Advertisement

The Application of Electro-Fenton Process for the Treatment of Artificial Sweeteners

  • Heng Lin
  • Nihal Oturan
  • Jie Wu
  • Mehmet A. OturanEmail author
  • Hui ZhangEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

This chapter presents the degradation and mineralization of emerging trace contaminants artificial sweeteners (ASs) in aqueous solution by electro-Fenton process in which hydroxyl radicals were formed concomitantly by OH formed from electrocatalytically generated Fenton’s reagent in the bulk solution and M(OH) from water oxidation at the anode surface. Experiments were performed in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The effect of catalyst (Fe2+) concentration and applied current on the degradation and mineralization kinetics of ASs was evaluated. The absolute rate constants for the reaction between ASs and OH were determined. The formation and evolution of short-chain carboxylic acids as well as released inorganic ions, and toxicity assessment during the electro-Fenton process have been reported and compared.

Keywords

Artificial sweeteners Electro-Fenton Hydroxyl radicals Mineralization Wastewater treatment 

Notes

Acknowledgments

Lin H. would like to acknowledge the financial support by the Fundamental Research Funds for the Central Universities (No. 2042016kf0060) and Natural Science Foundation of Hubei Province, China (Grant No. 2016CFB112).

References

  1. 1.
    Lin H, Zhang H, Wang X, Wang L, Wu J (2014) Electro-Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution. Sep Purif Technol 122:533–540CrossRefGoogle Scholar
  2. 2.
    El-Ghenymy A, Centellas F, Garrido JA, Rodríguez RM, Sirés I, Cabot PL, Brillas E (2014) Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim Acta 130:568–576CrossRefGoogle Scholar
  3. 3.
    Rodrigo MA, Oturan N, Oturan MA (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114(17):8720–8745CrossRefGoogle Scholar
  4. 4.
    Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87(6):614–620CrossRefGoogle Scholar
  5. 5.
    Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 35(5):793–802CrossRefGoogle Scholar
  6. 6.
    Sirés I, Brillas E, Oturan M, Rodrigo M, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367CrossRefGoogle Scholar
  7. 7.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84CrossRefGoogle Scholar
  8. 8.
    Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50CrossRefGoogle Scholar
  9. 9.
    Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641CrossRefGoogle Scholar
  10. 10.
    Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2009) Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Res 43(16):4063–4069CrossRefGoogle Scholar
  11. 11.
    Kuo WG (1992) Decolorizing dye wastewater with Fenton’s reagent. Water Res 26(7):881–886CrossRefGoogle Scholar
  12. 12.
    Zhang H, Choi HJ, Huang C-P (2005) Optimization of Fenton process for the treatment of landfill leachate. J Hazard Mater 125(1–3):166–174CrossRefGoogle Scholar
  13. 13.
    Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83(10):1323–1338CrossRefGoogle Scholar
  14. 14.
    Sun J-H, Sun S-P, Fan M-H, Guo H-Q, Qiao L-P, Sun R-X (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148(1–2):172–177CrossRefGoogle Scholar
  15. 15.
    Zhang H, Choi HJ, Huang C-P (2006) Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor. J Hazard Mater 136(3):618–623CrossRefGoogle Scholar
  16. 16.
    Zhang H, Zhang D, Zhou J (2006) Removal of COD from landfill leachate by electro-Fenton method. J Hazard Mater 135(1–3):106–111CrossRefGoogle Scholar
  17. 17.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631CrossRefGoogle Scholar
  18. 18.
    Garcia-Segura S, Brillas E (2011) Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode. Water Res 45(9):2975–2984CrossRefGoogle Scholar
  19. 19.
    Panizza M, Cerisola G (2009) Electro-Fenton degradation of synthetic dyes. Water Res 43(2):339–344CrossRefGoogle Scholar
  20. 20.
    Yu X, Zhou M, Ren G, Ma L (2015) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100CrossRefGoogle Scholar
  21. 21.
    Bedolla-Guzman A, Sirés I, Thiam A, Peralta-Hernández JM, Gutiérrez-Granados S, Brillas E (2016) Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of reactive yellow 160 azo dye. Electrochim Acta 206:307–316CrossRefGoogle Scholar
  22. 22.
    Yuan S, Tian M, Cui Y, Lin L, Lu X (2006) Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J Hazard Mater 137(1):573–580CrossRefGoogle Scholar
  23. 23.
    Nidheesh PV, Gandhimathi R, Sanjini NS (2014) NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system. Sep Purif Technol 132:568–576CrossRefGoogle Scholar
  24. 24.
    Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83(1–2):140–149CrossRefGoogle Scholar
  25. 25.
    Diagne M, Sharma V, Oturan N, Oturan M (2014) Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode. Environ Chem Lett 12(1):219–224CrossRefGoogle Scholar
  26. 26.
    Olvera-Vargas H, Oturan N, Aravindakumar CT, Paul MMS, Sharma V, Oturan M (2014) Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products. Environ Sci Pollut Res 21(14):8379–8386CrossRefGoogle Scholar
  27. 27.
    Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65(3):227–233CrossRefGoogle Scholar
  28. 28.
    Wang C-T, Chou W-L, Chung M-H, Kuo Y-M (2010) COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination 253(1–3):129–134CrossRefGoogle Scholar
  29. 29.
    Lei H, Li H, Li Z, Li Z, Chen K, Zhang X, Wang H (2010) Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Saf Environ Prot 88(6):431–438CrossRefGoogle Scholar
  30. 30.
    Xie YB, Li XZ (2006) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater Chem Phys 95(1):39–50CrossRefGoogle Scholar
  31. 31.
    Martínez SS, Bahena CL (2009) Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents. Water Res 43(1):33–40CrossRefGoogle Scholar
  32. 32.
    Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616(1–2):71–78CrossRefGoogle Scholar
  33. 33.
    Cruz-González K, Torres-López O, García-León A, Guzmán-Mar JL, Reyes LH, Hernández-Ramírez A, Peralta-Hernández JM (2010) Determination of optimum operating parameters for acid yellow 36 decolorization by electro-Fenton process using BDD cathode. Chem Eng J 160(1):199–206CrossRefGoogle Scholar
  34. 34.
    Ganiyu SO, Oturan N, Raffy S, Cretin M, Esmilaire R, van Hullebusch E, Esposito G, Oturan MA (2016) Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electrooxidation of organic pollutants: a case study of kinetics, mineralization and toxicity assessment of amoxicillin. Water Res 106:171–182CrossRefGoogle Scholar
  35. 35.
    Oturan N, Wu J, Zhang H, Sharma VK, Oturan MA (2013) Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B Environ 140–141:92–97CrossRefGoogle Scholar
  36. 36.
    Lange F, Scheurer M, Brauch H-J (2012) Artificial sweeteners – a recently recognized class of emerging environmental contaminants: a review. Anal Bioanal Chem 403(9):2503–2518CrossRefGoogle Scholar
  37. 37.
    Kroger M, Meister K, Kava R (2006) Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf 5(2):35–47CrossRefGoogle Scholar
  38. 38.
    Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83(12):4614–4648CrossRefGoogle Scholar
  39. 39.
    Richardson SD (2010) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 82(12):4742–4774CrossRefGoogle Scholar
  40. 40.
    Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157(2):561–568CrossRefGoogle Scholar
  41. 41.
    Mead RN, Morgan JB, Avery Jr GB, Kieber RJ, Kirk AM, Skrabal SA, Willey JD (2009) Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. Mar Chem 116(1–4):13–17CrossRefGoogle Scholar
  42. 42.
    Kokotou MG, Asimakopoulos AG, Thomaidis NS (2012) Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal Methods 4(10):3057–3070CrossRefGoogle Scholar
  43. 43.
    Houtman CJ (2010) Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J Integr Environ Sci 7(4):271–295CrossRefGoogle Scholar
  44. 44.
    Schiffman SS, Gatlin CA (1993) Sweeteners: state of knowledge review. Neurosci Biobehav Rev 17(3):313–345CrossRefGoogle Scholar
  45. 45.
    Rodero AB, de Souza Rodero L, Azoubel R (2009) Toxicity of sucralose in humans: a review. Int J Morphol 27(1):239–244CrossRefGoogle Scholar
  46. 46.
    Toth JE, Rickman KA, Venter AR, Kiddle JJ, Mezyk SP (2012) Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water. J Phys Chem A 116(40):9819–9824CrossRefGoogle Scholar
  47. 47.
    Mawhinney DB, Young RB, Vanderford BJ, Borch T, Snyder SA (2011) Artificial sweetener sucralose in U.S. drinking water systems. Environ Sci Technol 45(20):8716–8722CrossRefGoogle Scholar
  48. 48.
    Bernardo EC, Fukuta T, Fujita T, Ona EP, Kojima Y, Matsuda H (2006) Enhancement of saccharin removal from aqueous solution by activated carbon adsorption with ultrasonic treatment. Ultrason Sonochem 13(1):13–18CrossRefGoogle Scholar
  49. 49.
    Sharma V, Oturan M, Kim H (2014) Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review. Environ Sci Pollut Res 21(14):8525–8533CrossRefGoogle Scholar
  50. 50.
    Soh L, Connors KA, Brooks BW, Zimmerman J (2011) Fate of sucralose through environmental and water treatment processes and impact on plant indicator species. Environ Sci Technol 45(4):1363–1369CrossRefGoogle Scholar
  51. 51.
    Hoigné J, Bader H (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water – I. Water Res 17(2):173–183CrossRefGoogle Scholar
  52. 52.
    Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43(20):7862–7869CrossRefGoogle Scholar
  53. 53.
    Keen OS, Linden KG (2013) Re-Engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation. Environ Sci Technol 47(13):6799–6805CrossRefGoogle Scholar
  54. 54.
    Xu Y, Lin Z, Zhang H (2016) Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2. Chem Eng J 285:392–401CrossRefGoogle Scholar
  55. 55.
    Calza P, Sakkas VA, Medana C, Vlachou AD, Dal Bello F, Albanis TA (2013) Chemometric assessment and investigation of mechanism involved in photo-Fenton and TiO2 photocatalytic degradation of the artificial sweetener sucralose in aqueous media. Appl Catal B Environ 129:71–79CrossRefGoogle Scholar
  56. 56.
    Calza P, Gionco C, Giletta M, Kalaboka M, Sakkas VA, Albanis T, Paganini MC (2017) Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst. J Hazard Mater 323:471–477CrossRefGoogle Scholar
  57. 57.
    Lee Y, Zimmermann SG, Kieu AT, von Gunten U (2009) Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. Environ Sci Technol 43(10):3831–3838CrossRefGoogle Scholar
  58. 58.
    Sharma VK, Sohn M, Anquandah GAK, Nesnas N (2012) Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). Chemosphere 87(6):644–648CrossRefGoogle Scholar
  59. 59.
    Punturat V, Huang K-L (2016) Degradation of acesulfame in aqueous solutions by electro-oxidation. J Taiwan Inst Chem Eng 63:286–294CrossRefGoogle Scholar
  60. 60.
    Lin H, Wu J, Oturan N, Zhang H, Oturan MA (2016) Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals. Environ Sci Pollut Res 23(5):4442–4453CrossRefGoogle Scholar
  61. 61.
    Mhemdi A, Oturan MA, Oturan N, Abdelhédi R, Ammar S (2013) Electrochemical advanced oxidation of 2-chlorobenzoic acid using BDD or Pt anode and carbon felt cathode. J Electroanal Chem 709:111–117CrossRefGoogle Scholar
  62. 62.
    Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569CrossRefGoogle Scholar
  63. 63.
    Rodrigo MA, Cañizares P, Sánchez-Carretero A, Sáez C (2010) Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catal Today 151(1–2):173–177CrossRefGoogle Scholar
  64. 64.
    Barhoumi N, Oturan N, Olvera-Vargas H, Brillas E, Gadri A, Ammar S, Oturan MA (2016) Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Res 94:52–61CrossRefGoogle Scholar
  65. 65.
    Özcan A, Şahin Y, Koparal AS, Oturan MA (2008) Degradation of picloram by the electro-Fenton process. Environ Sci Technol 153(1–2):718–727Google Scholar
  66. 66.
    Özcan A, Şahin Y, Koparal AS, Oturan MA (2009) A comparative study on the efficiency of electro-Fenton process in the removal of propham from water. Appl Catal B Environ 89(3–4):620–626CrossRefGoogle Scholar
  67. 67.
    Oturan MA, Edelahi MC, Oturan N, El Kacemi K, Aaron J-J (2010) Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl Catal B Environ 97(1–2):82–89CrossRefGoogle Scholar
  68. 68.
    Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46(7):4074–4082CrossRefGoogle Scholar
  69. 69.
    Lin H, Oturan N, Wu J, Zhang H, Oturan MA (2017) Cold incineration of sucralose in aqueous solution by electro-Fenton process. Sep Purif Technol 173:218–225CrossRefGoogle Scholar
  70. 70.
    Lin H, Oturan N, Wu J, Sharma VK, Zhang H, Oturan MA (2017) Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes. Chemosphere 167:220–227CrossRefGoogle Scholar
  71. 71.
    Hamza M, Abdelhedi R, Brillas E, Sirés I (2009) Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes. J Electroanal Chem 627(1–2):41–50CrossRefGoogle Scholar
  72. 72.
    Skoumal M, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2008) Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes. Chemosphere 71(9):1718–1729CrossRefGoogle Scholar
  73. 73.
    Oturan N, Hamza M, Ammar S, Abdelhédi R, Oturan MA (2011) Oxidation/mineralization of 2-nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt/carbon-felt and BDD/carbon-felt cells. J Electroanal Chem 661(1):66–71CrossRefGoogle Scholar
  74. 74.
    Özcan A, Şahin Y, Oturan MA (2008) Removal of propham from water by using electro-Fenton technology: kinetics and mechanism. Chemosphere 73(5):737–744CrossRefGoogle Scholar
  75. 75.
    Sirés I, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2007) Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere 66(9):1660–1669CrossRefGoogle Scholar
  76. 76.
    Li M, Feng C, Zhang Z, Sugiura N (2009) Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim Acta 54(20):4600–4606CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Environmental EngineeringWuhan UniversityWuhanChina
  2. 2.Laboratoire Géomatériaux et Environnement (EA 4605)Université Paris-EstMarne-la-Vallée Cedex 2France
  3. 3.Fuzhou Environmental Monitoring CenterFuzhouChina

Personalised recommendations