Skip to main content

Drought as Stress for Plants, Irrigation and Climatic Changes

  • Chapter
  • First Online:
Book cover Water Resources in Slovakia: Part II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 70))

  • 396 Accesses

Abstract

Drought by itself cannot be considered a disaster. However, if its impacts on local people, economies and the environment are severe and their ability to cope with and recover from it is difficult, it should be considered as a disaster. Droughts and floods are a recognizable category of natural risk. Hydrological assessments of drought impacts require detailed characteristics. We propose a new conceptual framework for drought identification in landscape with agricultural use. We described hydrological drought characteristics with impacts at the agricultural landscape and food security and the issues related to drought water management. In the past, the Slovak Republic was not considered a country immediately threatened with drought. The situation had changed at the turn of the millennium, especially after the extreme weather conditions in 2014 and also in 2015, when, for example, the historical minima were recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Čimo J, Igaz D, Bárek V (2008) Hodnotenie sucha na základe agroklimatických a pôdnych faktorov. In: Rožnovský J, Litschmann T (eds) Bioklimatologické aspekty hodnocení procesů v krajině, Mikulov 9. 11.9.2008, ISBN 978-80-86690-55-1

    Google Scholar 

  2. Húska D, Jurík Ľ, Tátošová L, Šinka K, Jakabovičová J (2017) Cultural landscape, floods and remote sensing. J Ecol Eng 18(3):31–36

    Article  Google Scholar 

  3. Jurík Ľ, Húska D, Halászová K, Bandlerová A (2015) Small water reservoirs—sources of water or problems? J Ecol Eng 16(4):22–28

    Article  Google Scholar 

  4. Fekete V (2013) Výhľadová VHB množstva a kvality povrchovej vody k časovému horizontu 2021 vrátane prehodnotenia výhľadových vodných nádrží. VÚVH Bratislava

    Google Scholar 

  5. SHMU (2018) http://www.shmu.sk/sk/?page=1784&id=

  6. SHMU (2018) http://www.shmu.sk/sk/?page=1604

  7. https://www.news.iastate.edu/news/2018/01/03/planttattoosensors

  8. Hettiarachchi H, Reza A (eds) (2016) Safe use of wastewater in agriculture: good practice examples cUNU-FLORES

    Google Scholar 

  9. Wilhite DA (1991) Drought planning: a process for state government. Water Resour Bull 27(1):29–38

    Article  Google Scholar 

  10. Freire-González J, Decker C, Hall JW (2017) The economic impacts of droughts: a framework for analysis. Ecol Econ 132:196–204. https://doi.org/10.1016

    Article  Google Scholar 

  11. WMO (2006) Drought monitoring and early warning: concepts, progress and future challenges. http://www.wmo.int/pages/publications/showcase/documents/1006_E.pdf

  12. Ding Y, Hayes MJ, Widhalm M (2010) Measuring economic impacts of drought: a review and discussion. Papers in Natural Resources 196:1–23

    Google Scholar 

  13. Novák V (2012) Evapotranspiration in the soil–plant–atmosphere system. Springer Science + Business Media, Dordrecht. 253 p

    Book  Google Scholar 

  14. Van Loon AF (2015) Hydrological drought explained. WIREs Water 2:359–392. https://doi.org/10.1002/wat2.1085

    Article  Google Scholar 

  15. Wanders N, Wada Y (2015) Human and climate impacts on the 21st-century hydrological drought. J Hydrol 526:208–220

    Article  Google Scholar 

  16. Ondráček P (2014) Vyhodnocení trendů k vysychavosti vodních toků: Projekt TA ČR BIOSUCHO a databáze SALAMANDER—Hydrogeologické hodnocení povodí. Zpráva. Brno, 2014, 16 s

    Google Scholar 

  17. Meyer WS, Kondrlová E, Koerber GR (2015) Evaporation of perennial semi-arid woodland in southeastern Australia is adapted for irregular but common dry periods. Hydrol Process 29:3714–3726

    Article  Google Scholar 

  18. Van Loon AF, Stahl K, Di Baldassarre G, Clark J, Rangecroft S, Wanders N, Gleeson T, Van Dijk AIJM, Tallaksen LM, Hannaford J, Uijlenhoet R, Teuling AJ, Hannah DM, Sheffield J, Svoboda M, Verbeiren B, Wagener T, Van Lanen HAJ (2016) Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 20:3631–3650. https://www.hydrol-earth-syst-sci.net/20/3631/2016/hess-20-3631-2016.pdf

    Article  Google Scholar 

  19. Newman JE, Oliver JE (2005) Palmer index/Palmer drought severity index. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Dordrecht, The Netherlands, pp 571–573

    Chapter  Google Scholar 

  20. Urquijo J, Pereira D, Dias S, De Stefano L (2016) A methodology to assess drought management as applied to six European case studies. Int J Water Resour Dev. https://doi.org/10.1080/07900627.2016.1174106

  21. Kellner O, Niyogi D (2014) Forages and Pastures symposium: assessing drought vulnerability of agricultural production systems in context of the 2012 drought. J Anim Sci 92(7):2811–2822. https://doi.org/10.2527/jas.2013-7496. https://www.animalsciencepublications.org/publications/jas/articles/92/7/2811

    Article  CAS  Google Scholar 

  22. National Drought Mitigation Center, University of Nebraska-Lincoln, USA. http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx

  23. Lapin M, Melo M (2004) Methods of climate change scenarios projection in Slovakia and selected results. J Hydrol Hydromechan 52(4):224–238

    Google Scholar 

  24. Weiskel PK, Vogel RM, Steeves PA, Desimone LA, Zarriello PJ, Ries KG (2007) Water-use regimes: characterizing direct human interaction with hydrologic systems. Water Resour Res 43. https://doi.org/10.1029/2006WR005062

  25. Novák V (1995) Evapotranspiration and its estimation. Veda, Bratislava. 260 p

    Google Scholar 

  26. Bárek V, Halaj P, Igaz D (2009) The influence of climate change on water demands for irrigation of special plants and vegetables in Slovakia. In: Bioclimatology and natural hazards. Springer, Dordrecht, pp 271–282

    Google Scholar 

  27. Benetin J, Šoltész A (1988) Hydrologické charakteristiky vodného režimu pôd a ich výpočet. In: Agromelio. ČSVTS, Nitra, pp 12–20

    Google Scholar 

  28. Gomboš MJ, Ivančo R, Mati D, Pavelková D (1999) Výsledky meraní pôdnej vlhkosti v ťažkých pôdach na Východoslovenskej nížine. In: III. Zborník z konferencie “Vplyv antropogénnej činnosti na vodný režim nížinného územia”. ÚH SAV Bratislava, Michalovce, s. 258–261

    Google Scholar 

  29. Tárník A, Tárníková M (2017) Analysis of the development of available soil water storage in the Nitra river catchment. IOP Conf Ser Mater Sci Eng 245:9

    Article  Google Scholar 

  30. Orfánus T (2005) Spatial Assessment of Soil Drought Indicators at Regional Scale: Hydrolimits andSoil Water Storage Capacity in Záhorská nížina Lowland. J Hydrol Hydromechan 53(3):164–176

    Google Scholar 

  31. Tate EL, Gustard A (2000) Drought definition: a hydrological perspective. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 23–48

    Chapter  Google Scholar 

  32. Lapin M, Faško P, Kveták Š (1988) Metodický predpis 3-09-1/1. Klimatické normály. SHMÚ, Bratislava, 25 pp

    Google Scholar 

  33. European Environmental Agency (2012) Climate change, impacts and vulnerability in Europe 2012. An Indicator Based Report. EEA Report No. 12/2012. EEA, Copenhagen, 300 pp

    Google Scholar 

Download references

Acknowledgements

This chapter was supported by the following grants and projects:

  • APVV-16-0278: Use of hydromelioration structures for mitigation of the negative extreme hydrological phenomena effects and their impacts on the quality of water bodies in agricultural landscapes

  • KEGA 028SPU-4/2017: Monitoring of elements of environment—practical course

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľ. Jurík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jurík, Ľ., Kaletová, T. (2018). Drought as Stress for Plants, Irrigation and Climatic Changes. In: Negm, A., Zeleňáková, M. (eds) Water Resources in Slovakia: Part II. The Handbook of Environmental Chemistry, vol 70. Springer, Cham. https://doi.org/10.1007/698_2018_271

Download citation

Publish with us

Policies and ethics