Are the Egyptian Coastal Lakes Sustainable? A Comprehensive Review Based on Remote Sensing Approach

  • Mohamed Elsahabi
  • Abdelazim NegmEmail author
  • M. A. Bek
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 72)


Lakes play pivotal roles in the biological and environmental systems and prove several ecosystem facilities. Unfortunately, in Egypt, there are many factors which directly or indirectly threaten the ecological system of the Egyptian coastal lakes (lakes Mariout, Edku, Burullus, Manzala, and Bardawil). For example, reduction of water bodies, deterioration of water quality, eutrophication, and climate changes are among the present common challenges. These challenges may potentially act against the sustainability of the coastal lakes. The use of the remote sensing (RS) data offers a better perception of analyzing water bodies (water quality and lake ecology) by providing synoptic and spatiotemporal ideas to help in assessing their present conditions. Moreover, it will promote the lakes sustainability by implementing the needed measures. This chapter provides an updated review of the present literature that applied the remote sensing (RS) technique for monitoring and assessing the sustainability conditions of the Egyptian coastal lakes. It covers different areas such as extracting lake surface areas and their changes, examining lake bathymetry (levels), and monitoring lake water quality. Meanwhile, a review of the worldwide-related studies is presented. The present chapter concluded that most of the Egyptian coastal lakes are suffering from lack of sustainability. In addition, urgent actions from the concerning authorities should be taken shortly to maintain the sustainability of these lakes.


Coastal lakes Lake Bardawil Lake Burullus Lake Edku Lake Manzala Lake Mariout Remote sensing Sustainability 


  1. 1.
    Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, 2nd edn. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  2. 2.
    Moss B (2012) Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Sci Total Environ 434:130–142. CrossRefGoogle Scholar
  3. 3.
    Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman R, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. CrossRefGoogle Scholar
  4. 4.
    Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297CrossRefGoogle Scholar
  5. 5.
    Hestir EL, Brando VE, Bresciani M, Giardino C, Matta E, Villa P, Dekker AG (2015) Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sens Environ 167:181–195. CrossRefGoogle Scholar
  6. 6.
    Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, Solimini A, van de Bund W, Zampoukas N, Hering D (2012) Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18:31–41. CrossRefGoogle Scholar
  7. 7.
    Gray WB, Shimshack JP (2011) The effectiveness of environmental monitoring and enforcement: a review of the empirical evidence. Rev Environ Econ Policy 5:3–24. CrossRefGoogle Scholar
  8. 8.
    Warne MSJ, Batley MJ, Braga GE, Chapman O, Fox JC, Hickey DR, Stauber CW, van Dam JLR (2014) Revisions to the derivation of the Australian and New Zealand guidelines for toxicants in fresh and marine waters. Environ Sci Pollut Res 21:51–60. CrossRefGoogle Scholar
  9. 9.
    Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36. CrossRefGoogle Scholar
  10. 10.
    Reyjol Y, Argillier C, Bonne W, Borja A, Buijse AD, Cardoso AC, Daufresne M, Kernan M, Ferreira MT, Poikane S, Prat N, Solheim AL, Stroffek S, Usseglio-Polatera P, Villeneuve B, van de Bund W (2014) Assessing the ecological status in the context of the European Water Framework Directive: where do we go now? Sci Total Environ 497–498:332–344. CrossRefGoogle Scholar
  11. 11.
    Birk S, Ecke F (2014) The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants. Ecol Indic 46:398–406. CrossRefGoogle Scholar
  12. 12.
    Pahlevan N, Lee Z, Wei J, Schaaf CB, Schott JR, Berk A (2014) On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens Environ 154:272–284. CrossRefGoogle Scholar
  13. 13.
    Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282. CrossRefGoogle Scholar
  14. 14.
    Chen Q, Zhang Y, Ekroos A, Hallikainen M (2004) The role of remote sensing technology in the EU water framework directive (WFD). Environ Sci Pol 7:267–276. CrossRefGoogle Scholar
  15. 15.
    Palmer SC, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8. CrossRefGoogle Scholar
  16. 16.
    Kachelriess D, Wegmann M, Gollock M, Pettorelli N (2014) The application of remote sensing for marine protected area management. Ecol Indic 36:169–177. CrossRefGoogle Scholar
  17. 17.
    Dekker AG, Brando VE, Anstee JM, Pinnel N, Kutser T, Hoogenboom E, Peters S, Pasterkamp R, Vos R, Olbert C, Malthus T (2002) Imaging spectrometry of water. Imaging spectrometry. Springer, Dordrecht, The Netherlands, pp 307–359CrossRefGoogle Scholar
  18. 18.
    Mouw CB, Greb S, Aurin DA, DiGiacomo PM, Lee Z, Twardowski M, Binding C, Hu C, Ma R, Moore T, Moses W, Craig SE (2015) Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens Environ 160:15–30. CrossRefGoogle Scholar
  19. 19.
    Gitelson A, Kondratyev KY (1991) Optical models of mesotrophic and eutrophic water bodies. Int J Remote Sens 12:373–385. CrossRefGoogle Scholar
  20. 20.
    Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesot’s 10,000 lakes. Remote Sens Environ, Special Issue on Monitoring Freshwater and Estuarine Systems 112(11):4086–4097Google Scholar
  21. 21.
    Harris AR (1994) Time series remote sensing of a climatically sensitive lake. Remote Sens Environ 50:83–94CrossRefGoogle Scholar
  22. 22.
    Birkett CM (2000) Synergistic remote sensing of lake Chad: variability of Basin inundation. Remote Sens Environ 72:218–236CrossRefGoogle Scholar
  23. 23.
    Böhme B, Steinbruch F, Gloaguen R, Heilmeier H, Merkel B (2006) Geomorphology, hydrology, and ecology of Lake Urema, central Mozambique, with focus on lake extent changes. Phys Chem Earth 31:745–752. CrossRefGoogle Scholar
  24. 24.
    Ouma YO, Tateishi R (2006) A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. Int J Remote Sens 27:3153–3181. CrossRefGoogle Scholar
  25. 25.
    Turada IA (2008) The use of MERIS data to detect the impact of flood inundation on land cover changes in the lake Chad Basin. Dissertation, The Hong Kong Polytechnic UniversityGoogle Scholar
  26. 26.
    Leblanc M, Lemoalle J, Bader J-C, Tweed S, Mofor L (2011) Thermal remote sensing of water under flooded vegetation: new observations of inundation patterns for the ‘Small’ lake Chad. J Hydrol 404:87–98. CrossRefGoogle Scholar
  27. 27.
    Sharma O, Mioc D, Anton F (2007) Feature extraction and simplification from colour images based on colour image segmentation and skeletonization using the Quad-Edge data structure. Proceedings of the international conference in Central Europe on computer graphics, visualization and computer vision, Plzen, 29 January–1 February, 225–232Google Scholar
  28. 28.
    Hu Z, Gong H, Zhu L (2007) Fast flooding information extraction in emergency response of flood disaster. Proceedings of the ISPRS workshop on updating geo-spatial databases with imagery and the 5th ISPRS workshop on DMGISs, Urumchi, 28–29 August, pp 173–177Google Scholar
  29. 29.
    Soh LK, Tsatsoulis C (1999) Segmentation of satellite imagery of natural scenes using data mining. IEEE Trans Geosci Remote Sens 37:1086–1099. CrossRefGoogle Scholar
  30. 30.
    Yang C, He R, Wang S (2008) Extracting waterbody from Beijing-1 micro-satellite images based on knowledge discovery. Proceedings of the IEEE international geoscience and remote sensing symposium, Boston, 7–11 July, pp 850–853.
  31. 31.
    Zhang ZH, Prinet V, Ma SD (2003) Water body extraction from multi-source satellite images. Proceedings of the IEEE international geoscience and remote sensing symposium, Toulouse, 21–25 July, pp 3970–3972.
  32. 32.
    Zhang Y, Pulliainen JT, Koponen SS, Hallikainen MT (2003) Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans Geosci Remote Sens 41:622–629. CrossRefGoogle Scholar
  33. 33.
    Tulbure MG, Broich M, Stehman SV, Kommareddy A (2016) Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens Environ 178:142–157CrossRefGoogle Scholar
  34. 34.
    Fuller LM, Morgan TR, Aichele SS (2006) Wetland delineation with IKONOS high-resolution satellite imagery, Fort Custer Training Center, Battle Creek, Michigan, Date Posted: March 3, 2006, 2005: US Geological Survey, Scientific Investigations Report 2006–5051, 8 pGoogle Scholar
  35. 35.
    McIver DK, Friedl MA (2002) Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens Environ 81:253–261CrossRefGoogle Scholar
  36. 36.
    McCarthy JM, Gumbricht T, McCarthy T, Frost P, Wessels K, Seidel F (2003) Flooding Patterns of the Okavango Wetland in Botswana between 1972 and 2000. AMBIO J Hum Environ 32:453–457. CrossRefGoogle Scholar
  37. 37.
    Du Z, Linghu B, Ling F, Li W, Tian W, Wang H, Gui Y, Sun B, Zhang X (2012) Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. J Appl Remote Sens 6:063609CrossRefGoogle Scholar
  38. 38.
    Elsahabi MA, Negm AM, El-Tahan MA (2016) Performances evaluation of surface water areas extraction techniques using Landsat ETM+ data: case study Aswan High Dam Lake (AHDL). Procedia Technol 22:1205–1212CrossRefGoogle Scholar
  39. 39.
    Basaeed E, Bhaskar H, Al-Mualla M (2013) A spectral water index based on visual bands. Proceeding of the image and signal processing for remote sensing XIX, Dresden, 23–26 September 2013, Article ID: 889219.
  40. 40.
    Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35CrossRefGoogle Scholar
  41. 41.
    Rogers AS, Kearney MS (2004) Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int J Remote Sens 25:2317–2335CrossRefGoogle Scholar
  42. 42.
    Nair PK, Babu DS (2016) Spatial Shrinkage of Vembanad Lake, South West India during 1973-2015 using NDWI and MNDWI. Int J Sci Res 5(7):1394–1401Google Scholar
  43. 43.
    Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033CrossRefGoogle Scholar
  44. 44.
    Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2009) Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens Environ 113:2164–2171. CrossRefGoogle Scholar
  45. 45.
    Selmes N, Murray T, James TD (2011) Fast draining lakes on the greenland ice sheet linked to routing of surface water. Geophys Res Lett 38. CrossRefGoogle Scholar
  46. 46.
    Liang YL, Colgan W, Lv Q, Steffen K, Abdalati W, Stroeve J et al (2012) A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens Environ 123:127–138. CrossRefGoogle Scholar
  47. 47.
    Johansson AM, Brown IA (2013) Adaptive classification of supra-glacial lakes on the West Greenland ice sheet. IEEE J Sel Topics Appl Earth Observ Remote Sens 6:1998–2007. CrossRefGoogle Scholar
  48. 48.
    Temiz F, Durduran SS (2016) Monitoring coastline change using remote sensing and GIS technology: a case study of Acıgöl Lake, Turkey. IOP Conf Series Earth Environ Sci 44:042033CrossRefGoogle Scholar
  49. 49.
    Jeihouni M, Toomanian A, Alavipanah SK, Hamzeh S (2017) Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling. Environ Monit Assess 189:572CrossRefGoogle Scholar
  50. 50.
    Sultan YM, Beheary MS, Zaghloul EA, Sheta MH (2017) Change detection in the water bodies of Lake Malaha, East PortSaid, Egypt, using RS/GIS. Int J Eng Sci Comput 7(7):13759–13763Google Scholar
  51. 51.
    Acharya TD, Yang IT, Subedi A, Lee DH (2017) Change detection of lakes in Pokhara, Nepal using Landsat data. Proceedings 1:17. Licensee MDPI, Basel, SwitzerlandCrossRefGoogle Scholar
  52. 52.
    Xie H, Luo X, Xu X, Pan H, Tong X (2016) Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. Int J Remote Sens 37:1826–1844CrossRefGoogle Scholar
  53. 53.
    Darwish K, Smith SE, Torab M, Monsef H (2016) Geomorphological changes along the Nile Delta coastline between 1945 and 2015 detected using satellite remote sensing and GIS. J Coast Res. CrossRefGoogle Scholar
  54. 54.
    El-Hattab MM (2016) Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). Egypt J Rem Sens Space Sci 19:23–36Google Scholar
  55. 55.
    Ballatore TJ, Bradt SR, Olaka L, Cózar A, Loiselle SA (2014) Remote sensing of African lakes: a review. Rem Sens Afr Seas. Springer Science+Business Media, DordrechtGoogle Scholar
  56. 56.
    USDA (United States Department of Agriculture) (2017) Global reservoir and lake monitor.
  57. 57.
    ESA (European Space Agency) (2017) River and lake website.
  58. 58.
    LEGOS (Laboratoire d’Etudes en Géophysique et Océanographie Spatiales) (2017) Hydroweb: surface monitoring by satellite altimetry.
  59. 59.
    Munyaneza O, Wali UG, Uhlenbrook S, Maskey S, Mlotha MJ (2009) Water level monitoring using radar remote sensing data: application to Lake Kivu, central Africa. Phys Chem Earth 34:722–728. CrossRefGoogle Scholar
  60. 60.
    Velpuri NM, Senay GB, Asante KO (2012) A multi-source satellite data approach for modelling lake Turkana water level: calibration and validation using satellite altimetry data. Hydrol Earth Syst Sci 16:1–18. CrossRefGoogle Scholar
  61. 61.
    Yuzugullu O, Aksoy A (2014) Generation of the bathymetry of a eutrophic shallow lake using WorldView-2 imagery. J Hydroinf 16:50. CrossRefGoogle Scholar
  62. 62.
    Legleiter CJ, Tedesco M, Smith LC, Behar AE, Overstreet BT (2014) Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images. Cryosphere 8:215–228. CrossRefGoogle Scholar
  63. 63.
    Mohamed H, Negm A, Salah M, Nadaoka K, Zahran M (2017) Assessment of proposed approaches for bathymetry calculations using multispectral satellite images in shallow coastal/lake areas: a comparison of five models. Arab J Geosci 10:42. CrossRefGoogle Scholar
  64. 64.
    Mohamed H, Negm A, Nadaoka K, Abdelaziz T, Elsahabi M (2016) Comparative study of approaches to bathymetry detection in Nasser/Nubia Lake using multispectral SPOT-6 satellite imagery. Hydrolog Res Lett 10(1):45–50CrossRefGoogle Scholar
  65. 65.
    Nas B, Ekercin S, Karabörk H, Berktay A, Mulla DJ (2010) An application of Landsat-5 TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollut 212(14):183–197CrossRefGoogle Scholar
  66. 66.
    Maillard P, Pinheiro Santos NA (2008) A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed-Brazil. J Environ Manag 86(1):158–170CrossRefGoogle Scholar
  67. 67.
    Alparslan E, Aydoner C, Tüfekci V, Tüfekci H (2007) Water quality assessment at Omerli Dam using remote sensing techniques. Environ Monit Assess 135(1):391–398CrossRefGoogle Scholar
  68. 68.
    Vignolo A, Pochettino A, Cicerone D (2006) Water quality assessment using remote sensing techniques: Medrano Creek, Argentina. J Environ Manag 81(4):429–433CrossRefGoogle Scholar
  69. 69.
    Usali N, Ismail M (2010) Use of remote sensing and GIS in monitoring water quality. J Sustainable Dev 3(3)Google Scholar
  70. 70.
    El-Hattab MM (2015) Change detection and restoration alternatives for the Egyptian Lake Maryut. Egypt J Rem Sens Space Sci 18:9–16Google Scholar
  71. 71.
    Ahmed M, Barale V (2014) Satellite surveys of lagoon and coastal waters in the Southeastern Mediterranean Area. Remote Sensing of the African Seas, Springer Science+Business Media, Dordrecht. Doi: Google Scholar
  72. 72.
    Hossen H, Negm A (2017) Sustainability of water bodies of Edku Lake, Northwest of Nile Delta, Egypt: RS/GIS approach. Procedia Eng 181:404–411CrossRefGoogle Scholar
  73. 73.
    El-Zeiny A, El-Kafrawy S (2017) Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. Egypt J Rem Sens Space Sci 20:S49–S56Google Scholar
  74. 74.
    El-Kafrawy SB, Khalafallah A, Omar M, Khalil MMH, Yehia A, Allam M (2015) An integrated field and remote sensing approach for water quality mapping of Lake Burullus. Egypt Int J Environ Sci Eng 6:15–20Google Scholar
  75. 75.
    Dewidar K, Khedr AA (2005) Remote sensing of water quality for Burullus Lake, Egypt. Geocarto Int 20(3):43–49CrossRefGoogle Scholar
  76. 76.
    Hossen H, Negm A (2016) Change detection in the water bodies of Burullus Lake, Northern Nile Delta, Egypt, using RS/GIS. Procedia Eng 154:951–958CrossRefGoogle Scholar
  77. 77.
    Mohsen A, Elshemy M, Zeidan BA (2016) Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches. Environ Sci Pollut Res. Springer, BerlinGoogle Scholar
  78. 78.
    Negm AM, Mohamed H, Zahran M, Abdel-Fattah S (2016) Estimation of bathymetry using high resolution satellite imagery: case study El-Burullus Lake, Northern Nile Delta. The Nile Delta, Hdb Env Chem. Springer International Publishing Switzerland. Doi Google Scholar
  79. 79.
    El-Asmar HM, Hereher ME (2010) Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ Earth Sci, Springer. Doi: CrossRefGoogle Scholar
  80. 80.
    Ahmed MH, El Leithy BM, Thompson JR, Flower RJ, Ramdani M, Ayache F, Hassan SM (2009) Application of remote sensing to site characterization and environmental change analysis of North African coastal lagoons. Hydrobiologia 622:147–171. CrossRefGoogle Scholar
  81. 81.
    Ahmed MH, El-leithy BM, Donia NS, Arafat SM (2006) Monitoring the historical changes of Lake Manzala ecosystems during the last three decades using multidates satellite images. 1st international conference on environmental change of Lakes, Lagoons and Wetlands of the Southern Mediterranean Region (ECOLLAW), 3–7 January, Cairo, EgyptGoogle Scholar
  82. 82.
    Donia N (2015) Lake Maryut monitoring using remote sensing. Eighteenth international water technology conference, IWTC18, Sharm ElSheikh, EgyptGoogle Scholar
  83. 83.
    Negm A, Hossen H (2017) Sustainability of water bodies of northern Egyptian lakes: case studies, Burrulus and Manzalla lakes. Hdb Env Chem 55:455–468. Springer International Publishing SwitzerlandGoogle Scholar
  84. 84.
    Emam WWM (2010) Ecological and population dynamic studies on some crab species in Bardawil Lagoon, Egypt. MSc thesis. Faculty of Science, Zoology Department, Ain Shams UniversityGoogle Scholar
  85. 85.
    Ali M, Sayed M, Goher M (2006) Studies of water quality and some heavy metals in hypersaline Mediterranean Lagoon (Bardawil Lagoon, Egypt). Egypt J Aquat Biol Fish 10(2):45–64CrossRefGoogle Scholar
  86. 86.
    Abd El-Daiem A (2000) Morphological and hydrochemical characteristics of Bardawil Lagoon in comparison with that Manzala Lagoon, Northern Egypt. Egypt J Environ Sci 20:177–200Google Scholar
  87. 87.
    El-Halag RSF, Shaker IM, Mehanna SF, Othman MF, Farouk AE (2013) Impact of some environmental condition on water quality and some heavy metals in water from Bardawil lake. N Y Sci J 6(11):5–13Google Scholar
  88. 88.
    Abd Ellah RG, Hussein MM (2009) Physical limnology of Bardawil Lagoon. Egypt Am-Euras J Agric Environ Sci 5(3):331–336Google Scholar
  89. 89.
    Khalil MT, Saad A, Ahmed MH, El Kafrawy SB, Emam WWM (2016) Integrated field study, remote sensing and GIS approach for assessing and monitoring some chemical water quality parameters in Bardawil Lagoon, Egypt. Int J Innovat Res Sci Eng Technol 5(8):14656–14669Google Scholar
  90. 90.
    Embabi NS, Moawad MB (2017) A semi-automated approach for mapping geomorphology of El Bardawil lake, Northern Sinai, Egypt, using integrated remote sensing and GIS techniques. Egypt J Rem Sens Space Sci 17:41–60Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Civil Engineering Department, Faculty of EngineeringAswan UniversityAswanEgypt
  2. 2.Water and Water Engineering Department, Faculty of EngineeringZagazig UniversityZagazigEgypt
  3. 3.Physics and Engineering Mathematics Department, Faculty of EngineeringTanta UniversityTantaEgypt

Personalised recommendations