Skip to main content

Limitations of Conventional Drinking Water Technologies in Pollutant Removal

  • Chapter
  • First Online:
Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 67))

Abstract

This chapter gives an overview of the more traditional drinking water treatment from ground and surface waters. Water is treated to meet the objectives of drinking water quality and standards. Water treatment and water quality are therefore closely connected.

The objectives for water treatment are to prevent acute diseases by exposure to pathogens, to prevent long-term adverse health effects by exposure to chemicals and micropollutants, and finally to create a drinking water that is palatable and is conditioned in such a way that transport from the treatment works to the customer will not lead to quality deterioration.

Traditional treatment technologies as described in this chapter are mainly designed to remove macro parameters such as suspended solids, natural organic matter, dissolved iron and manganese, etc. The technologies have however only limited performance for removal of micropollutants. Advancing analytical technologies and increased and changing use of compounds however show strong evidence of new and emerging threats to drinking water quality. Therefore, more advanced treatment technologies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

°D:

German degree

AC:

Activated carbon

AOC:

Assimilable organic carbon

BB:

Building block

BP:

Biopolymer

DAF:

Dissolved air flotation

DOC:

Dissolved organic carbon

E. coli :

Escherichia coli

E2:

17-Beta-estradiol

EC:

European Commission

EDC:

Endocrine-disrupting compound

EE2:

17-Alpha-ethinylestradiol

FEEM:

Fluorescence excitation emission matrix

GAC:

Granular activated carbon

HS:

Humic substance

LC-OCD:

Liquid chromatography – organic carbon detection

LMw:

Low molecular weight

LP:

Low pressure (UV lamp, 253.7 nm)

LRV:

Logarithmic reduction values

LSI:

Langelier saturation index

MP:

Medium pressure (UV lamp, 200–300 nm)

Mw:

Molecular weight

NOM:

Natural organic matter

PAC:

Powdered activated carbon

PACl:

Polyaluminium chloride

PCCPP:

Practical calcium carbonate precipitation potential

PRAM:

Polarity rapid assessment method

QMRA:

Quantitative microbial risk assessment

REACH:

Registration, evaluation, and authorization chemicals

SAX:

Strong anion exchanger

SDWA:

Safe Drinking Water Act

SEC:

Size exclusion chromatography

SI:

Saturation index

SMP:

Soluble microbiological product

SPE:

Solid phase extraction

SUVA:

Specific UV absorbance

TCCPP:

Theoretical calcium carbonate precipitation potential

TH:

Total hardness

TOC:

Total organic carbon

TTC:

Threshold of toxicological concern

UV:

Ultraviolet

UV-A:

315–380 nm

UV-B:

280–315 nm

UV-C:

200–280 nm

VUV:

Vacuum ultraviolet (100–200 nm)

WHO:

World Health Organization

WWTP:

Wastewater treatment plant

References

  1. WHO (2017) Guidelines for drinking-water quality4th edn. WHO, Gutenberg. First addendum to the fourth edition

    Google Scholar 

  2. European Commission (1998) Drinking Water Directive; Council Directive 98/83/EC on the quality of water intended for human consumption. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF

  3. Ahmad A, Kools S, Schriks M, Stuyfzand P, Hofs B (2015) Arsenic and chromium concentrations and their speciation in groundwater resources and drinking water supply in the Netherlands. Nieuwegein, KWR Watercycle Research Institute

    Google Scholar 

  4. Ahmad A, Richards LA, Bhattacharya P (2016) Arsenic remediation of drinking water: an overview. In: Bhattacharya P, Jovanovich D, Polya D (eds) Best practice guide on control of arsenic in drinking water. IWA Publishing, London, pp 120–138

    Google Scholar 

  5. Coppens LJC, van Gils JAG, ter Laak TL, Raterman BW, van Wezel AP (2015) Towards spatially smart abatement of human pharmaceuticals in surface waters: defining impact of sewage treatment plants on susceptible functions. Water Res 81:356–365

    Article  CAS  Google Scholar 

  6. Van Der Aa NGFM, Kommer GJ, Van Montfoort JE, Versteegh JFM (2011) Demographic projections of future pharmaceutical consumption in the Netherlands. Water Sci Technol 63(4):825–831

    Article  Google Scholar 

  7. European Commission (2015) Commission implementing decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015D0495&from=EN

  8. Carvalho RN, Ceriani L, Ippolito A, Lettieri T (2015) Development of the first watch list under the environmental quality standards directive. EC Joint Research Centre, Ispra

    Google Scholar 

  9. ter Laak TL, van der Aa M, Houtman CJ, Stoks PG, van Wezel AP (2010) Relating environmental concentrations of pharmaceuticals to consumption: a mass balance approach for the river Rhine. Environ Int 36(5):403–409

    Article  CAS  Google Scholar 

  10. Schoeps P, Schriks M (2010) The effect of REACH on the log Kow distribution of drinking water contaminants. KWR Watercycle Research Institute, Nieuwegein

    Google Scholar 

  11. Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interf Sci 159(2):189–197

    Article  CAS  Google Scholar 

  12. Westerhoff P, Mezyk SP, Cooper WJ, Minakata D (2007) Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ Sci Technol 41(13):4640–4646

    Article  CAS  Google Scholar 

  13. Cooper WJ, Mezyk SP, Peller JR, Cole SK, Song W, Mincher BJ, Peake BM (2008) Studies in radiation chemistry: application to ozonation and other advanced oxidation processes. Ozone Sci Eng 30(1):58–64

    Article  CAS  Google Scholar 

  14. Cooper WJ, Song W, Gonsior M, Kalnina D, Peake BM, Mezyk SP (2008) Recent advances in structure and reactivity of dissolved organic matter in natural waters. Water Sci Technol Water Supply 8:615–623

    Article  CAS  Google Scholar 

  15. Lakretz A, Ron EZ, Harif T, Mamane H (2011) Biofilm control in water by advanced oxidation process (AOP) pre-treatment: effect of natural organic matter (NOM). Water Sci Technol 64(9):1876–1884

    Article  CAS  Google Scholar 

  16. Lamsal R, Walsh ME, Gagnon GA (2011) Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res 45(10):3263–3269

    Article  CAS  Google Scholar 

  17. Matilainen A, Sillanpää M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80(4):351–365

    Article  CAS  Google Scholar 

  18. Metz DH, Reynolds K, Meyer M, Dionysiou DD (2011) The effect of UV/H2O2 treatment on biofilm formation potential. Water Res 45(2):497–508

    Article  CAS  Google Scholar 

  19. Thomson J, Parkinson A, Roddick FA (2004) Depolymerization of chromophoric natural organic matter. Environ Sci Technol 38(12):3360–3369

    Article  CAS  Google Scholar 

  20. Sarathy SR, Stefan MI, Royce A, Mohseni M (2011) Pilot-scale UV/H2O2 advanced oxidation process for surface water treatment and downstream biological treatment: effects on natural organic matter characteristics and DBP formation potential. Environ Technol 32(15):1709–1718

    Article  CAS  Google Scholar 

  21. Azami H, Sarrafzadeh MH, Mehrnia MR (2012) Soluble microbial products (SMPs) release in activated sludge systems: a review. J Environ Health Sci Eng 9(1):30

    Article  CAS  Google Scholar 

  22. Xie WM, Ni BJ, Seviour T, Yu HQ (2013) Evaluating the impact of operational parameters on the formation of soluble microbial products (SMP) by activated sludge. Water Res 47(3):1073–1079

    Article  CAS  Google Scholar 

  23. Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND). Water Res 45(2):879–885

    Article  CAS  Google Scholar 

  24. Grefte A (2013) Removal of natural organic matter fractions by anion exchange; impact on drinking water treatment processes and biological stability. Civil engineering. Delft University of Technology, Delft

    Google Scholar 

  25. Audenaert WTM, Vermeersch Y, Van Hulle SWH, Dejans P, Dumoulin A, Nopens I (2011) Application of a mechanistic UV/hydrogen peroxide model at full-scale: sensitivity analysis, calibration and performance evaluation. Chem Eng J 171(1):113–126

    Article  CAS  Google Scholar 

  26. Rosario-Ortiz FL, Snyder S, Suffet IH (2007) Characterization of the polarity of natural organic matter under ambient conditions by the Polarity Rapid Assessment Method (PRAM). Environ Sci Technol 41(14):4895–4900

    Article  CAS  Google Scholar 

  27. Rosario-Ortiz FL, Mezyk SP, Doud DFR, Snyder SA (2008) Quantitative correlation of absolute hydroxyl radical rate constants with non-isolated effluent organic matter bulk properties in water. Environ Sci Technol 42(16):5924–5930

    Article  CAS  Google Scholar 

  28. Rosario-Ortiz FL, Mezyk SP, Wert EC, Devin FRD, Singh MK, Xin M, Baik S, Snyder SA (2008) Effect of ozone oxidation on the molecular and kinetic properties of effluent organic matter. J Adv Oxid Technol 11(3):529–535

    CAS  Google Scholar 

  29. Rosario-Ortiz FL, Snyder SA, Suffet IH (2007) Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries. Water Res 41(18):4115–4128

    Article  CAS  Google Scholar 

  30. Rosario-Ortiz FL, Wert EC, Snyder SA (2010) Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Res 44(5):1440–1448

    Article  CAS  Google Scholar 

  31. Slaats PGG, Meerkerk MA, Hofman-Caris CHM (2013) Conditionering: de optimale samenstelling van drinkwater; Kiwa-Mededeling 100 –Update 201

    Google Scholar 

  32. WHO (2005) Nutrients in drinking water; water, sanitation and health protection and the human environment. WHO, Geneva

    Google Scholar 

  33. Leurs LJ, Schouten LJ, Mons MN, Goldbohm RA, Van Den Brandt PA (2010) Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in the Netherlands. Environ Health Perspect 118(3):414–420

    Article  CAS  Google Scholar 

  34. Momeni M, Gharedaghi Z, Amin MM, Poursafa P, Mansourian M (2014) Does water hardness have preventive effect on cardiovascular disease? Int J Prev Med 5(2):159–163

    Google Scholar 

  35. Rylander R (2014) Magnesium in drinking water – a case for prevention? J Water Health 12(1):34–40

    Article  CAS  Google Scholar 

  36. Rapant S, Fajčíková K, Cvečková V, Ďurža A, Stehlíková B, Sedláková D, Ženišová Z (2015) Chemical composition of groundwater and relative mortality for cardiovascular diseases in the Slovak Republic. Environ Geochem Health 37(4):745–756

    Article  CAS  Google Scholar 

  37. De Moel PJ, Verberk JQJC, Van Dijk JC (2006) Principles and practices. Sdu Editors, Delft University of Technology, Delft

    Google Scholar 

  38. Bruins JH, Petrusevski B, Slokar YM, Huysman K, Joris K, Kruithof JC, Kennedy MD (2015) Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters. Water Res 69:154–161

    Article  CAS  Google Scholar 

  39. Verwey EJW, Overbeek JTG, van Nes K (1948) Theory of the stability of lyophobic colloids; the interaction of sol particles having an electric double layer. Elsevier, New York

    Google Scholar 

  40. Verwey EJW, Overbeek JTG (1955) Theory of the stability of lyophobic colloids. J Colloid Sci 10(2):224–225

    Article  CAS  Google Scholar 

  41. Meijers AP (1974) De theorie van de vlokvomring. Rijswijk, Kiwa

    Google Scholar 

  42. Duan J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf Sci 100–102(Suppl):475–502

    Article  CAS  Google Scholar 

  43. van Melick MJ (1975) Tweede rapport van de commissie Vlokvomring en vlokverwijdering

    Google Scholar 

  44. Amirtharajah A, Mills KM (1982) Rapid-mix design for mechanisms of alum coagulation. J Am Water Works Ass 74(4):210–216

    Article  CAS  Google Scholar 

  45. Crittenden JC, Rhodes Trussell R, Hand DW, Howe KJ, Tchobanoglous G (2012) Water treatment principles and design3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  46. Van Der Horst W, Ijpelaar GF, Scholte-Veenendaal P, Rietveld LC, Van Dijk JC (2006) Occurrence and removal of pharmaceuticals and Endocrine Disrupting Compounds (EDCs) from drinking water. In: American Water Works Association – water quality technology conference and exposition 2006: taking water quality to new heights

    Google Scholar 

  47. Saraiva Soares AF, Leão MMD, Vianna Neto MR, Da Costa EP, De Oliveira MC, Amaral NB (2013) Efficiency of conventional drinking water treatment process in the removal of endosulfan, ethylenethiourea, and 1,2,4-triazole. J Water Supply Res Technol 62(6):367–376

    Article  CAS  Google Scholar 

  48. Gale P, Pitchers R, Gray P (2002) The effect of drinking water treatment on the spatial heterogeneity of micro-organisms: implications for assessment of treatment efficiency and health risk. Water Res 36(6):1640–1648

    Article  CAS  Google Scholar 

  49. Edzwald JK (1995) Principles and applications of dissolved air flotation. Water Sci Technol 31(3–4):1–23

    Article  CAS  Google Scholar 

  50. Rook JJ (1974) Formation of haloforms during chlorination of natural water. Water Treat Exams 23(2):234–243

    Google Scholar 

  51. Sosnin EA, Oppenländer T, Tarasenko VF (2006) Applications of capacitive and barrier discharge excilamps in photoscience. J Photochem Photobiol C: Photochem Rev 7(4):145–163

    Article  CAS  Google Scholar 

  52. Lerouge S, Fozza AC, Wertheimer MR, Marchand R, Yahia LH (2000) Sterilization by low-pressure plasma: the role of vacuum-ultraviolet radiation. Plasmas Polym 5(1):31–46

    Article  CAS  Google Scholar 

  53. Halfmann H, Denis B, Bibinov N, Wunderlich J, Awakowicz P (2007) Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J Phys D Appl Phys 40(19):5907–5911

    Article  CAS  Google Scholar 

  54. Wang D, Oppenländer T, El-Din MG, Bolton JR (2010) Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm. Photochem Photobiol 86(1):176–181

    Article  CAS  Google Scholar 

  55. Templeton MR, Andrews RC, Hofmann R (2005) Inactivation of particle-associated viral surrogates by ultraviolet light. Water Res 39(15):3487–3500

    Article  CAS  Google Scholar 

  56. Wols BA, Harmsen DJH, Beerendonk EF, Hofman-Caris CHM (2014) Predicting pharmaceutical degradation by UV (LP)/H2O2 processes: a kinetic model. Chem Eng J 255:334–343

    Article  CAS  Google Scholar 

  57. Wols BA, Harmsen DJH, Beerendonk EF, Hofman-Caris CHM (2015) Predicting pharmaceutical degradation by UV (MP)/H2O2 processes: a kinetic model. Chem Eng J 263:336–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Hofman-Caris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hofman-Caris, R., Hofman, J. (2017). Limitations of Conventional Drinking Water Technologies in Pollutant Removal. In: Gil, A., Galeano, L., Vicente, M. (eds) Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. The Handbook of Environmental Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/698_2017_83

Download citation

Publish with us

Policies and ethics