Modeling of Electro-Fenton Process

  • A. A. Alvarez-GallegosEmail author
  • S. Silva-Martínez
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)


From the conventional Fenton process (H2O2 and Fe2+), the electro-Fenton process was derived to improve the hydroxylation method (partial organic oxidation). Thereafter, electro-Fenton was adapted to water remediation. Since then, this approach has received much attention for wastewater treatment because it is an eco-friendly process and its technological implementation is simple. Although electro-Fenton involves a few and very simple chemical species (H2O2, Fe2+, Fe3+, O2), the interactions among them produce one of the most difficult set of chemical reactions. Therefore, the predictions of the main chemical reactions are a challenging task. The aim of this chapter is to propose a methodology for developing a general, practical, simple, semiempirical chemical model to predict organic pollutant abatement in a reliable electrochemical reactor by electro-Fenton process. The main outputs of this chemical model include the rate of H2O2 generation and its activation by Fe2+ to produce a strong oxidant. The organic pollutant degradation rate and the energy and time required to carry out the organic degradation are also included. Although under this approach it is not possible to follow a detailed evolution of concentration profiles of some by-products during the degradation time, this procedure is less complicated than others already available. Moreover, it can fulfil the main requirements of wastewater treatment: abatement of the organic pollutant.


Decolorization kinetic model Electro-Fenton process Low-cost electrodes for wastewater treatment Unmodified carbon cathode for H2O2 generation Wastewater treatment prediction 


  1. 1.
    Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4:22–26. doi: 10.4236/ns.2012.41004 Google Scholar
  2. 2.
    Chatzisymeon E, Xekoukoulotakis NP, Coz A et al (2006) Electrochemical treatment of textile dyes and dyehouse effluents. J Hazard Mater 137:998–1007. doi: 10.1016/j.jhazmat.2006.03.032 CrossRefGoogle Scholar
  3. 3.
    Thirugnanasambandham K, Sivakumar V, Maran JP (2014) Modeling and optimization of biogas production from rice mill effluent using up flow anaerobic sludge blanket reactor. J Renew Sustain Energy. doi: Artn 023129\rDoi 10.1063/1.4873400Google Scholar
  4. 4.
    Tomat R, Vecchi E (1971) Electrocatalytic production of OH radicals and their oxidative addition to benzene. J Appl Electrochem 1:185–188. doi: 10.107/BF00616941CrossRefGoogle Scholar
  5. 5.
    Sudoh M, Kodera T, Sakai K (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton’s reagent. J Chem Eng Jpn 19:513–518. doi: 10.1252/kakoronbunshu.11.70 CrossRefGoogle Scholar
  6. 6.
    Fenton HJH (1894) LXXIII – oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910. doi: 10.1039/CT8946500899 CrossRefGoogle Scholar
  7. 7.
    Van BY (1920) The catalytic decomposition of hydrogen peroxide by ferric salts. J Phys Chem 32:270–284Google Scholar
  8. 8.
    Bray WC, Gorin MH (1932) Ferryl ion, a compound of tetravalent iron. J Am Chem Soc 54:2124–2125. doi: 10.1021/ja01344a505 CrossRefGoogle Scholar
  9. 9.
    Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc A 147:332–351. doi: 10.1098/rspa.1934.0221 CrossRefGoogle Scholar
  10. 10.
    Kolthoff IM, Medalia AI (1949) The reaction between ferrous iron and peroxides. II. Reaction with hydrogen peroxide, in the presence of oxygen. J Am Chem Soc 71:3784–3788. doi: 10.1021/ja01179a058 CrossRefGoogle Scholar
  11. 11.
    Baxendale JH, Evans MG, Park G (1946) Ation of polymerisation by systems. Trans Faraday Soc 42:155–169. doi: 10.1039/TF9464200155 CrossRefGoogle Scholar
  12. 12.
    Kremer ML (2003) The Fenton reaction. Dependence of the rate on pH. J Phys Chem A 107:1734–1741. doi: 10.1021/jp020654p CrossRefGoogle Scholar
  13. 13.
    Bataineh H, Pestovsky O, Bakac A (2012) pH-induced mechanistic changeover from hydroxyl radicals to iron(iv) in the Fenton reaction. Chem Sci 3:1594. doi: 10.1039/c2sc20099f CrossRefGoogle Scholar
  14. 14.
    Walling C, El-Taliawi GM (1973) Fentons’ Reagent. II. Reactions of carbonyl compounds and a,b-unsaturated acids. J Am Chem Soc 95:844–847CrossRefGoogle Scholar
  15. 15.
    Liu X, Qiu M, Huang C (2011) Degradation of the reactive black 5 by Fenton and Fenton-like system. Procedia Eng 15:4835–4840. doi: 10.1016/j.proeng.2011.08.902 CrossRefGoogle Scholar
  16. 16.
    Stein G, Weiss J (1948) Chemical effects of ionizing radiations. Nature 161:650–650. doi: 10.1038/161650a0 CrossRefGoogle Scholar
  17. 17.
    Merz JH, Waters WA (1949) The oxidation of aromatic compounds by means of the free hydroxyl radical. J Chem Soc 2427:2427–2433CrossRefGoogle Scholar
  18. 18.
    Bishop DF, Stern G, Fleischman M, Marshal LS (1968) Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste waters. Ind Eng Chem Proc Des Dev 7:110–117. doi: 10.1021/i260025a022 CrossRefGoogle Scholar
  19. 19.
    Solozhenko EG, Soboleva NM, Goncharuk VV (1995) Decolourization of azodye solutions by Fenton’s oxidation. Water Res 29:2206–2210. doi: 10.1016/0043-1354(95)00042-J CrossRefGoogle Scholar
  20. 20.
    Tang WZ, Huang CP (1997) Stoichiometry of Fenton’s reagent in the oxidation of chlorinated aliphatic organic pollutants. Environ Technol 18:13–23. doi: 10.1080/09593331808616508 CrossRefGoogle Scholar
  21. 21.
    Gallard H, Laat JDE (2000) Kinetic modelling of Fe (III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res 34:3107–3116CrossRefGoogle Scholar
  22. 22.
    Barbeni M, Minero C, Pelizzetti E (1987) Chemical degradation of chlorophenols with Fenton’s reagent (Fe2+ + H2O2). Chemosphere 16:2225–2237. doi: Scholar
  23. 23.
    Murphy AP, Boegli WJ, Price MK, Moody CD (1989) A fenton-like reaction to neutralize formaldehyde waste solutions. Environ Sci Technol 23:166–169. doi: 10.1021/es00179a004 CrossRefGoogle Scholar
  24. 24.
    Zazo J, Casas J, Mohedano A et al (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302CrossRefGoogle Scholar
  25. 25.
    Pham ALT, Doyle FM, Sedlak DL (2012) Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Water Res 46:6454–6462. doi: 10.1016/j.watres.2012.09.020 CrossRefGoogle Scholar
  26. 26.
    Zhu N, Gu L, Yuan H et al (2012) Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2- naphthol-4-sulfonic acid using Fenton’s reagent. Water Res 46:3859–3867. doi: 10.1016/j.watres.2012.04.038 CrossRefGoogle Scholar
  27. 27.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. doi: 10.1080/10643380500326564 CrossRefGoogle Scholar
  28. 28.
    Sun JH, Sun SP, Fan MH et al (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148:172–177. doi: 10.1016/j.jhazmat.2007.02.022 CrossRefGoogle Scholar
  29. 29.
    Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131. doi: 10.1021/ar50088a003 CrossRefGoogle Scholar
  30. 30.
    Chen R, Pignatello JJ (1997) Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31:2399–2406. doi: 10.1021/es9610646 CrossRefGoogle Scholar
  31. 31.
    Gozzo F (2001) Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates. J Mol Catal A Chem 171:1–22. doi: 10.1016/S1381-1169(01)00099-1 CrossRefGoogle Scholar
  32. 32.
    Duesterberg CK, Cooper WJ, Waite TD (2005) Fenton-mediated oxidation in the presence and absence of oxygen. Environ Sci Technol 39:5052–5058. doi: 10.1021/es048378a CrossRefGoogle Scholar
  33. 33.
    Ramirez JH, Duarte FM, Martins FG et al (2009) Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: from batch to continuous reactor operation. Chem Eng J 148:394–404. doi: 10.1016/j.cej.2008.09.012 CrossRefGoogle Scholar
  34. 34.
    Zhang R, Yang Y, Huang CH et al (2016) Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS. Water Res 103:283–292. doi: 10.1016/j.watres.2016.07.037 CrossRefGoogle Scholar
  35. 35.
    Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2009) Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Res 43:4063–4069. doi: 10.1016/j.watres.2009.06.035 CrossRefGoogle Scholar
  36. 36.
    Pontes RFF, Moraes JEF, Machulek A, Pinto JM (2010) A mechanistic kinetic model for phenol degradation by the Fenton process. J Hazard Mater 176:402–413. doi: 10.1016/j.jhazmat.2009.11.044 CrossRefGoogle Scholar
  37. 37.
    Sun SP, Li CJ, Sun JH et al (2009) Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. J Hazard Mater 161:1052–1057. doi: 10.1016/j.jhazmat.2008.04.080 CrossRefGoogle Scholar
  38. 38.
    Yang X, Xu X, Xu X et al (2016) Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst. Catal Today 276:85–96. doi: 10.1016/j.cattod.2016.01.002 CrossRefGoogle Scholar
  39. 39.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631. doi: 10.1021/cr900136g CrossRefGoogle Scholar
  40. 40.
    Li J, Ai Z, Zhang L (2009) Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment. J Hazard Mater 164:18–25. doi: 10.1016/j.jhazmat.2008.07.109 CrossRefGoogle Scholar
  41. 41.
    Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-Nitrophenol in aqueous medium by electro-fenton method. Environ Sci Technol 34:3474–3479. doi: 10.1021/es990901b CrossRefGoogle Scholar
  42. 42.
    Chou S, Huang YH, Lee S-N et al (1999) Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Science 33:751–759. doi: Scholar
  43. 43.
    Kalpana PLAT (1994) Electrochemical peroxide treatment of aqueous herbicide solutions. J Agric Food Chem 42:209–215. doi: 10.1021/jf00037a038 CrossRefGoogle Scholar
  44. 44.
    Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66:841–848. doi: 10.1016/j.chemosphere.2006.06.033 CrossRefGoogle Scholar
  45. 45.
    Bokare A, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135. doi: Scholar
  46. 46.
    Walling C (1998) Intermediates in the reactions of Fenton type reagents. Acc Chem Res 31:155–157. doi: 10.1021/ar9700567 CrossRefGoogle Scholar
  47. 47.
    Goldstein S, Meyerstein D (1999) Commentary: comments on the mechanism of the “Fenton-like” reaction. Acc Chem Res 32:547–550. doi: 10.1021/ar9800789 CrossRefGoogle Scholar
  48. 48.
    Kremer ML (1999) Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605. doi: 10.1039/a903915e CrossRefGoogle Scholar
  49. 49.
    Buda F, Ensing B, Gribnau MCM, Baerends EJ (2001) DFT study of the active intermediate in the Fenton reaction. Chem Eur J 7:2775–2783CrossRefGoogle Scholar
  50. 50.
    Ensing B, Buda F, Blöchl P, Baerends EJ (2001) Chemical involvement of solvent water molecules in elementary steps of the Fenton oxidation reaction we gratefully acknowledge the helpful discussions with Michiel Gribnau (Unilever-Vlaardingen) and we thank the Netherlands Organization for Scientific Res. Angew Chem Int Ed Engl 40:2893–2895. doi: 10.1002/1521-3773(20010803)40:15<2893::AID-ANIE2893>3.0.CO;2-B CrossRefGoogle Scholar
  51. 51.
    Rachmilovich-Calis S, Masarwa A, Meyerstein N et al (2009) New mechanistic aspects of the fenton reaction. Chem Eur J 15:8303–8309. doi: 10.1002/chem.200802572 CrossRefGoogle Scholar
  52. 52.
    Pestovsky O, Stoian S, Bominaar EL et al (2005) Aqueous FeIV=O: spectroscopic identification and oxo-group exchange. Angew Chemie Int Ed 44:6871–6874. doi: 10.1002/anie.200502686 CrossRefGoogle Scholar
  53. 53.
    Walling C, Kato S (1971) Oxidation of alcohols by Fenton’s reagent. Effect of copper ion. J Am Chem Soc 93:4275–4281. doi: 10.1021/ja00746a031 CrossRefGoogle Scholar
  54. 54.
    Zhang H, Lemley AT (2007) Evaluation of the performance of flow-through anodic Fenton treatment in amide compound degradation. J Agric Food Chem 55:4073–4079. doi: 10.1021/jf070104u CrossRefGoogle Scholar
  55. 55.
    Chau YK, Wong PTS (1998) Environmental analysis. Environ Anal. doi: 10.1016/B978-0-12-245250-5.50020-6
  56. 56.
    Körbahti BK (2007) Response surface optimization of electrochemical treatment of textile dye wastewater. J Hazard Mater 145:277–286. doi: 10.1016/j.jhazmat.2006.11.031 CrossRefGoogle Scholar
  57. 57.
    Abdessalem AK, Oturan N, Bellakhal N et al (2008) Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B Environ 78:334–341. doi: 10.1016/j.apcatb.2007.09.032 CrossRefGoogle Scholar
  58. 58.
    Hamzaoui YE, Hernández JA, Silva-Martínez S et al (2011) Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network. Desalination 277:325–337. doi: 10.1016/j.desal.2011.04.060 CrossRefGoogle Scholar
  59. 59.
    Salari D, Niaei A, Khataee A, Zarei M (2009) Electrochemical treatment of dye solution containing C.I. Basic yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks. J Electroanal Chem 629:117–125. doi: 10.1016/j.jelechem.2009.02.002 CrossRefGoogle Scholar
  60. 60.
    Ahmed Basha C, Soloman PA, Velan M et al (2010) Electrochemical degradation of specialty chemical industry effluent. J Hazard Mater 176:154–164. doi: 10.1016/j.jhazmat.2009.10.131 CrossRefGoogle Scholar
  61. 61.
    Salari D, Daneshvar N, Aghazadeh F, Khataee AR (2005) Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process. J Hazard Mater 125:205–210. doi: 10.1016/j.jhazmat.2005.05.030 CrossRefGoogle Scholar
  62. 62.
    Aleboyeh A, Kasiri MB, Olya ME, Aleboyeh H (2008) Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes Pigments 77:288–294. doi: 10.1016/j.dyepig.2007.05.014 CrossRefGoogle Scholar
  63. 63.
    Ramírez B, Rondán V, Ortiz-Hernández L et al (2016) Semi-empirical chemical model for indirect advanced oxidation of acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor. J Environ Manag 171:29–34. doi: 10.1016/j.jenvman.2016.02.004 CrossRefGoogle Scholar
  64. 64.
    De Leon CP, Pletcher D (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J Appl Electrochem 25:307–314. doi: 10.1007/BF00249648 CrossRefGoogle Scholar
  65. 65.
    Alvarez-Gallegos A, Pletcher D (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim Acta 44:853–861. doi: 10.1016/S0013-4686(98)00242-4 CrossRefGoogle Scholar
  66. 66.
    Figueroa S, Vázquez L, Alvarez-Gallegos A (2009) Decolorizing textile wastewater with Fenton’s reagent electrogenerated with a solar photovoltaic cell. Water Res 43:283–294. doi: 10.1016/j.watres.2008.10.014 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.CIICAp, UAEMCuernavacaMexico

Personalised recommendations