Advertisement

Modified Cathodes with Carbon-Based Nanomaterials for Electro-Fenton Process

  • Alireza KhataeeEmail author
  • Aliyeh Hasanzadeh
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

Electro-Fenton (EF) process is based on the continuous in situ production of hydrogen peroxide (H2O2) by a two-electron reduction of oxygen on cathode and the addition of ferrous ion to generate hydroxyl radical (OH) at the solution through Fenton’s reaction in acidic condition. Hence, cathode material has prominent effects on the H2O2 electro-generation efficiency and regeneration of ferrous ion. Carbonaceous materials are applied as suitable cathode in virtue of being highly conductive, stable, nontoxic, and commercially available. Besides, modification of cathode electrode with carbon-based nanomaterials (e.g., carbon nanotubes (CNTs), graphene, mesoporous carbon) can improve the electroactive surface area and the rate of oxygen mass transfer to the electrode, which increases the H2O2 electro-generation in the EF process. This chapter is to summarize the recent progress and advances in the modification of cathode electrode with carbon-based nanomaterials for EF process. The ability of different carbon-based nanomaterials to electro-generate H2O2 and degradation of pollutants is also discussed briefly.

Keywords

Carbon nanomaterials Carbon nanotubes Electro-Fenton Graphene Graphene oxide Hydrogen peroxide Mesoporous carbon Reduced graphene oxide 

Abbreviations

ACF

Activated carbon fiber

AQS

Anthraquinone monosulfonate

BDD

Boron-doped diamond

CF

Carbon felt

CNT

Carbon nanotube

CTAB

Cetyl trimethyl ammonium bromide

DETA

3-(Trimethoxysilylpropyl) diethylenetriamine

EF

Electro-Fenton

ERGO

Electrochemical reduction of graphene oxide

GDE

Gas diffusion electrode

GO

Graphene oxide

HPC

Hierarchically porous carbon

MOF

Metal-organic framework

MWCNTs

Multiwalled carbon nanotubes

OMC

Ordered mesoporous carbons

PTFE

Polytetrafluoroethylene

rGO

Reduced graphene oxide

Rh B

Rhodamine B

RVC

Reticulated vitreous carbon

SEM

Scanning electron microscopy

SWNTs

Single-walled nanotubes

TEM

Transmission electron microscopy

TOC

Total organic carbon

Notes

Acknowledgment

The authors thank the University of Tabriz (Iran) for all the support provided. We also acknowledge the support of Iran Science Elites Federation.

References

  1. 1.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on fenton’s reaction chemistry. Chem Rev 109(12):6570–6631CrossRefGoogle Scholar
  2. 2.
    Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15CrossRefGoogle Scholar
  3. 3.
    Oloman C, Watkinson AP (1975) The electroreduction of oxygen to hydrogen peroxide on fluidized cathodes. Can J Chem Eng 53(3):268–273CrossRefGoogle Scholar
  4. 4.
    Oloman C, Watkinson AP (1979) Hydrogen peroxide production in trickle-bed electrochemical reactors. J Appl Electrochem 9(1):117–123CrossRefGoogle Scholar
  5. 5.
    Khataee AR, Safarpour M, Zarei M, Aber S (2011) Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: investigation of operational parameters. J Electroanal Chem 659(1):63–68CrossRefGoogle Scholar
  6. 6.
    Scialdone O, Galia A, Sabatino S (2013) Electro-generation of H2O2 and abatement of organic pollutant in water by an electro-Fenton process in a microfluidic reactor. Electrochem Commun 26:45–47CrossRefGoogle Scholar
  7. 7.
    Leng WH, Zhu WC, Ni J, Zhang Z, Zhang JQ, Cao CN (2006) Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl Catal A 300(1):24–35CrossRefGoogle Scholar
  8. 8.
    Scialdone O, Galia A, Gattuso C, Sabatino S, Schiavo B (2015) Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochim Acta 182:775–780CrossRefGoogle Scholar
  9. 9.
    Santana-Martínez G, Roa-Morales G, Martin del Campo E, Romero R, Frontana-Uribe BA, Natividad R (2016) Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochim Acta 195:246–256CrossRefGoogle Scholar
  10. 10.
    Flox C, Ammar S, Arias C, Brillas E, Vargas-Zavala AV, Abdelhedi R (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B 67(1-2):93–104CrossRefGoogle Scholar
  11. 11.
    Liang L, An Y, Zhou M, Yu F, Liu M, Ren G (2016) Novel rolling-made gas-diffusion electrode loading trace transition metal for efficient heterogeneous electro-Fenton-like. J Environ Chem Eng 4(4):4400–4408CrossRefGoogle Scholar
  12. 12.
    Wang Z-X, Li G, Yang F, Chen Y-L, Gao P (2011) Electro-Fenton degradation of cellulose using graphite/PTFE electrodes modified by 2-ethylanthraquinone. Carbohydr Polym 86(4):1807–1813CrossRefGoogle Scholar
  13. 13.
    Flores N, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E, Sirés I (2017) 4-Hydroxyphenylacetic acid oxidation in sulfate and real olive oil mill wastewater by electrochemical advanced processes with a boron-doped diamond anode. J Hazard Mater 321:566–575CrossRefGoogle Scholar
  14. 14.
    Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65(3):227–233CrossRefGoogle Scholar
  15. 15.
    Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem 610(1):75–84CrossRefGoogle Scholar
  16. 16.
    Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B 83(1-2):140–149CrossRefGoogle Scholar
  17. 17.
    Zhou M, Tan Q, Wang Q, Jiao Y, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215-216:287–293CrossRefGoogle Scholar
  18. 18.
    Zhou L, Zhou M, Zhang C, Jiang Y, Bi Z, Yang J (2013) Electro-Fenton degradation of p-nitrophenol using the anodized graphite felts. Chem Eng J 233:185–192CrossRefGoogle Scholar
  19. 19.
    Yahya MS, Oturan N, El Kacemi K, El Karbane M, Aravindakumar CT, Oturan MA (2014) Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products. Chemosphere 117:447–454CrossRefGoogle Scholar
  20. 20.
    Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616(1–2):71–78CrossRefGoogle Scholar
  21. 21.
    Trellu C, Péchaud Y, Oturan N, Mousset E, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016) Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: mineralization efficiency and modelling. Appl Catal B 194:32–41CrossRefGoogle Scholar
  22. 22.
    Alvarez-Gallegos A, Pletcher D (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim Acta 44(5):853–861CrossRefGoogle Scholar
  23. 23.
    Alverez-Gallegos A, Pletcher D (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: the removal of phenols and related compounds from aqueous effluents. Electrochim Acta 44(14):2483–2492CrossRefGoogle Scholar
  24. 24.
    Martínez SS, Bahena CL (2009) Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents. Water Res 43(1):33–40CrossRefGoogle Scholar
  25. 25.
    Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015) Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes. J Hazard Mater 290:34–42CrossRefGoogle Scholar
  26. 26.
    Thiam A, Zhou M, Brillas E, Sirés I (2014) Two-step mineralization of Tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl Catal B 150–151:116–125CrossRefGoogle Scholar
  27. 27.
    Cruz-González K, Torres-Lopez O, García-León AM, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2012) Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination 286:63–68CrossRefGoogle Scholar
  28. 28.
    Cruz-González K, Torres-López O, García-León A, Guzmán-Mar JL, Reyes LH, Hernández-Ramírez A, Peralta-Hernández JM (2010) Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode. Chem Eng J 160(1):199–206CrossRefGoogle Scholar
  29. 29.
    Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113(8):5782–5816CrossRefGoogle Scholar
  30. 30.
    Hassani A, Khataee AR (2017) Activated carbon fiber for environmental protection. In: Chen JY (ed) Activated carbon fiber and textiles. Woodhead Publishing, Oxford, pp 245–280CrossRefGoogle Scholar
  31. 31.
    Inagaki M, Kang F (2014) Fundamental science of carbon materials. Materials science and engineering of carbon: fundamentals2nd edn. Butterworth-Heinemann, Oxford, pp 17–217CrossRefGoogle Scholar
  32. 32.
    Wei Q, Tong X, Zhang G, Qiao J, Gong Q, Sun S (2015) Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5(3):1574CrossRefGoogle Scholar
  33. 33.
    Wang D-W, Su D (2014) Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci 7(2):576–591CrossRefGoogle Scholar
  34. 34.
    Mousset E, Ko ZT, Syafiq M, Wang Z, Lefebvre O (2016) Electrocatalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment. Electrochim Acta 222:1628–1641CrossRefGoogle Scholar
  35. 35.
    Ren W, Tang D, Lu X, Sun J, Li M, Qiu S, Fan D (2016) Novel multilayer ACF@rGO@OMC cathode composite with enhanced activity for electro-Fenton degradation of phthalic acid esters. Ind Eng Chem Res 55(42):11085–11096CrossRefGoogle Scholar
  36. 36.
    Chen C-Y, Tang C, Wang H-F, Chen C-M, Zhang X, Huang X, Zhang Q (2016) Oxygen reduction reaction on graphene in an electro-Fenton system: in situ generation of H2O2 for the oxidation of organic compounds. ChemSusChem 9(10):1194–1199CrossRefGoogle Scholar
  37. 37.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  38. 38.
    Dai L, Xue Y, Qu L, Choi H-J, Baek J-B (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892CrossRefGoogle Scholar
  39. 39.
    Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102CrossRefGoogle Scholar
  40. 40.
    Zhang X, Lei L, Xia B, Zhang Y, Fu J (2009) Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in electro-Fenton. Electrochim Acta 54(10):2810–2817CrossRefGoogle Scholar
  41. 41.
    Tian J, Olajuyin AM, Mu T, Yang M, Xing J (2016) Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process. Environ Sci Pollut Res 23(12):11574–11583CrossRefGoogle Scholar
  42. 42.
    Chu Y, Zhang D, Liu L, Qian Y, Li L (2013) Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2–Sb2O5–IrO2 anode: kinetics, byproducts and biodegradability. J Hazard Mater 252-253:306–312CrossRefGoogle Scholar
  43. 43.
    Khataee AR, Safarpour M, Zarei M, Aber S (2012) Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. J Mol Catal A Chem 363–364:58–68CrossRefGoogle Scholar
  44. 44.
    Khataee AR, Vahid B, Behjati B, Safarpour M, Joo SW (2014) Kinetic modeling of a triarylmethane dye decolorization by photoelectro-Fenton process in a recirculating system: nonlinear regression analysis. Chem Eng Res Des 92(2):362–367CrossRefGoogle Scholar
  45. 45.
    Khataee AR, Vahid B, Behjati B, Safarpour M (2013) Treatment of a dye solution using photoelectro-fenton process on the cathode containing carbon nanotubes under recirculation mode: investigation of operational parameters and artificial neural network modeling. Environ Prog Sustain Energy 32(3):557–563CrossRefGoogle Scholar
  46. 46.
    Pajootan E, Arami M, Rahimdokht M (2014) Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Sep Purif Technol 130:34–44CrossRefGoogle Scholar
  47. 47.
    Es’haghzade Z, Pajootan E, Bahrami H, Arami M (2017) Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J Taiwan Inst Chem Eng 7:91–105CrossRefGoogle Scholar
  48. 48.
    Fu J, Zhang X, Lei L (2007) Fe-modified multi-walled carbon nanotube electrode for production of hydrogen peroxide. Acta Phys Chim Sin 23(8):1157–1162CrossRefGoogle Scholar
  49. 49.
    Tang Q, Wang D, Yao DM, Yang CW, Sun YC (2016) Highly efficient electro-generation of hydrogen peroxide using NCNT/NF/CNT air diffusion electrode for electro-Fenton degradation of p-nitrophenol. Water Sci Technol 73(7):1652–1658CrossRefGoogle Scholar
  50. 50.
    Babaei-Sati R, Basiri Parsa J (2017) Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process. J Ind Eng Chem 52:270–276CrossRefGoogle Scholar
  51. 51.
    Zhang X, Fu J, Zhang Y, Lei L (2008) A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in electro-Fenton system. Sep Purif Technol 64(1):116–123CrossRefGoogle Scholar
  52. 52.
    Zarei M, Salari D, Niaei A, Khataee AR (2009) Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochim Acta 54(26):6651–6660CrossRefGoogle Scholar
  53. 53.
    Zarei M, Niaei A, Salari D, Khataee AR (2010) Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. J Hazard Mater 173(1–3):544–551CrossRefGoogle Scholar
  54. 54.
    Zarei M, Khataee AR, Ordikhani-Seyedlar R, Fathinia M (2010) Photoelectro-Fenton combined with photocatalytic process for degradation of an azo dye using supported TiO2 nanoparticles and carbon nanotube cathode: neural network modeling. Electrochim Acta 55(24):7259–7265CrossRefGoogle Scholar
  55. 55.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRefGoogle Scholar
  56. 56.
    Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY (2016) Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Control Release 226:217–228CrossRefGoogle Scholar
  57. 57.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  58. 58.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  59. 59.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefGoogle Scholar
  60. 60.
    Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358CrossRefGoogle Scholar
  61. 61.
    Novoselov KS (2009) Graphene: the magic of flat carbon. ECS Trans 19(5):3–7CrossRefGoogle Scholar
  62. 62.
    Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180CrossRefGoogle Scholar
  63. 63.
    Lee HC, Liu W-W, Chai S-P, Mohamed AR, Lai CW, Khe C-S, Voon CH, Hashim U, Hidayah NMS (2016) Synthesis of single-layer graphene: a review of recent development. Proc Chem 19:916–921CrossRefGoogle Scholar
  64. 64.
    Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47(10):4400–4409CrossRefGoogle Scholar
  65. 65.
    Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896CrossRefGoogle Scholar
  66. 66.
    Liu L, Qing M, Wang Y, Chen S (2015) Defects in graphene: generation, healing, and their effects on the properties of graphene: a review. J Mater Sci Technol 31(6):599–606CrossRefGoogle Scholar
  67. 67.
    Xu X, Chen J, Zhang G, Song Y, Yang F (2014) Homogeneous electro-Fenton oxidative degradation of reactive brilliant blue using a graphene doped gas-diffusion cathode. Int J Electrochem Sci 9:569–579Google Scholar
  68. 68.
    Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011CrossRefGoogle Scholar
  69. 69.
    Le TXH, Bechelany M, Champavert J, Cretin M (2015) A highly active based graphene cathode for the electro-Fenton reaction. RSC Adv 5(53):42536–42539CrossRefGoogle Scholar
  70. 70.
    Zhao F, Liu L, Yang F, Ren N (2013) E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode. Chem Eng J 230:491–498CrossRefGoogle Scholar
  71. 71.
    Dong H, Su H, Chen Z, Yu H, Yu H (2016) Fabrication of electrochemically reduced graphene oxide modified gas diffusion electrode for in-situ electrochemical advanced oxidation process under mild conditions. Electrochim Acta 222:1501–1509CrossRefGoogle Scholar
  72. 72.
    Shen J, Li Y, Zhu Y, Hu Y, Li C (2016) Aerosol synthesis of graphene-Fe3O4 hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction. J Environ Chem Eng 4(2):2469–2476CrossRefGoogle Scholar
  73. 73.
    Zhao X, Liu S, Huang Y (2016) Removing organic contaminants by an electro-Fenton system constructed with graphene cathode. Toxicol Environ Chem 98(3-4):530–539CrossRefGoogle Scholar
  74. 74.
    Zhang Z, Zhang J, Ye X, Hu Y, Chen Y (2016) Pd/RGO modified carbon felt cathode for electro-Fenton removing of EDTA-Ni. Water Sci Technol 74(3):639–646CrossRefGoogle Scholar
  75. 75.
    Zhang G, Zhou Y, Yang F (2015) FeOOH-catalyzed heterogeneous electro-Fenton system upon anthraquinone@graphene nanohybrid cathode in a divided electrolytic cell: catholyte-regulated catalytic oxidation performance and mechanism. J Electrochem Soc 162(6):H357–H365CrossRefGoogle Scholar
  76. 76.
    Mousset E, Wang Z, Hammaker J, Lefebvre O (2016) Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater. Electrochim Acta 214:217–230CrossRefGoogle Scholar
  77. 77.
    Liu T, Wang K, Song S, Brouzgou A, Tsiakaras P, Wang Y (2016) New electro-Fenton gas diffusion cathode based on nitrogen-doped graphene@carbon nanotube composite materials. Electrochim Acta 194:228–238CrossRefGoogle Scholar
  78. 78.
    Li Y, Han J, Xie B, Li Y, Zhan S, Tian Y (2017) Synergistic degradation of antimicrobial agent ciprofloxacin in water by using 3D CeO2/RGO composite as cathode in electro-Fenton system. J Electroanal Chem 784:6–12CrossRefGoogle Scholar
  79. 79.
    Li Y, Li Y, Xie B, Han J, Zhan S, Tian Y (2017) Efficient mineralization of ciprofloxacin using a 3D CexZr1-xO2/RGO composite cathode. Environ Sci Nano 4(2):425–436CrossRefGoogle Scholar
  80. 80.
    Govindaraj D, Nambi IM, Senthilnathan J (2017) An innate quinone functionalized electrochemically exfoliated graphene/Fe3O4 composite electrode for the continuous generation of reactive oxygen species. Chem Eng J 316:964–977CrossRefGoogle Scholar
  81. 81.
    Golabi SM, Raoof JB (1996) Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives. J Electroanal Chem 416(1):75–82CrossRefGoogle Scholar
  82. 82.
    Jürmann G, Schiffrin DJ, Tammeveski K (2007) The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochim Acta 53(2):390–399CrossRefGoogle Scholar
  83. 83.
    Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42(9):4098–4140CrossRefGoogle Scholar
  84. 84.
    Sun M-H, Huang S-Z, Chen L-H, Li Y, Yang X-Y, Yuan Z-Y, Su B-L (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 45(12):3479–3563CrossRefGoogle Scholar
  85. 85.
    Hu J, Sun J, Yan J, Lv K, Zhong C, Deng K, Li J (2013) A novel efficient electrode material: activated carbon fibers grafted by ordered mesoporous carbon. Electrochem Commun 28:67–70CrossRefGoogle Scholar
  86. 86.
    Peng Q, Zhang Z, Za H, Ren W, Sun J (2014) N-doped ordered mesoporous carbon grafted onto activated carbon fibre composites with enhanced activity for the electro-Fenton degradation of Brilliant Red X3B dye. RSC Adv 4(104):60168–60175CrossRefGoogle Scholar
  87. 87.
    Ren W, Peng Q, Huang Z, Zhang Z, Zhan W, Lv K, Sun J (2015) Effect of pore structure on the electro-Fenton activity of ACF@OMC cathode. Ind Eng Chem Res 54(34):8492–8499CrossRefGoogle Scholar
  88. 88.
    Liu Y, Chen S, Quan X, Yu H, Zhao H, Zhang Y (2015) Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon. Environ Sci Technol 49(22):13528–13533CrossRefGoogle Scholar
  89. 89.
    Wang Y, Liu Y, X-Z L, Zeng F, Liu H (2013) A highly-ordered porous carbon material based cathode for energy-efficient electro-Fenton process. Sep Purif Technol 106:32–37CrossRefGoogle Scholar
  90. 90.
    Chen W, Yang X, Huang J, Zhu Y, Zhou Y, Yao Y, Li C (2016) Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue. Electrochim Acta 200:75–83CrossRefGoogle Scholar
  91. 91.
    Perazzolo V, Durante C, Gennaro A (2016) Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment. J Electroanal Chem 782:264–269CrossRefGoogle Scholar
  92. 92.
    Perazzolo V, Durante C, Pilot R, Paduano A, Zheng J, Rizzi GA, Martucci A, Granozzi G, Gennaro A (2015) Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95:949–963CrossRefGoogle Scholar
  93. 93.
    Liu Y, Quan X, Fan X, Wang H, Chen S (2015) High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem 127(23):6941–6945CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations