymetry of a eutrophic shallow lake using WorldView-2 imagery. J Hydroinf 16:50. https://doi.org/10.2166/hydro.2013.133

    Article  Google Scholar 

  62. Legleiter CJ, Tedesco M, Smith LC, Behar AE, Overstreet BT (2014) Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images. Cryosphere 8:215–228. https://doi.org/10.5194/tc-8-215-2014

    Article  Google Scholar 

  63. Mohamed H, Negm A, Salah M, Nadaoka K, Zahran M (2017) Assessment of proposed approaches for bathymetry calculations using multispectral satellite images in shallow coastal/lake areas: a comparison of five models. Arab J Geosci 10:42. https://doi.org/10.1007/s12517-016-2803-1

    Article  CAS  Google Scholar 

  64. Mohamed H, Negm A, Nadaoka K, Abdelaziz T, Elsahabi M (2016) Comparative study of approaches to bathymetry detection in Nasser/Nubia Lake using multispectral SPOT-6 satellite imagery. Hydrolog Res Lett 10(1):45–50

    Article  Google Scholar 

  65. Nas B, Ekercin S, Karabörk H, Berktay A, Mulla DJ (2010) An application of Landsat-5 TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollut 212(14):183–197

    Article  CAS  Google Scholar 

  66. Maillard P, Pinheiro Santos NA (2008) A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed-Brazil. J Environ Manag 86(1):158–170

    Article  CAS  Google Scholar 

  67. Alparslan E, Aydoner C, Tüfekci V, Tüfekci H (2007) Water quality assessment at Omerli Dam using remote sensing techniques. Environ Monit Assess 135(1):391–398

    Article  CAS  Google Scholar 

  68. Vignolo A, Pochettino A, Cicerone D (2006) Water quality assessment using remote sensing techniques: Medrano Creek, Argentina. J Environ Manag 81(4):429–433

    Article  Google Scholar 

  69. Usali N, Ismail M (2010) Use of remote sensing and GIS in monitoring water quality. J Sustainable Dev 3(3)

    Google Scholar 

  70. El-Hattab MM (2015) Change detection and restoration alternatives for the Egyptian Lake Maryut. Egypt J Rem Sens Space Sci 18:9–16

    Google Scholar 

  71. Ahmed M, Barale V (2014) Satellite surveys of lagoon and coastal waters in the Southeastern Mediterranean Area. Remote Sensing of the African Seas, Springer Science+Business Media, Dordrecht. Doi: https://doi.org/10.1007/978-94-017-8008-7_19

    Google Scholar 

  72. Hossen H, Negm A (2017) Sustainability of water bodies of Edku Lake, Northwest of Nile Delta, Egypt: RS/GIS approach. Procedia Eng 181:404–411

    Article  Google Scholar 

  73. El-Zeiny A, El-Kafrawy S (2017) Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. Egypt J Rem Sens Space Sci 20:S49–S56

    Google Scholar 

  74. El-Kafrawy SB, Khalafallah A, Omar M, Khalil MMH, Yehia A, Allam M (2015) An integrated field and remote sensing approach for water quality mapping of Lake Burullus. Egypt Int J Environ Sci Eng 6:15–20

    Google Scholar 

  75. Dewidar K, Khedr AA (2005) Remote sensing of water quality for Burullus Lake, Egypt. Geocarto Int 20(3):43–49

    Article  Google Scholar 

  76. Hossen H, Negm A (2016) Change detection in the water bodies of Burullus Lake, Northern Nile Delta, Egypt, using RS/GIS. Procedia Eng 154:951–958

    Article  CAS  Google Scholar 

  77. Mohsen A, Elshemy M, Zeidan BA (2016) Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches. Environ Sci Pollut Res. Springer, Berlin

    Google Scholar 

  78. Negm AM, Mohamed H, Zahran M, Abdel-Fattah S (2016) Estimation of bathymetry using high resolution satellite imagery: case study El-Burullus Lake, Northern Nile Delta. The Nile Delta, Hdb Env Chem. Springer International Publishing Switzerland. Doi https://doi.org/10.1007/698_2016_89

    Google Scholar 

  79. El-Asmar HM, Hereher ME (2010) Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ Earth Sci, Springer. Doi: https://doi.org/10.1007/s12665-010-0564-9

    Article  Google Scholar 

  80. Ahmed MH, El Leithy BM, Thompson JR, Flower RJ, Ramdani M, Ayache F, Hassan SM (2009) Application of remote sensing to site characterization and environmental change analysis of North African coastal lagoons. Hydrobiologia 622:147–171. https://doi.org/10.1007/s10750-008-9682-8

    Article  Google Scholar 

  81. Ahmed MH, El-leithy BM, Donia NS, Arafat SM (2006) Monitoring the historical changes of Lake Manzala ecosystems during the last three decades using multidates satellite images. 1st international conference on environmental change of Lakes, Lagoons and Wetlands of the Southern Mediterranean Region (ECOLLAW), 3–7 January, Cairo, Egypt

    Google Scholar 

  82. Donia N (2015) Lake Maryut monitoring using remote sensing. Eighteenth international water technology conference, IWTC18, Sharm ElSheikh, Egypt

    Google Scholar 

  83. Negm A, Hossen H (2017) Sustainability of water bodies of northern Egyptian lakes: case studies, Burrulus and Manzalla lakes. Hdb Env Chem 55:455–468. Springer International Publishing Switzerland

    Google Scholar 

  84. Emam WWM (2010) Ecological and population dynamic studies on some crab species in Bardawil Lagoon, Egypt. MSc thesis. Faculty of Science, Zoology Department, Ain Shams University

    Google Scholar 

  85. Ali M, Sayed M, Goher M (2006) Studies of water quality and some heavy metals in hypersaline Mediterranean Lagoon (Bardawil Lagoon, Egypt). Egypt J Aquat Biol Fish 10(2):45–64

    Article  Google Scholar 

  86. Abd El-Daiem A (2000) Morphological and hydrochemical characteristics of Bardawil Lagoon in comparison with that Manzala Lagoon, Northern Egypt. Egypt J Environ Sci 20:177–200

    CAS  Google Scholar 

  87. El-Halag RSF, Shaker IM, Mehanna SF, Othman MF, Farouk AE (2013) Impact of some environmental condition on water quality and some heavy metals in water from Bardawil lake. N Y Sci J 6(11):5–13

    Google Scholar 

  88. Abd Ellah RG, Hussein MM (2009) Physical limnology of Bardawil Lagoon. Egypt Am-Euras J Agric Environ Sci 5(3):331–336

    CAS  Google Scholar 

  89. Khalil MT, Saad A, Ahmed MH, El Kafrawy SB, Emam WWM (2016) Integrated field study, remote sensing and GIS approach for assessing and monitoring some chemical water quality parameters in Bardawil Lagoon, Egypt. Int J Innovat Res Sci Eng Technol 5(8):14656–14669

    Google Scholar 

  90. Embabi NS, Moawad MB (2017) A semi-automated approach for mapping geomorphology of El Bardawil lake, Northern Sinai, Egypt, using integrated remote sensing and GIS techniques. Egypt J Rem Sens Space Sci 17:41–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelazim Negm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elsahabi, M., Negm, A., Bek, M.A. (2018). Are the Egyptian Coastal Lakes Sustainable? A Comprehensive Review Based on Remote Sensing Approach. In: Negm, A., Bek, M., Abdel-Fattah, S. (eds) Egyptian Coastal Lakes and Wetlands: Part II. The Handbook of Environmental Chemistry, vol 72. Springer, Cham. https://doi.org/10.1007/698_2018_315

Download citation

Publish with us

Policies and ethics